BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Surmeier DJ, Halliday GM, Simuni T. Calcium, mitochondrial dysfunction and slowing the progression of Parkinson's disease. Exp Neurol 2017;298:202-9. [PMID: 28780195 DOI: 10.1016/j.expneurol.2017.08.001] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 9.2] [Reference Citation Analysis]
Number Citing Articles
1 Teil M, Arotcarena ML, Faggiani E, Laferriere F, Bezard E, Dehay B. Targeting α-synuclein for PD Therapeutics: A Pursuit on All Fronts. Biomolecules 2020;10:E391. [PMID: 32138193 DOI: 10.3390/biom10030391] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
2 Athauda D, Foltynie T. Drug Repurposing in Parkinson's Disease. CNS Drugs 2018;32:747-61. [PMID: 30066310 DOI: 10.1007/s40263-018-0548-y] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
3 Liddle RA. Parkinson's disease from the gut. Brain Res 2018;1693:201-6. [PMID: 29360467 DOI: 10.1016/j.brainres.2018.01.010] [Cited by in Crossref: 63] [Cited by in F6Publishing: 54] [Article Influence: 15.8] [Reference Citation Analysis]
4 Zampese E, Surmeier DJ. Calcium, Bioenergetics, and Parkinson's Disease. Cells 2020;9:E2045. [PMID: 32911641 DOI: 10.3390/cells9092045] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
5 Cenci MA, Olanow CW. Translating scientific advances into disease-modifying therapies for Parkinson's Disease. Exp Neurol 2017;298:135-6. [PMID: 29145992 DOI: 10.1016/j.expneurol.2017.10.011] [Reference Citation Analysis]
6 Zhang L, Zheng Y, Xie J, Shi L. Potassium channels and their emerging role in parkinson's disease. Brain Res Bull 2020;160:1-7. [PMID: 32305406 DOI: 10.1016/j.brainresbull.2020.04.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
7 de Aquino CH. Methodological Issues in Randomized Clinical Trials for Prodromal Alzheimer's and Parkinson's Disease. Front Neurol 2021;12:694329. [PMID: 34421799 DOI: 10.3389/fneur.2021.694329] [Reference Citation Analysis]
8 Inoue KI, Miyachi S, Nishi K, Okado H, Nagai Y, Minamimoto T, Nambu A, Takada M. Recruitment of calbindin into nigral dopamine neurons protects against MPTP-Induced parkinsonism. Mov Disord 2019;34:200-9. [PMID: 30161282 DOI: 10.1002/mds.107] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
9 Pascual-Caro C, Orantos-Aguilera Y, Sanchez-Lopez I, de Juan-Sanz J, Parys JB, Area-Gomez E, Pozo-Guisado E, Martin-Romero FJ. STIM1 Deficiency Leads to Specific Down-Regulation of ITPR3 in SH-SY5Y Cells. Int J Mol Sci 2020;21:E6598. [PMID: 32916960 DOI: 10.3390/ijms21186598] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Mucibabic M, Steneberg P, Lidh E, Straseviciene J, Ziolkowska A, Dahl U, Lindahl E, Edlund H. α-Synuclein promotes IAPP fibril formation in vitro and β-cell amyloid formation in vivo in mice. Sci Rep 2020;10:20438. [PMID: 33235246 DOI: 10.1038/s41598-020-77409-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Jung S, Chung Y, Lee Y, Lee Y, Cho JW, Shin EJ, Kim HC, Oh YJ. Buffering of cytosolic calcium plays a neuroprotective role by preserving the autophagy-lysosome pathway during MPP+-induced neuronal death. Cell Death Discov 2019;5:130. [PMID: 31452956 DOI: 10.1038/s41420-019-0210-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
12 Faustini G, Bono F, Valerio A, Pizzi M, Spano P, Bellucci A. Mitochondria and α-Synuclein: Friends or Foes in the Pathogenesis of Parkinson's Disease? Genes (Basel) 2017;8:E377. [PMID: 29292725 DOI: 10.3390/genes8120377] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
13 Dolgacheva LP, Berezhnov AV, Fedotova EI, Zinchenko VP, Abramov AY. Role of DJ-1 in the mechanism of pathogenesis of Parkinson's disease. J Bioenerg Biomembr 2019;51:175-88. [PMID: 31054074 DOI: 10.1007/s10863-019-09798-4] [Cited by in Crossref: 61] [Cited by in F6Publishing: 61] [Article Influence: 20.3] [Reference Citation Analysis]
