BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jiao S, Chong G, Huang C, Hu H, Wang M, Heidari AA, Chen H, Zhao X. Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models. Energy 2020;203:117804. [DOI: 10.1016/j.energy.2020.117804] [Cited by in Crossref: 122] [Cited by in F6Publishing: 99] [Article Influence: 40.7] [Reference Citation Analysis]
Number Citing Articles
1 Li W, Shi R, Dong J. Harris hawks optimizer based on the novice protection tournament for numerical and engineering optimization problems. Appl Intell 2023;53:6133-6158. [DOI: 10.1007/s10489-022-03743-6] [Reference Citation Analysis]
2 Lakshmanan M, Kumar C, Jasper JS. Optimal parameter characterization of an enhanced mathematical model of solar photovoltaic cell/module using an improved white shark optimization algorithm. Optim Control Appl Methods 2023. [DOI: 10.1002/oca.2984] [Reference Citation Analysis]
3 Sun W, She C, Khalilzadeh M, Mao H, Xu Y. A new method for solving the mobile payment scheduling problem using harris hawks optimization algorithm during the COVID-19 pandemic. Inf Syst E-Bus Manage 2023. [DOI: 10.1007/s10257-022-00615-x] [Reference Citation Analysis]
4 Touabi C, Ouadi A, Bentarzi H. Photovoltaic Panel Parameters Estimation Using an Opposition Based Initialization Particle Swarm Optimization. The 2nd International Conference on Computational Engineering and Intelligent Systems 2023. [DOI: 10.3390/engproc2023029016] [Reference Citation Analysis]
5 Choulli I, Elyaqouti M, Ben hmamou D, Arjdal EH, Saadaoui D, Lidaighbi S, Elhammoudy A, Obukhov S, Ibrahim A. A Novel hybrid analytical/iterative method to extract the single-diode model's parameters using Lambert's W-function. Energy Conversion and Management: X 2023. [DOI: 10.1016/j.ecmx.2023.100362] [Reference Citation Analysis]
6 Garip Z. Parameters estimation of three-diode photovoltaic model using fractional-order Harris Hawks optimization algorithm. Optik 2023;272:170391. [DOI: 10.1016/j.ijleo.2022.170391] [Reference Citation Analysis]
7 Wang M, Chen L, Heidari AA, Chen H. Fireworks explosion boosted Harris Hawks optimization for numerical optimization: Case of classifying the severity of COVID-19. Front Neuroinform 2022;16:1055241. [PMID: 36760338 DOI: 10.3389/fninf.2022.1055241] [Reference Citation Analysis]
8 Benghanem M, Lekouaghet B, Haddad S, Soukkou A. Optimization of pv cells/modules parameters using a modified quasi-oppositional logistic chaotic rao-1 (QOLCR) algorithm. Environ Sci Pollut Res Int 2023. [PMID: 36692712 DOI: 10.1007/s11356-022-24941-2] [Reference Citation Analysis]
9 Wu S, Heidari AA, Zhang S, Kuang F, Chen H. Gaussian bare-bone slime mould algorithm: performance optimization and case studies on truss structures. Artif Intell Rev 2023;:1-37. [PMID: 36694615 DOI: 10.1007/s10462-022-10370-7] [Reference Citation Analysis]
10 Long W, Jiao J, Liang X, Xu M, Wu T, Tang M, Cai S. A velocity-guided Harris hawks optimizer for function optimization and fault diagnosis of wind turbine. Artif Intell Rev 2023;56:2563-605. [PMID: 35909648 DOI: 10.1007/s10462-022-10233-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 El-dabah MA, El-sehiemy RA, Hasanien HM, Saad B. Photovoltaic model parameters identification using Northern Goshawk Optimization algorithm. Energy 2023;262:125522. [DOI: 10.1016/j.energy.2022.125522] [Reference Citation Analysis]
12 Xing J, Zhao H, Chen H, Deng R, Xiao L. Boosting Whale Optimizer with Quasi-Oppositional Learning and Gaussian Barebone for Feature Selection and COVID-19 Image Segmentation. J Bionic Eng 2023;20:797-818. [PMID: 36466725 DOI: 10.1007/s42235-022-00297-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Tao H, Al-aragi NM, Ahmadianfar I, Naser MH, Shehab RH, Zain JM, Halder B, Yaseen ZM. Ranked-based mechanism-assisted Biogeography optimization: Application of global optimization problems. Advances in Engineering Software 2022;174:103301. [DOI: 10.1016/j.advengsoft.2022.103301] [Reference Citation Analysis]
14 Abdel-basset M, Mohamed R, Sharawi M, Abdel-fatah L, Abouhawwash M, Sallam K. A comparative study of optimization algorithms for parameter estimation of PV solar cells and modules: Analysis and case studies. Energy Reports 2022;8:13047-13065. [DOI: 10.1016/j.egyr.2022.09.193] [Reference Citation Analysis]
15 Younis A, Bakhit A, Onsa M, Hashim M. A comprehensive and critical review of bio-inspired metaheuristic frameworks for extracting parameters of solar cell single and double diode models. Energy Reports 2022;8:7085-106. [DOI: 10.1016/j.egyr.2022.05.160] [Reference Citation Analysis]
