BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bezdudnaya T, Hormigo KM, Marchenko V, Lane MA. Spontaneous respiratory plasticity following unilateral high cervical spinal cord injury in behaving rats. Exp Neurol 2018;305:56-65. [PMID: 29596845 DOI: 10.1016/j.expneurol.2018.03.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Michel-flutot P, Mansart A, Deramaudt TB, Jesus I, Lee K, Bonay M, Vinit S. Permanent diaphragmatic deficits and spontaneous respiratory plasticity in a mouse model of incomplete cervical spinal cord injury. Respiratory Physiology & Neurobiology 2021;284:103568. [DOI: 10.1016/j.resp.2020.103568] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Chiu TT, Lee KZ. Impact of cervical spinal cord injury on the relationship between the metabolism and ventilation in rats. J Appl Physiol (1985) 2021;131:1799-814. [PMID: 34647826 DOI: 10.1152/japplphysiol.00472.2021] [Reference Citation Analysis]
3 Bezdudnaya T, Lane MA, Marchenko V. Pharmacological disinhibition enhances paced breathing following complete spinal cord injury in rats. Respir Physiol Neurobiol 2020;282:103514. [PMID: 32750492 DOI: 10.1016/j.resp.2020.103514] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
4 Fouad K, Ng C, Basso DM. Behavioral testing in animal models of spinal cord injury. Exp Neurol 2020;333:113410. [PMID: 32735871 DOI: 10.1016/j.expneurol.2020.113410] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
5 Warren PM, Kissane RWP, Egginton S, Kwok JCF, Askew GN. Oxygen transport kinetics underpin rapid and robust diaphragm recovery following chronic spinal cord injury. J Physiol 2021;599:1199-224. [PMID: 33146892 DOI: 10.1113/JP280684] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Wen MH, Wu MJ, Vinit S, Lee KZ. Modulation of Serotonin and Adenosine 2A Receptors on Intermittent Hypoxia-Induced Respiratory Recovery following Mid-Cervical Contusion in the Rat. J Neurotrauma 2019;36:2991-3004. [PMID: 31099299 DOI: 10.1089/neu.2018.6371] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
7 Zholudeva LV, Qiang L, Marchenko V, Dougherty KJ, Sakiyama-Elbert SE, Lane MA. The Neuroplastic and Therapeutic Potential of Spinal Interneurons in the Injured Spinal Cord. Trends Neurosci 2018;41:625-39. [PMID: 30017476 DOI: 10.1016/j.tins.2018.06.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 7.3] [Reference Citation Analysis]
8 Urban MW, Ghosh B, Block CG, Strojny LR, Charsar BA, Goulão M, Komaravolu SS, Smith GM, Wright MC, Li S, Lepore AC. Long-Distance Axon Regeneration Promotes Recovery of Diaphragmatic Respiratory Function after Spinal Cord Injury. eNeuro 2019;6:ENEURO. [PMID: 31427403 DOI: 10.1523/ENEURO.0096-19.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
9 Bezdudnaya T, Lane MA, Marchenko V. Paced breathing and phrenic nerve responses evoked by epidural stimulation following complete high cervical spinal cord injury in rats. J Appl Physiol (1985) 2018;125:687-96. [PMID: 29771608 DOI: 10.1152/japplphysiol.00895.2017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
10 Chang H, Lee K. Modulation of the extrinsic tongue muscle activity in response to bronchopulmonary C-fiber activation following midcervical contusion in the rat. Journal of Applied Physiology 2020;128:1130-45. [DOI: 10.1152/japplphysiol.00857.2019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Jesus I, Michel-Flutot P, Deramaudt TB, Paucard A, Vanhee V, Vinit S, Bonay M. Effects of aerobic exercise training on muscle plasticity in a mouse model of cervical spinal cord injury. Sci Rep 2021;11:112. [PMID: 33420246 DOI: 10.1038/s41598-020-80478-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Rana S, Sunshine MD, Greer JJ, Fuller DD. Ampakines Stimulate Diaphragm Activity after Spinal Cord Injury. J Neurotrauma 2021;38:3467-82. [PMID: 34806433 DOI: 10.1089/neu.2021.0301] [Reference Citation Analysis]
13 Satkunendrarajah K, Karadimas SK, Laliberte AM, Montandon G, Fehlings MG. Cervical excitatory neurons sustain breathing after spinal cord injury. Nature 2018;562:419-22. [DOI: 10.1038/s41586-018-0595-z] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
14 Wollman LB, Streeter KA, Fusco AF, Gonzalez-Rothi EJ, Sandhu MS, Greer JJ, Fuller DD. Ampakines stimulate phrenic motor output after cervical spinal cord injury. Exp Neurol 2020;334:113465. [PMID: 32949571 DOI: 10.1016/j.expneurol.2020.113465] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
15 Khurram OU, Gransee HM, Sieck GC, Mantilla CB. Automated evaluation of respiratory signals to provide insight into respiratory drive. Respir Physiol Neurobiol 2022;300:103872. [PMID: 35218924 DOI: 10.1016/j.resp.2022.103872] [Reference Citation Analysis]