14 Cooper G, Kang S, Perez-rosello T, Guzman JN, Galtieri D, Xie Z, Kondapalli J, Mordell J, Silverman RB, Surmeier DJ. A Single Amino Acid Determines the Selectivity and Efficacy of Selective Negative Allosteric Modulators of Ca V 1.3 L-Type Calcium Channels. ACS Chem Biol 2020;15:2539-50. [DOI: 10.1021/acschembio.0c00577] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
15 Graves SM, Schwarzschild SE, Tai RA, Chen Y, Surmeier DJ. Mitochondrial oxidant stress mediates methamphetamine neurotoxicity in substantia nigra dopaminergic neurons. Neurobiol Dis 2021;156:105409. [PMID: 34082123 DOI: 10.1016/j.nbd.2021.105409] [Reference Citation Analysis]
16 Stepien KM, Roncaroli F, Turton N, Hendriksz CJ, Roberts M, Heaton RA, Hargreaves I. Mechanisms of Mitochondrial Dysfunction in Lysosomal Storage Disorders: A Review. J Clin Med 2020;9:E2596. [PMID: 32796538 DOI: 10.3390/jcm9082596] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
17 Simons C, Benkert J, Deuter N, Poetschke C, Pongs O, Schneider T, Duda J, Liss B. NCS-1 Deficiency Affects mRNA Levels of Genes Involved in Regulation of ATP Synthesis and Mitochondrial Stress in Highly Vulnerable Substantia nigra Dopaminergic Neurons. Front Mol Neurosci 2019;12:252. [PMID: 31827421 DOI: 10.3389/fnmol.2019.00252] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
18 Wu S, Lei L, Song Y, Liu M, Lu S, Lou D, Shi Y, Wang Z, He D. Mutation of hop-1 and pink-1 attenuates vulnerability of neurotoxicity in C. elegans: the role of mitochondria-associated membrane proteins in Parkinsonism. Exp Neurol 2018;309:67-78. [PMID: 30076829 DOI: 10.1016/j.expneurol.2018.07.018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
19 Yee AG, Forbes B, Cheung PY, Martini A, Burrell MH, Freestone PS, Lipski J. Action potential and calcium dependence of tonic somatodendritic dopamine release in the Substantia Nigra pars compacta. J Neurochem 2019;148:462-79. [PMID: 30203851 DOI: 10.1111/jnc.14587] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
20 Surmeier DJ, Nguyen JT, Lancki N, Venuto CS, Oakes D, Simuni T, Wyse RK. Re-Analysis of the STEADY-PD II Trial-Evidence for Slowing the Progression of Parkinson's Disease. Mov Disord 2021. [PMID: 34766657 DOI: 10.1002/mds.28850] [Reference Citation Analysis]
21 Yun J, Jeong D, Xie Z, Lee S, Kim J, Surmeier DJ, Silverman RB, Kang S. Palladium-Catalyzed α-Arylation of Cyclic β-Dicarbonyl Compounds for the Synthesis of CaV1.3 Inhibitors. ACS Omega 2022;7:14252-63. [PMID: 35559207 DOI: 10.1021/acsomega.2c00889] [Reference Citation Analysis]
22 García-Beltrán O, Mena NP, Aguirre P, Barriga-González G, Galdámez A, Nagles E, Adasme T, Hidalgo C, Núñez MT. Development of an iron-selective antioxidant probe with protective effects on neuronal function. PLoS One 2017;12:e0189043. [PMID: 29228015 DOI: 10.1371/journal.pone.0189043] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
23 Borroto-Escuela DO, Fuxe K. Oligomeric Receptor Complexes and Their Allosteric Receptor-Receptor Interactions in the Plasma Membrane Represent a New Biological Principle for Integration of Signals in the CNS. Front Mol Neurosci 2019;12:230. [PMID: 31607863 DOI: 10.3389/fnmol.2019.00230] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
24 Schrank S, Barrington N, Stutzmann GE. Calcium-Handling Defects and Neurodegenerative Disease. Cold Spring Harb Perspect Biol. 2020;12. [PMID: 31427373 DOI: 10.1101/cshperspect.a035212] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
25 Sun Y, Selvaraj S, Pandey S, Humphrey KM, Foster JD, Wu M, Watt JA, Singh BB, Ohm JE. MPP+ decreases store-operated calcium entry and TRPC1 expression in Mesenchymal Stem Cell derived dopaminergic neurons. Sci Rep. 2018;8: 11715. [PMID: 30082759 DOI: 10.1038/s41598-018-29528-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
26 D’amico R, Gugliandolo E, Siracusa R, Cordaro M, Genovese T, Peritore AF, Crupi R, Interdonato L, Di Paola D, Cuzzocrea S, Fusco R, Impellizzeri D, Di Paola R. Toxic Exposure to Endocrine Disruptors Worsens Parkinson’s Disease Progression through NRF2/HO-1 Alteration. Biomedicines 2022;10:1073. [DOI: 10.3390/biomedicines10051073] [Reference Citation Analysis]