16 Zhang Q, Huang A, Shao L, Wu P, Heidari AA, Cai Z, Liang G, Chen H, Alotaibi FS, Mafarja M, Ouyang J. A machine learning framework for identifying influenza pneumonia from bacterial pneumonia for medical decision making. Journal of Computational Science 2022;65:101871. [DOI: 10.1016/j.jocs.2022.101871] [Reference Citation Analysis]
17 Xu S, Qiu H. A modified stochastic fractal search algorithm for parameter estimation of solar cells and PV modules. Energy Reports 2022;8:1853-66. [DOI: 10.1016/j.egyr.2022.01.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Ali HH, Fathy A, Al-dhaifallah M, Abdelaziz AY, Ebeed M. An efficient capuchin search algorithm for extracting the parameters of different PV cells/modules. Front Energy Res 2022;10:1028816. [DOI: 10.3389/fenrg.2022.1028816] [Reference Citation Analysis]
19 Bogar E. Chaos Game Optimization-Least Squares Algorithm for Photovoltaic Parameter Estimation. Arab J Sci Eng. [DOI: 10.1007/s13369-022-07364-6] [Reference Citation Analysis]
20 Peng L, He C, Heidari AA, Zhang Q, Chen H, Liang G, Aljehane NO, Mansour RF. Information sharing search boosted whale optimizer with Nelder-Mead simplex for parameter estimation of photovoltaic models. Energy Conversion and Management 2022;270:116246. [DOI: 10.1016/j.enconman.2022.116246] [Reference Citation Analysis]
21 Changmai P, Deka S, Kumar S, Babu TS, Aljafari B, Nastasi B. A Critical Review on the Estimation Techniques of the Solar PV Cell’s Unknown Parameters. Energies 2022;15:7212. [DOI: 10.3390/en15197212] [Reference Citation Analysis]
22 Belmadani H, Kheldoun A, Bradai R, Mekhilef S, Siddique MD. A twofold hunting trip African vultures algorithm for the optimal extraction of photovoltaic generator model parameters. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2022;44:7001-7030. [DOI: 10.1080/15567036.2022.2096723] [Reference Citation Analysis]
23 Jiao S, Wang C, Gao R, Li Y, Zhang Q. A novel Hybrid Harris hawk sine cosine optimization algorithm for reactive power optimization problem. Journal of Experimental & Theoretical Artificial Intelligence. [DOI: 10.1080/0952813x.2022.2115144] [Reference Citation Analysis]
24 Houssein EH, Hassan MH, Kamel S, Hussain K, Hashim FA. Modified Lévy flight distribution algorithm for global optimization and parameters estimation of modified three-diode photovoltaic model. Appl Intell. [DOI: 10.1007/s10489-022-03977-4] [Reference Citation Analysis]
25 Zhang J, Yang Z, Ding K, Feng L, Hamelmann F, Chen X, Liu Y, Chen L. Modeling of Photovoltaic Array Based on Multi-Agent Deep Reinforcement Learning Using Residuals of I–V Characteristics. Energies 2022;15:6567. [DOI: 10.3390/en15186567] [Reference Citation Analysis]
26 Alawsi MA, Zubaidi SL, Al-ansari N, Al-bugharbee H, Ridha HM. Tuning ANN Hyperparameters by CPSOCGSA, MPA, and SMA for Short-Term SPI Drought Forecasting. Atmosphere 2022;13:1436. [DOI: 10.3390/atmos13091436] [Reference Citation Analysis]
27 Durmuş B, Gün A. Development of incremental average differential evolution algorithm for photovoltaic system identification. Solar Energy 2022;244:242-54. [DOI: 10.1016/j.solener.2022.08.046] [Reference Citation Analysis]
28 Ćalasan M, Al-dhaifallah M, Ali ZM, Abdel Aleem SHE. Comparative Analysis of Different Iterative Methods for Solving Current–Voltage Characteristics of Double and Triple Diode Models of Solar Cells. Mathematics 2022;10:3082. [DOI: 10.3390/math10173082] [Reference Citation Analysis]
29 Xu B, Heidari AA, Zhang S, Chen H, Shao Q. Extremal Nelder–Mead colony predation algorithm for parameter estimation of solar photovoltaic models. Energy Science & Engineering. [DOI: 10.1002/ese3.1273] [Reference Citation Analysis]
30 Gezici H, Livatyali H. An improved Harris Hawks Optimization algorithm for continuous and discrete optimization problems. Engineering Applications of Artificial Intelligence 2022;113:104952. [DOI: 10.1016/j.engappai.2022.104952] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Yu S, Heidari AA, He C, Cai Z, Althobaiti MM, Mansour RF, Liang G, Chen H. Parameter estimation of static solar photovoltaic models using Laplacian Nelder-Mead hunger games search. Solar Energy 2022;242:79-104. [DOI: 10.1016/j.solener.2022.06.046] [Reference Citation Analysis]
32 Kumar C, Magdalin Mary D. A novel chaotic-driven Tuna Swarm Optimizer with Newton-Raphson method for parameter identification of three-diode equivalent circuit model of solar photovoltaic cells/modules. Optik 2022;264:169379. [DOI: 10.1016/j.ijleo.2022.169379] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Zhang L, Fu Y, Wei Y, Chen H, Xia C, Cai Z. Predicting Entrepreneurial Intention of Students: Kernel Extreme Learning Machine with Boosted Crow Search Algorithm. Applied Sciences 2022;12:6907. [DOI: 10.3390/app12146907] [Reference Citation Analysis]
