BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Legeza B, Balázs Z, Odermatt A. Fructose promotes the differentiation of 3T3-L1 adipocytes and accelerates lipid metabolism. FEBS Letters 2014;588:490-6. [DOI: 10.1016/j.febslet.2013.12.014] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
Number Citing Articles
1 Xu H, Wang F, Wang J, Xu J, Wang Y, Xue C. The WNT/β-catenin pathway is involved in the anti-adipogenic activity of cerebrosides from the sea cucumber Cucumaria frondosa. Food Funct 2015;6:2396-404. [DOI: 10.1039/c5fo00273g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
2 Ohashi K, Ando Y, Munetsuna E, Yamada H, Yamazaki M, Nagura A, Taromaru N, Ishikawa H, Suzuki K, Teradaira R. Maternal fructose consumption alters messenger RNA expression of hippocampal StAR, PBR, P450(11β), 11β-HSD, and 17β-HSD in rat offspring. Nutrition Research 2015;35:259-64. [DOI: 10.1016/j.nutres.2014.11.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
3 Kovačević S, Nestorov J, Matić G, Elaković I. Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action. Eur J Nutr 2017;56:2115-28. [DOI: 10.1007/s00394-016-1251-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
4 Lodha D, Subramaniam JR. High Fructose Negatively Impacts Proliferation of NSC-34 Motor Neuron Cell Line. J Neurosci Rural Pract. [DOI: 10.1055/s-0041-1742120] [Reference Citation Analysis]
5 Bargut TCL, Santos LP, Machado DGL, Aguila MB, Mandarim-de-lacerda CA. Eicosapentaenoic acid (EPA) vs. Docosahexaenoic acid (DHA): Effects in epididymal white adipose tissue of mice fed a high-fructose diet. Prostaglandins, Leukotrienes and Essential Fatty Acids 2017;123:14-24. [DOI: 10.1016/j.plefa.2017.07.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
6 Gauer JS, Tumova S, Lippiat JD, Kerimi A, Williamson G. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids. Biochem Pharmacol 2018;152:11-20. [PMID: 29548810 DOI: 10.1016/j.bcp.2018.03.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
7 Zappaterra M, Gioiosa S, Chillemi G, Zambonelli P, Davoli R. Muscle transcriptome analysis identifies genes involved in ciliogenesis and the molecular cascade associated with intramuscular fat content in Large White heavy pigs. PLoS One 2020;15:e0233372. [PMID: 32428048 DOI: 10.1371/journal.pone.0233372] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
8 Hernández-Díazcouder A, Romero-Nava R, Carbó R, Sánchez-Lozada LG, Sánchez-Muñoz F. High Fructose Intake and Adipogenesis. Int J Mol Sci 2019;20:E2787. [PMID: 31181590 DOI: 10.3390/ijms20112787] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
9 Abu Bakar MH, Mohamad Khalid MSF, Nor Shahril NS, Shariff KA, Karunakaran T. Celastrol attenuates high-fructose diet-induced inflammation and insulin resistance via inhibition of 11β-hydroxysteroid dehydrogenase type 1 activity in rat adipose tissues. Biofactors 2021. [PMID: 34676604 DOI: 10.1002/biof.1793] [Reference Citation Analysis]
10 Legeza B, Marcolongo P, Gamberucci A, Varga V, Bánhegyi G, Benedetti A, Odermatt A. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome. Nutrients 2017;9:E426. [PMID: 28445389 DOI: 10.3390/nu9050426] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
11 Shepherd EL, Saborano R, Northall E, Matsuda K, Ogino H, Yashiro H, Pickens J, Feaver RE, Cole BK, Hoang SA, Lawson MJ, Olson M, Figler RA, Reardon JE, Nishigaki N, Wamhoff BR, Günther UL, Hirschfield G, Erion DM, Lalor PF. Ketohexokinase inhibition improves NASH by reducing fructose-induced steatosis and fibrogenesis. JHEP Rep 2021;3:100217. [PMID: 33490936 DOI: 10.1016/j.jhepr.2020.100217] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
