BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fouad K, Ng C, Basso DM. Behavioral testing in animal models of spinal cord injury. Exp Neurol 2020;333:113410. [PMID: 32735871 DOI: 10.1016/j.expneurol.2020.113410] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Dietz VA, Roberts N, Knox K, Moore S, Pitonak M, Barr C, Centeno J, Leininger S, New KC, Nowell P, Rodreick M, Geoffroy CG, Stampas A, Dulin JN. Fighting for recovery on multiple fronts: The past, present, and future of clinical trials for spinal cord injury. Front Cell Neurosci 2022;16:977679. [DOI: 10.3389/fncel.2022.977679] [Reference Citation Analysis]
2 Dietz V, Knox K, Moore S, Roberts N, Corona KK, Dulin JN. Dorsal horn neuronal sparing predicts the development of at-level mechanical allodynia following cervical spinal cord injury in mice. Exp Neurol 2022;:114048. [PMID: 35304102 DOI: 10.1016/j.expneurol.2022.114048] [Reference Citation Analysis]
3 Huang Z, Huang Z, Kong G, Lin J, Liu J, Yang Z, Li R, Wu X, Alaeiilkhchi N, Jiang H, Liu J, Wu X, Zhu Q. Anatomical and behavioral outcomes following a graded hemi-contusive cervical spinal cord injury model in mice. Behav Brain Res 2022;419:113698. [PMID: 34856301 DOI: 10.1016/j.bbr.2021.113698] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Kulesskaya N, Molotkov D, Sliepen S, Mugantseva E, Garcia Horsman A, Paveliev M, Rauvala H. Heparin-Binding Growth-Associated Molecule (Pleiotrophin) Affects Sensory Signaling and Selected Motor Functions in Mouse Model of Anatomically Incomplete Cervical Spinal Cord Injury. Front Neurol 2021;12:738800. [PMID: 34938257 DOI: 10.3389/fneur.2021.738800] [Reference Citation Analysis]
5 Pukale DD, Farrag M, Leipzig ND. Detection of locomotion deficit in a post-traumatic syringomyelia rat model using automated gait analysis technique. PLoS One 2021;16:e0252559. [PMID: 34762669 DOI: 10.1371/journal.pone.0252559] [Reference Citation Analysis]
6 Guo F, Zheng X, He Z, Zhang R, Zhang S, Wang M, Chen H, Wang W. Nimodipine Promotes Functional Recovery After Spinal Cord Injury in Rats. Front Pharmacol 2021;12:733420. [PMID: 34594224 DOI: 10.3389/fphar.2021.733420] [Reference Citation Analysis]
7 Arnold BM, Toosi BM, Caine S, Mitchell GS, Muir GD. Prolonged acute intermittent hypoxia improves forelimb reach-to-grasp function in a rat model of chronic cervical spinal cord injury. Exp Neurol 2021;340:113672. [PMID: 33652030 DOI: 10.1016/j.expneurol.2021.113672] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
8 Mah KM, Torres-Espín A, Hallworth BW, Bixby JL, Lemmon VP, Fouad K, Fenrich KK. Automation of training and testing motor and related tasks in pre-clinical behavioural and rehabilitative neuroscience. Exp Neurol 2021;340:113647. [PMID: 33600814 DOI: 10.1016/j.expneurol.2021.113647] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Fouad K, Popovich PG, Kopp MA, Schwab JM. The neuroanatomical-functional paradox in spinal cord injury. Nat Rev Neurol 2021;17:53-62. [PMID: 33311711 DOI: 10.1038/s41582-020-00436-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]