34 Shehab M, Mashal I, Momani Z, Shambour MKY, Al-badareen A, Al-dabet S, Bataina N, Alsoud AR, Abualigah L. Harris Hawks Optimization Algorithm: Variants and Applications. Arch Computat Methods Eng. [DOI: 10.1007/s11831-022-09780-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Düzenli̇ T, Kutlu Onay F, Aydemi̇r SB. Improved honey badger algorithms for parameter extraction in photovoltaic models. Optik 2022. [DOI: 10.1016/j.ijleo.2022.169731] [Reference Citation Analysis]
36 Hasanzadeh MR, Keynia F, Hashemipour M. A new index‐based hyper‐heuristic algorithm for global optimisation problems. IET Software. [DOI: 10.1049/sfw2.12065] [Reference Citation Analysis]
37 Hussien AG, Abualigah L, Abu Zitar R, Hashim FA, Amin M, Saber A, Almotairi KH, Gandomi AH. Recent Advances in Harris Hawks Optimization: A Comparative Study and Applications. Electronics 2022;11:1919. [DOI: 10.3390/electronics11121919] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 16.0] [Reference Citation Analysis]
38 Amjad Raja MN, Abbas Jaffar ST, Bardhan A, Shukla SK. Predicting and validating the load-settlement behavior of large-scale geosynthetic-reinforced soil abutments using hybrid intelligent modeling. Journal of Rock Mechanics and Geotechnical Engineering 2022. [DOI: 10.1016/j.jrmge.2022.04.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
39 Khelifa MA, Lekouaghet B, Boukabou A. Symmetric chaotic gradient-based optimizer algorithm for efficient estimation of PV parameters. Optik 2022;259:168873. [DOI: 10.1016/j.ijleo.2022.168873] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Long W, Jiao J, Liang X, Xu M, Tang M, Cai S. Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm. Energy 2022;249:123760. [DOI: 10.1016/j.energy.2022.123760] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
41 Rawa M, Calasan M, Abusorrah A, Alhussainy AA, Al-Turki Y, Ali ZM, Sindi H, Mekhilef S, Aleem SHEA, Bassi H. Single Diode Solar Cells-Improved Model and Exact Current-Voltage Analytical Solution Based on Lambert's W Function. Sensors (Basel) 2022;22:4173. [PMID: 35684794 DOI: 10.3390/s22114173] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Muthuramalingam L, Chandrasekaran K, Xavier FJ. Electrical parameter computation of various photovoltaic models using an enhanced jumping spider optimization with chaotic drifts. J Comput Electron. [DOI: 10.1007/s10825-022-01891-z] [Reference Citation Analysis]
43 Lekouaghet B, Khelifa MA, Boukabou A. Adolescent identity search algorithm for parameter extraction in photovoltaic solar cells and modules. J Comput Electron. [DOI: 10.1007/s10825-022-01881-1] [Reference Citation Analysis]
44 Priya JS, Bhagyalakshmi A, Muthulakshmi K, Deepa N. DBAHHO: Deep belief network-based adaptive Harris Hawks optimization for adaptive offloading strategy in mobile edge computing. J Supercomput. [DOI: 10.1007/s11227-022-04501-8] [Reference Citation Analysis]
45 Xu B, Heidari AA, Kuang F, Zhang S, Chen H, Cai Z. Quantum Nelder‐Mead Hunger Games Search for optimizing photovoltaic solar cells. Intl J of Energy Research. [DOI: 10.1002/er.8011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
46 Zhou J, Zhang Y, Zhang Y, Shang W, Yang Z, Feng W. Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning. Applied Energy 2022;314:118877. [DOI: 10.1016/j.apenergy.2022.118877] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
47 Khosravi N, Echalih S, Baghbanzadeh R, Hekss Z, Hassani R, Messaoudi M. Enhancement of power quality issues for a hybrid AC/DC microgrid based on optimization methods. IET Renewable Power Gen. [DOI: 10.1049/rpg2.12476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Zhao J, Zhang Y, Li S, Wang Y, Yan Y, Gao Z. A chaotic self-adaptive JAYA algorithm for parameter extraction of photovoltaic models. Math Biosci Eng 2022;19:5638-70. [PMID: 35603372 DOI: 10.3934/mbe.2022264] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
49 Zhang Y, Wang Y, Li S, Yao F, Tao L, Yan Y, Zhao J, Gao Z. An enhanced adaptive comprehensive learning hybrid algorithm of Rao-1 and JAYA algorithm for parameter extraction of photovoltaic models. Math Biosci Eng 2022;19:5610-37. [PMID: 35603371 DOI: 10.3934/mbe.2022263] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
50 Lin H, Ahmadianfar I, Amiri Golilarz N, Jamei M, Heidari AA, Kuang F, Zhang S, Chen H. Adaptive slime mould algorithm for optimal design of photovoltaic models. Energy Science & Engineering. [DOI: 10.1002/ese3.1115] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