27 Sola P, Krishnamurthy PT, Kumari M, Byran G, Gangadharappa HV, Garikapati KK. Neuroprotective approaches to halt Parkinson's disease progression. Neurochem Int 2022;158:105380. [PMID: 35718278 DOI: 10.1016/j.neuint.2022.105380] [Reference Citation Analysis]
28 Imbriani P, Schirinzi T, Meringolo M, Mercuri NB, Pisani A. Centrality of Early Synaptopathy in Parkinson's Disease. Front Neurol 2018;9:103. [PMID: 29545770 DOI: 10.3389/fneur.2018.00103] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
29 Michels S, Ganjam GK, Martins H, Schratt GM, Wöhr M, Schwarting RKW, Culmsee C. Downregulation of the psychiatric susceptibility gene Cacna1c promotes mitochondrial resilience to oxidative stress in neuronal cells. Cell Death Discov 2018;4:54. [PMID: 29760952 DOI: 10.1038/s41420-018-0061-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
30 Liss B, Striessnig J. The Potential of L-Type Calcium Channels as a Drug Target for Neuroprotective Therapy in Parkinson's Disease. Annu Rev Pharmacol Toxicol 2019;59:263-89. [PMID: 30625283 DOI: 10.1146/annurev-pharmtox-010818-021214] [Cited by in Crossref: 44] [Cited by in F6Publishing: 33] [Article Influence: 14.7] [Reference Citation Analysis]
31 Chao RY, Cheng CH, Wu SN, Chen PC. Defective trafficking of Kv2.1 channels in MPTP-induced nigrostriatal degeneration. J Neurochem 2018;144:483-97. [PMID: 29265365 DOI: 10.1111/jnc.14282] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
32 Tabata Y, Imaizumi Y, Sugawara M, Andoh-Noda T, Banno S, Chai M, Sone T, Yamazaki K, Ito M, Tsukahara K, Saya H, Hattori N, Kohyama J, Okano H. T-type Calcium Channels Determine the Vulnerability of Dopaminergic Neurons to Mitochondrial Stress in Familial Parkinson Disease. Stem Cell Reports 2018;11:1171-84. [PMID: 30344006 DOI: 10.1016/j.stemcr.2018.09.006] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 9.0] [Reference Citation Analysis]
33 Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in Parkinson’s disease. Progress in Neurobiology 2019;177:73-93. [DOI: 10.1016/j.pneurobio.2018.09.003] [Cited by in Crossref: 104] [Cited by in F6Publishing: 100] [Article Influence: 34.7] [Reference Citation Analysis]
34 Wen G, Pang H, Wu X, Jiang E, Zhang X, Zhan X. Proteomic characterization of secretory granules in dopaminergic neurons indicates chromogranin/secretogranin-mediated protein processing impairment in Parkinson's disease. Aging (Albany NY) 2021;13:20335-58. [PMID: 34420933 DOI: 10.18632/aging.203415] [Reference Citation Analysis]
35 Chang X, Li P, Yan K, Lu Y, Tang T, Fan X, Fan C, Zhan D, Qi K. Maternal dietary calcium status during pregnancy and lactation affects brain DHA accretion through modifying DNA methylation of fatty acid desaturases in the mouse offspring. Nutr Res 2019;65:29-42. [PMID: 30954344 DOI: 10.1016/j.nutres.2019.01.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
36 Ortner NJ. Voltage-Gated Ca2+ Channels in Dopaminergic Substantia Nigra Neurons: Therapeutic Targets for Neuroprotection in Parkinson's Disease? Front Synaptic Neurosci 2021;13:636103. [PMID: 33716705 DOI: 10.3389/fnsyn.2021.636103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Phillips KF, Santos E, Blair RE, Deshpande LS. Targeting Intracellular Calcium Stores Alleviates Neurological Morbidities in a DFP-Based Rat Model of Gulf War Illness. Toxicol Sci 2019;169:567-78. [PMID: 30859209 DOI: 10.1093/toxsci/kfz070] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
38 Johnstone AD, Hallett RM, de Léon A, Carturan B, Gibon J, Barker PA. A novel method for quantifying axon degeneration. PLoS One 2018;13:e0199570. [PMID: 30020957 DOI: 10.1371/journal.pone.0199570] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
39 Giguère N, Burke Nanni S, Trudeau LE. On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson's Disease. Front Neurol 2018;9:455. [PMID: 29971039 DOI: 10.3389/fneur.2018.00455] [Cited by in Crossref: 101] [Cited by in F6Publishing: 87] [Article Influence: 25.3] [Reference Citation Analysis]