12 Guan H, Wang Y, Li H, Zhu Q, Li X, Liang G, Ge RS. 5-Bis-(2,6-difluoro-benzylidene) Cyclopentanone Acts as a Selective 11β-Hydroxysteroid Dehydrogenase one Inhibitor to Treat Diet-Induced Nonalcoholic Fatty Liver Disease in Mice. Front Pharmacol 2021;12:594437. [PMID: 33912032 DOI: 10.3389/fphar.2021.594437] [Reference Citation Analysis]
13 Lu XL, Zhao CH, Yao XL, Zhang H. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway. Biomed Pharmacother 2017;85:658-71. [PMID: 27919735 DOI: 10.1016/j.biopha.2016.11.077] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 7.0] [Reference Citation Analysis]
14 Prince PD, Santander YA, Gerez EM, Höcht C, Polizio AH, Mayer MA, Taira CA, Fraga CG, Galleano M, Carranza A. Fructose increases corticosterone production in association with NADPH metabolism alterations in rat epididymal white adipose tissue. J Nutr Biochem 2017;46:109-16. [PMID: 28499147 DOI: 10.1016/j.jnutbio.2017.02.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
15 Laughlin MR. Normal roles for dietary fructose in carbohydrate metabolism. Nutrients 2014;6:3117-29. [PMID: 25100436 DOI: 10.3390/nu6083117] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 6.5] [Reference Citation Analysis]
16 França LM, Dos Santos PC, Barroso WA, Gondim RSD, Coêlho CFF, Flister KFT, Paes AMA. Post-weaning exposure to high-sucrose diet induces early non-alcoholic fatty liver disease onset and progression in male mice: role of dysfunctional white adipose tissue. J Dev Orig Health Dis 2020;11:509-20. [PMID: 32594969 DOI: 10.1017/S2040174420000598] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Bispo DSC, Michálková L, Correia M, Jesus CSH, Duarte IF, Goodfellow BJ, Oliveira MB, Mano JF, Gil AM. Endo- and Exometabolome Crosstalk in Mesenchymal Stem Cells Undergoing Osteogenic Differentiation. Cells 2022;11:1257. [DOI: 10.3390/cells11081257] [Reference Citation Analysis]
18 Romero Mdel M, Sabater D, Fernández-López JA, Remesar X, Alemany M. Glycerol Production from Glucose and Fructose by 3T3-L1 Cells: A Mechanism of Adipocyte Defense from Excess Substrate. PLoS One 2015;10:e0139502. [PMID: 26426115 DOI: 10.1371/journal.pone.0139502] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
19 Zubiría MG, Alzamendi A, Moreno G, Rey MA, Spinedi E, Giovambattista A. Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells. Nutrients 2016;8:198. [PMID: 27049396 DOI: 10.3390/nu8040198] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
20 Mehta R, Sonavane M, Migaud ME, Gassman NR. Exogenous exposure to dihydroxyacetone mimics high fructose induced oxidative stress and mitochondrial dysfunction. Environ Mol Mutagen 2021;62:185-202. [PMID: 33496975 DOI: 10.1002/em.22425] [Reference Citation Analysis]
21 Fryklund C, Borg M, Svensson T, Schumacher S, Negoita F, Morén B, Stenkula KG. Impaired glucose transport in inguinal adipocytes after short-term high-sucrose feeding in mice. J Nutr Biochem 2020;78:108338. [PMID: 32004930 DOI: 10.1016/j.jnutbio.2019.108338] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
22 Karise I, Bargut TC, Del Sol M, Aguila MB, Mandarim-de-Lacerda CA. Metformin enhances mitochondrial biogenesis and thermogenesis in brown adipocytes of mice. Biomed Pharmacother 2019;111:1156-65. [PMID: 30841429 DOI: 10.1016/j.biopha.2019.01.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
23 Volpi-Lagreca G, Duckett SK. Supplementation of glycerol or fructose via drinking water to grazing lambs on tissue glycogen level and lipogenesis. J Anim Sci 2017;95:2558-75. [PMID: 28727036 DOI: 10.2527/jas.2017.1449] [Cited by in F6Publishing: 3] [Reference Citation Analysis]