51 Yu S, Chen Z, Heidari AA, Zhou W, Chen H, Xiao L. Parameter identification of photovoltaic models using a sine cosine differential gradient based optimizer. IET Renewable Power Gen. [DOI: 10.1049/rpg2.12451] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
52 Rawa M, Abusorrah A, Al-turki Y, Calasan M, Micev M, Ali ZM, Mekhilef S, Bassi H, Sindi H, Aleem SHEA. Estimation of Parameters of Different Equivalent Circuit Models of Solar Cells and Various Photovoltaic Modules Using Hybrid Variants of Honey Badger Algorithm and Artificial Gorilla Troops Optimizer. Mathematics 2022;10:1057. [DOI: 10.3390/math10071057] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
53 Aydemir SB. A novel arithmetic optimization algorithm based on chaotic maps for global optimization. Evol Intel . [DOI: 10.1007/s12065-022-00711-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Chen Y, Yang XH, Wei Z, Heidari AA, Zheng N, Li Z, Chen H, Hu H, Zhou Q, Guan Q. Generative Adversarial Networks in Medical Image augmentation: A review. Comput Biol Med 2022;144:105382. [PMID: 35276550 DOI: 10.1016/j.compbiomed.2022.105382] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 24.0] [Reference Citation Analysis]
55 Shi H, Lu F, Wu L, Yang G. Optimal trajectories of multi-UAVs with approaching formation for target tracking using improved Harris Hawks optimizer. Appl Intell. [DOI: 10.1007/s10489-022-03270-4] [Reference Citation Analysis]
56 Gude S, Jana KC. A multiagent system based cuckoo search optimization for parameter identification of photovoltaic cell using Lambert W-function. Applied Soft Computing 2022. [DOI: 10.1016/j.asoc.2022.108678] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
57 Xu B, Heidari AA, Kuang F, Zhang S, Chen H, Cai Z. Performance optimization of photovoltaic systems: Reassessment of political optimization with a quantum Nelder-mead functionality. Solar Energy 2022;234:39-63. [DOI: 10.1016/j.solener.2022.01.048] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
58 Song S, Wang P, Heidari AA, Zhao X, Chen H. Adaptive Harris hawks optimization with persistent trigonometric differences for photovoltaic model parameter extraction. Engineering Applications of Artificial Intelligence 2022;109:104608. [DOI: 10.1016/j.engappai.2021.104608] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
59 Wang R, Hu P, Hu C, Pan J. A novel Fruit Fly Optimization Algorithm with quasi-affine transformation evolutionary for numerical optimization and application. International Journal of Distributed Sensor Networks 2022;18:155014772110730. [DOI: 10.1177/15501477211073037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Gezici H, Livatyalı H. Chaotic Harris hawks optimization algorithm. Journal of Computational Design and Engineering 2022;9:216-45. [DOI: 10.1093/jcde/qwab082] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
61 Yu S, Heidari AA, Liang G, Chen C, Chen H, Shao Q. Solar photovoltaic model parameter estimation based on orthogonally-adapted gradient-based optimization. Optik 2022;252:168513. [DOI: 10.1016/j.ijleo.2021.168513] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
62 Wang X, Hu H, Liang Y, Zhou L. On the Mathematical Models and Applications of Swarm Intelligent Optimization Algorithms. Arch Computat Methods Eng. [DOI: 10.1007/s11831-022-09717-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
63 Touabi C, Bentarzi H. Photovoltaic Panel Parameters Estimation Using Grey Wolf Optimization Technique. ICCEIS 2021 2022. [DOI: 10.3390/engproc2022014003] [Reference Citation Analysis]
64 Haddad S, Lekouaghet B, Benghanem M, Soukkou A, Rabhi A. Parameter Estimation of Solar Modules Operating Under Outdoor Operational Conditions Using Artificial Hummingbird Algorithm. IEEE Access 2022;10:51299-314. [DOI: 10.1109/access.2022.3174222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Fan Y, Wang P, Heidari AA, Chen H, Hamzaturabieh, Mafarja M. Random reselection particle swarm optimization for optimal design of solar photovoltaic modules. Energy 2022;239:121865. [DOI: 10.1016/j.energy.2021.121865] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 28.0] [Reference Citation Analysis]
66 Ridha HM, Hizam H, Mirjalili S, Othman ML, Ya'acob ME, Abualigah L. A Novel Theoretical and Practical Methodology for Extracting the Parameters of the Single and Double Diode Photovoltaic Models. IEEE Access 2022;10:11110-37. [DOI: 10.1109/access.2022.3142779] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