40 Yang D, Zhao D, Ali Shah SZ, Wu W, Lai M, Zhang X, Li J, Guan Z, Zhao H, Li W, Gao H, Zhou X, Yang L. The Role of the Gut Microbiota in the Pathogenesis of Parkinson's Disease. Front Neurol 2019;10:1155. [PMID: 31781020 DOI: 10.3389/fneur.2019.01155] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 12.3] [Reference Citation Analysis]
41 Tian J, Vemula SR, Xiao J, Valente EM, Defazio G, Petrucci S, Gigante AF, Rudzińska-Bar M, Wszolek ZK, Kennelly KD, Uitti RJ, van Gerpen JA, Hedera P, Trimble EJ, LeDoux MS. Whole-exome sequencing for variant discovery in blepharospasm. Mol Genet Genomic Med 2018. [PMID: 29770609 DOI: 10.1002/mgg3.411] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
42 Volpicelli F, Perrone-Capano C, Bellenchi GC, Colucci-D'Amato L, di Porzio U. Molecular Regulation in Dopaminergic Neuron Development. Cues to Unveil Molecular Pathogenesis and Pharmacological Targets of Neurodegeneration. Int J Mol Sci 2020;21:E3995. [PMID: 32503161 DOI: 10.3390/ijms21113995] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
43 Benkert J, Hess S, Roy S, Beccano-Kelly D, Wiederspohn N, Duda J, Simons C, Patil K, Gaifullina A, Mannal N, Dragicevic E, Spaich D, Müller S, Nemeth J, Hollmann H, Deuter N, Mousba Y, Kubisch C, Poetschke C, Striessnig J, Pongs O, Schneider T, Wade-Martins R, Patel S, Parlato R, Frank T, Kloppenburg P, Liss B. Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson's disease. Nat Commun 2019;10:5094. [PMID: 31704946 DOI: 10.1038/s41467-019-12834-x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
44 Masi A, Narducci R, Mannaioni G. Harnessing ionic mechanisms to achieve disease modification in neurodegenerative disorders. Pharmacol Res 2019;147:104343. [PMID: 31279830 DOI: 10.1016/j.phrs.2019.104343] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
45 Sanchez CA, Brougher J, Krishnan DG, Thorn CA. Longitudinal Assessment of Skilled Forelimb Motor Impairments in DJ-1 Knockout Rats. Behavioural Brain Research 2022. [DOI: 10.1016/j.bbr.2022.113774] [Reference Citation Analysis]
46 Uhl GR. Dopamine compartmentalization, selective dopaminergic vulnerabilities in Parkinson's disease and therapeutic opportunities. Ann Clin Transl Neurol 2019;6:406-15. [PMID: 30847375 DOI: 10.1002/acn3.707] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
47 Van Bulck M, Sierra-Magro A, Alarcon-Gil J, Perez-Castillo A, Morales-Garcia JA. Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease. Int J Mol Sci 2019;20:E719. [PMID: 30743990 DOI: 10.3390/ijms20030719] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 17.0] [Reference Citation Analysis]
48 Kaur G, Behl T, Bungau S, Kumar A, Uddin MS, Mehta V, Zengin G, Mathew B, Shah MA, Arora S. Dysregulation of the Gut-Brain Axis, Dysbiosis and Influence of Numerous Factors on Gut Microbiota Associated Parkinson's Disease. Curr Neuropharmacol 2021;19:233-47. [PMID: 32504503 DOI: 10.2174/1570159X18666200606233050] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
49 Guzman JN, Ilijic E, Yang B, Sanchez-Padilla J, Wokosin D, Galtieri D, Kondapalli J, Schumacker PT, Surmeier DJ. Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress. J Clin Invest 2018;128:2266-80. [PMID: 29708514 DOI: 10.1172/JCI95898] [Cited by in Crossref: 53] [Cited by in F6Publishing: 28] [Article Influence: 13.3] [Reference Citation Analysis]
50 Hermann J, Bender M, Schumacher D, Woo MS, Shaposhnykov A, Rosenkranz SC, Kuryshev V, Meier C, Guse AH, Friese MA, Freichel M, Tsvilovskyy V. Contribution of NAADP to Glutamate-Evoked Changes in Ca2+ Homeostasis in Mouse Hippocampal Neurons. Front Cell Dev Biol 2020;8:496. [PMID: 32676502 DOI: 10.3389/fcell.2020.00496] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
51 Venuto CS, Yang L, Javidnia M, Oakes D, James Surmeier D, Simuni T. Isradipine plasma pharmacokinetics and exposure-response in early Parkinson's disease. Ann Clin Transl Neurol 2021;8:603-12. [PMID: 33460320 DOI: 10.1002/acn3.51300] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]