67 Farah A, Belazi A, Benabdallah F, Almalaq A, Chtourou M, Abido M. Parameter extraction of photovoltaic models using a comprehensive learning Rao-1 algorithm. Energy Conversion and Management 2022;252:115057. [DOI: 10.1016/j.enconman.2021.115057] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
68 Liang X, Wu D, Liu Y, He M, Sun L. An Enhanced Slime Mould Algorithm and Its Application for Digital IIR Filter Design. Discrete Dynamics in Nature and Society 2021;2021:1-23. [DOI: 10.1155/2021/5333278] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
69 Wang X, Chu S, Snášel V, Kong L, Pan J, Shehadeh HA. A two-phase quasi-affine transformation evolution with feedback for parameter identification of photovoltaic models. Applied Soft Computing 2021;113:107978. [DOI: 10.1016/j.asoc.2021.107978] [Reference Citation Analysis]
70 Jangir P, Heidari AA, Chen H. Elitist non-dominated sorting Harris hawks optimization: Framework and developments for multi-objective problems. Expert Systems with Applications 2021;186:115747. [DOI: 10.1016/j.eswa.2021.115747] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
71 Dong R, Chen H, Heidari AA, Turabieh H, Mafarja M, Wang S. Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem. Knowledge-Based Systems 2021;233:107529. [DOI: 10.1016/j.knosys.2021.107529] [Cited by in Crossref: 19] [Cited by in F6Publishing: 27] [Article Influence: 9.5] [Reference Citation Analysis]
72 Guo W, Xu P, Dai F, Zhao F, Wu M. Improved Harris hawks optimization algorithm based on random unscented sigma point mutation strategy. Applied Soft Computing 2021;113:108012. [DOI: 10.1016/j.asoc.2021.108012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
73 Hu J, Han Z, Heidari AA, Shou Y, Ye H, Wang L, Huang X, Chen H, Chen Y, Wu P. Detection of COVID-19 severity using blood gas analysis parameters and Harris hawks optimized extreme learning machine. Computers in Biology and Medicine 2021. [DOI: 10.1016/j.compbiomed.2021.105166] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 14.5] [Reference Citation Analysis]
74 Kumar C, Mary DM. Parameter estimation of three-diode solar photovoltaic model using an Improved-African Vultures optimization algorithm with Newton–Raphson method. J Comput Electron 2021;20:2563-93. [DOI: 10.1007/s10825-021-01812-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
75 Yeşilbudak M. Afrika Akbabaları Optimizasyon Algoritması Kullanılarak Fotovoltaik Hücre ve Fotovoltaik Modül Parametrelerinin Çıkarımı. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 2021. [DOI: 10.29109/gujsc.997972] [Reference Citation Analysis]
76 Fan Y, Wang P, Heidari AA, Zhao X, Turabieh H, Chen H. Delayed dynamic step shuffling frog-leaping algorithm for optimal design of photovoltaic models. Energy Reports 2021;7:228-46. [DOI: 10.1016/j.egyr.2020.12.013] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
77 Zayed ME, Zhao J, Li W, Elsheikh AH, Elaziz MA. A hybrid adaptive neuro-fuzzy inference system integrated with equilibrium optimizer algorithm for predicting the energetic performance of solar dish collector. Energy 2021;235:121289. [DOI: 10.1016/j.energy.2021.121289] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
78 Weng X, Heidari AA, Liang G, Chen H, Ma X. An evolutionary Nelder–Mead slime mould algorithm with random learning for efficient design of photovoltaic models. Energy Reports 2021;7:8784-804. [DOI: 10.1016/j.egyr.2021.11.019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
79 Ahmadianfar I, Gong W, Heidari AA, Golilarz NA, Samadi-koucheksaraee A, Chen H. Gradient-based optimization with ranking mechanisms for parameter identification of photovoltaic systems. Energy Reports 2021;7:3979-97. [DOI: 10.1016/j.egyr.2021.06.064] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
80 Liu Y, Heidari AA, Ye X, Chi C, Zhao X, Ma C, Turabieh H, Chen H, Le R. Evolutionary shuffled frog leaping with memory pool for parameter optimization. Energy Reports 2021;7:584-606. [DOI: 10.1016/j.egyr.2021.01.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
81 Zhou W, Wang P, Heidari AA, Zhao X, Turabieh H, Mafarja M, Chen H. Metaphor-free dynamic spherical evolution for parameter estimation of photovoltaic modules. Energy Reports 2021;7:5175-202. [DOI: 10.1016/j.egyr.2021.07.041] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
82 Naeijian M, Rahimnejad A, Ebrahimi SM, Pourmousa N, Gadsden SA. Parameter estimation of PV solar cells and modules using Whippy Harris Hawks Optimization Algorithm. Energy Reports 2021;7:4047-63. [DOI: 10.1016/j.egyr.2021.06.085] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 12.5] [Reference Citation Analysis]
83 Premkumar M, Jangir P, Elavarasan RM, Sowmya R. Opposition decided gradient-based optimizer with balance analysis and diversity maintenance for parameter identification of solar photovoltaic models. J Ambient Intell Human Comput. [DOI: 10.1007/s12652-021-03564-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
84 Li M, Li C, Huang Z, Huang J, Wang G, Liu PX. Spiral-based chaotic chicken swarm optimization algorithm for parameters identification of photovoltaic models. Soft Comput 2021;25:12875-98. [DOI: 10.1007/s00500-021-06010-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
85 Chen C, Wang X, Yu H, Wang M, Chen H. Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms. Mathematics and Computers in Simulation 2021;188:291-318. [DOI: 10.1016/j.matcom.2021.04.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
86 Çetinbaş İ, Tamyürek B, Demirtaş M. Sizing optimization and design of an autonomous AC microgrid for commercial loads using Harris Hawks Optimization algorithm. Energy Conversion and Management 2021;245:114562. [DOI: 10.1016/j.enconman.2021.114562] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
87 Yesilbudak M, Colak M. Efficient Parameter Estimation of Double Diode-Based PV Cell Model Using Marine Predators Algorithm. 2021 10th International Conference on Renewable Energy Research and Application (ICRERA) 2021. [DOI: 10.1109/icrera52334.2021.9598635] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
88 Dhawale D, Kamboj VK, Anand P. An improved Chaotic Harris Hawks Optimizer for solving numerical and engineering optimization problems. Engineering with Computers. [DOI: 10.1007/s00366-021-01487-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
89 Yesilbudak M. Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy. Energies 2021;14:5735. [DOI: 10.3390/en14185735] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
90 Weng X, Heidari AA, Liang G, Chen H, Ma X, Mafarja M, Turabieh H. Laplacian Nelder-Mead spherical evolution for parameter estimation of photovoltaic models. Energy Conversion and Management 2021;243:114223. [DOI: 10.1016/j.enconman.2021.114223] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
91 Wang M, Zhang Q, Chen H, Heidari AA, Mafarja M, Turabieh H. Evaluation of constraint in photovoltaic cells using ensemble multi-strategy shuffled frog leading algorithms. Energy Conversion and Management 2021;244:114484. [DOI: 10.1016/j.enconman.2021.114484] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
92 Too J, Liang G, Chen H. Memory-based Harris hawk optimization with learning agents: a feature selection approach. Engineering with Computers. [DOI: 10.1007/s00366-021-01479-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
93 Feizbahr M, Tonekaboni N, Jiang G, Chen H. Optimized Vegetation Density to Dissipate Energy of Flood Flow in Open Canals. Mathematical Problems in Engineering 2021;2021:1-18. [DOI: 10.1155/2021/9048808] [Reference Citation Analysis]
94 Xia J, Zhang H, Li R, Chen H, Turabieh H, Mafarja M, Pan Z. Generalized Oppositional Moth Flame Optimization with Crossover Strategy: An Approach for Medical Diagnosis. J Bionic Eng 2021;18:991-1010. [DOI: 10.1007/s42235-021-0068-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
95 Cotfas DT, Deaconu AM, Cotfas PA. Hybrid successive discretisation algorithm used to calculate parameters of the photovoltaic cells and panels for existing datasets. IET Renewable Power Generation 2021;15:3661-87. [DOI: 10.1049/rpg2.12262] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
96 Bac BH, Nguyen H, Thao NTT, Hanh VT, Duyen LT, Dung NT, Du NK, Hiep NH. Estimating heavy metals absorption efficiency in an aqueous solution using nanotube-type halloysite from weathered pegmatites and a novel Harris hawks optimization-based multiple layers perceptron neural network. Engineering with Computers. [DOI: 10.1007/s00366-021-01459-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
97 Tavassoli LS, Massah R, Montazeri A, Mirmozaffari M, Jiang G, Chen H. A New Multiobjective Time-Cost Trade-Off for Scheduling Maintenance Problem in a Series-Parallel System. Mathematical Problems in Engineering 2021;2021:1-13. [DOI: 10.1155/2021/5583125] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
98 Ghaderpour Y, Arasteh Taleshmekaiil MR, Rouki B, Mohemsaz M, Azimi MH, Sadeghpour A. Analysis and Measurement of Parameters of Quality of Life in Informal Settlements Surrounding of Tehran Metropolis. Mathematical Problems in Engineering 2021;2021:1-10. [DOI: 10.1155/2021/4759461] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
99 Wu S, Mao P, Li R, Cai Z, Heidari AA, Xia J, Chen H, Mafarja M, Turabieh H, Chen X. Evolving fuzzy k-nearest neighbors using an enhanced sine cosine algorithm: Case study of lupus nephritis. Comput Biol Med 2021;135:104582. [PMID: 34214940 DOI: 10.1016/j.compbiomed.2021.104582] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
100 Shankar N, Saravanakumar N, Kumar C, Kamatchi Kannan V, Indu Rani B. Opposition-based equilibrium optimizer algorithm for identification of equivalent circuit parameters of various photovoltaic models. J Comput Electron 2021;20:1560-87. [DOI: 10.1007/s10825-021-01722-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
101 Delivandani F, Rajabi A, Kermani AN. Process-Based Improvement of Urban Metabolism in Optimizing the Development Cycle of the Small City Using MIA Method. Mathematical Problems in Engineering 2021;2021:1-13. [DOI: 10.1155/2021/5545307] [Reference Citation Analysis]
102 Zhao S, Wang P, Heidari AA, Chen H, Turabieh H, Mafarja M, Li C. Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi's entropy for chronic obstructive pulmonary disease. Comput Biol Med 2021;134:104427. [PMID: 34020128 DOI: 10.1016/j.compbiomed.2021.104427] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 18.5] [Reference Citation Analysis]
103 Qu C, Zhang L, Li J, Deng F, Tang Y, Zeng X, Peng X. Improving feature selection performance for classification of gene expression data using Harris Hawks optimizer with variable neighborhood learning. Brief Bioinform 2021:bbab097. [PMID: 33876181 DOI: 10.1093/bib/bbab097] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
104 Garip Z, Çimen ME, Boz AF. Fotovoltaik Modellerin Parametre Çıkarımı İçin Geliştirilmiş Bir Kaotik Tabanlı Balina Optimizasyon Algoritması. Journal of Polytechnic 2021. [DOI: 10.2339/politeknik.878934] [Reference Citation Analysis]
105 Abd Elaziz M, Yousri D, Mirjalili S. A hybrid Harris hawks-moth-flame optimization algorithm including fractional-order chaos maps and evolutionary population dynamics. Advances in Engineering Software 2021;154:102973. [DOI: 10.1016/j.advengsoft.2021.102973] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 11.5] [Reference Citation Analysis]
106 Al-betar MA, Awadallah MA, Heidari AA, Chen H, Al-khraisat H, Li C. Survival exploration strategies for Harris Hawks Optimizer. Expert Systems with Applications 2021;168:114243. [DOI: 10.1016/j.eswa.2020.114243] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 14.0] [Reference Citation Analysis]
107 Gölcük İ, Ozsoydan FB. Quantum particles-enhanced multiple Harris Hawks swarms for dynamic optimization problems. Expert Systems with Applications 2021;167:114202. [DOI: 10.1016/j.eswa.2020.114202] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
108 Arasteh Taleshmekaiil MR, Khatibi SMR, Mohemsaz M, Azimi MH, Sadeghpour A, Golilarz NA. Investigating the Effective Factors of Renewable Energy Development in Tehran Metropolis. Mathematical Problems in Engineering 2021;2021:1-13. [DOI: 10.1155/2021/6636955] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
109 Song S, Wang P, Heidari AA, Wang M, Zhao X, Chen H, He W, Xu S. Dimension decided Harris hawks optimization with Gaussian mutation: Balance analysis and diversity patterns. Knowledge-Based Systems 2021;215:106425. [DOI: 10.1016/j.knosys.2020.106425] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 28.5] [Reference Citation Analysis]
110 Ren H, Li J, Chen H, Li C. Adaptive levy-assisted salp swarm algorithm: Analysis and optimization case studies. Mathematics and Computers in Simulation 2021;181:380-409. [DOI: 10.1016/j.matcom.2020.09.027] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
111 Nunes H, Pombo J, Mariano S, Calado M. Suitable mathematical model for the electrical characterization of different photovoltaic technologies: Experimental validation. Energy Conversion and Management 2021;231:113820. [DOI: 10.1016/j.enconman.2020.113820] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
112 Zhang Y, Liu R, Heidari AA, Wang X, Chen Y, Wang M, Chen H. Towards augmented kernel extreme learning models for bankruptcy prediction: Algorithmic behavior and comprehensive analysis. Neurocomputing 2021;430:185-212. [DOI: 10.1016/j.neucom.2020.10.038] [Cited by in Crossref: 120] [Cited by in F6Publishing: 130] [Article Influence: 60.0] [Reference Citation Analysis]
113 Ye X, Liu W, Li H, Wang M, Chi C, Liang G, Chen H, Huang H, Costa-castelló R. Modified Whale Optimization Algorithm for Solar Cell and PV Module Parameter Identification. Complexity 2021;2021:1-23. [DOI: 10.1155/2021/8878686] [Cited by in Crossref: 14] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
114 Hu J, Chen H, Heidari AA, Wang M, Zhang X, Chen Y, Pan Z. Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection. Knowledge-Based Systems 2021;213:106684. [DOI: 10.1016/j.knosys.2020.106684] [Cited by in Crossref: 163] [Cited by in F6Publishing: 123] [Article Influence: 81.5] [Reference Citation Analysis]
115 Zhou W, Wang P, Heidari AA, Wang M, Zhao X, Chen H. Multi-core sine cosine optimization: Methods and inclusive analysis. Expert Systems with Applications 2021;164:113974. [DOI: 10.1016/j.eswa.2020.113974] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
116 Lekouaghet B, Boukabou A, Boubakir C. Estimation of the photovoltaic cells/modules parameters using an improved Rao-based chaotic optimization technique. Energy Conversion and Management 2021;229:113722. [DOI: 10.1016/j.enconman.2020.113722] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 14.0] [Reference Citation Analysis]
117 Shan W, Qiao Z, Heidari AA, Chen H, Turabieh H, Teng Y. Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis. Knowledge-Based Systems 2021;214:106728. [DOI: 10.1016/j.knosys.2020.106728] [Cited by in Crossref: 111] [Cited by in F6Publishing: 112] [Article Influence: 55.5] [Reference Citation Analysis]
118 Fan Y, Wang P, Mafarja M, Wang M, Zhao X, Chen H. A bioinformatic variant fruit fly optimizer for tackling optimization problems. Knowledge-Based Systems 2021;213:106704. [DOI: 10.1016/j.knosys.2020.106704] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
119 Zhou W, Wang P, Heidari AA, Zhao X, Turabieh H, Chen H. Random learning gradient based optimization for efficient design of photovoltaic models. Energy Conversion and Management 2021;230:113751. [DOI: 10.1016/j.enconman.2020.113751] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
120 Yu C, Chen M, Cheng K, Zhao X, Ma C, Kuang F, Chen H. SGOA: annealing-behaved grasshopper optimizer for global tasks. Engineering with Computers. [DOI: 10.1007/s00366-020-01234-1] [Cited by in Crossref: 77] [Cited by in F6Publishing: 57] [Article Influence: 38.5] [Reference Citation Analysis]
121 Tu J, Chen H, Liu J, Heidari AA, Zhang X, Wang M, Ruby R, Pham Q. Evolutionary biogeography-based whale optimization methods with communication structure: Towards measuring the balance. Knowledge-Based Systems 2021;212:106642. [DOI: 10.1016/j.knosys.2020.106642] [Cited by in Crossref: 128] [Cited by in F6Publishing: 132] [Article Influence: 64.0] [Reference Citation Analysis]
122 Wang M, Zhao X, Heidari AA, Chen H. Evaluation of constraint in photovoltaic models by exploiting an enhanced ant lion optimizer. Solar Energy 2020;211:503-21. [DOI: 10.1016/j.solener.2020.09.080] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
123 He W, Xie Y, Lu H, Wang M, Chen H. Predicting Coronary Atherosclerotic Heart Disease: An Extreme Learning Machine with Improved Salp Swarm Algorithm. Symmetry 2020;12:1651. [DOI: 10.3390/sym12101651] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
124 Zubaidi SL, Abdulkareem IH, Hashim KS, Al-bugharbee H, Ridha HM, Gharghan SK, Al-qaim FF, Muradov M, Kot P, Al-khaddar R. Hybridised Artificial Neural Network Model with Slime Mould Algorithm: A Novel Methodology for Prediction of Urban Stochastic Water Demand. Water 2020;12:2692. [DOI: 10.3390/w12102692] [Cited by in Crossref: 68] [Cited by in F6Publishing: 74] [Article Influence: 22.7] [Reference Citation Analysis]
125 Zhou H, Ding Z, Peng H, Tang Z, Liang G, Chen H, Ma C, Wang M. An Improved Grasshopper Optimizer for Global Tasks. Complexity 2020;2020:1-23. [DOI: 10.1155/2020/4873501] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
126 Liang X, Cai Z, Wang M, Zhao X, Chen H, Li C. Chaotic oppositional sine–cosine method for solving global optimization problems. Engineering with Computers. [DOI: 10.1007/s00366-020-01083-y] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 11.7] [Reference Citation Analysis]
127 Zhang H, Cai Z, Ye X, Wang M, Kuang F, Chen H, Li C, Li Y. A multi-strategy enhanced salp swarm algorithm for global optimization. Engineering with Computers. [DOI: 10.1007/s00366-020-01099-4] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 10.7] [Reference Citation Analysis]
128 Xiong G, Zhang J, Shi D, Zhu L, Yuan X. Parameter extraction of solar photovoltaic models via quadratic interpolation learning differential evolution. Sustainable Energy Fuels 2020;4:5595-608. [DOI: 10.1039/d0se01000f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]