BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Javor D, Kaplan H, Kaplan A, Puchner SB, Krestan C, Baltzer P. Deep learning analysis provides accurate COVID-19 diagnosis on chest computed tomography. Eur J Radiol 2020;133:109402. [PMID: 33190102 DOI: 10.1016/j.ejrad.2020.109402] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Afshar-Oromieh A, Prosch H, Schaefer-Prokop C, Bohn KP, Alberts I, Mingels C, Thurnher M, Cumming P, Shi K, Peters A, Geleff S, Lan X, Wang F, Huber A, Gräni C, Heverhagen JT, Rominger A, Fontanellaz M, Schöder H, Christe A, Mougiakakou S, Ebner L. A comprehensive review of imaging findings in COVID-19 - status in early 2021. Eur J Nucl Med Mol Imaging 2021;48:2500-24. [PMID: 33932183 DOI: 10.1007/s00259-021-05375-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
2 Zhao W, Yu X, Peng S, Luo Y, Li J, Lu L. Construction of nanomaterials as contrast agents or probes for glioma imaging. J Nanobiotechnology 2021;19:125. [PMID: 33941206 DOI: 10.1186/s12951-021-00866-9] [Reference Citation Analysis]
3 Wang L, Wang H, Huang Y, Yan B, Chang Z, Liu Z, Zhao M, Cui L, Song J, Li F. Trends in the application of deep learning networks in medical image analysis: Evolution between 2012 and 2020. Eur J Radiol 2022;146:110069. [PMID: 34847395 DOI: 10.1016/j.ejrad.2021.110069] [Reference Citation Analysis]
4 Krishnaswamy Rangarajan A, Ramachandran HK. A fused lightweight CNN model for the diagnosis of COVID-19 using CT scan images. Automatika 2022;63:171-84. [DOI: 10.1080/00051144.2021.2014037] [Reference Citation Analysis]
5 Moezzi M, Shirbandi K, Shahvandi HK, Arjmand B, Rahim F. The diagnostic accuracy of Artificial Intelligence-Assisted CT imaging in COVID-19 disease: A systematic review and meta-analysis. Inform Med Unlocked 2021;24:100591. [PMID: 33977119 DOI: 10.1016/j.imu.2021.100591] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Zhang X, Wang D, Shao J, Tian S, Tan W, Ma Y, Xu Q, Ma X, Li D, Chai J, Wang D, Liu W, Lin L, Wu J, Xia C, Zhang Z. A deep learning integrated radiomics model for identification of coronavirus disease 2019 using computed tomography. Sci Rep 2021;11:3938. [PMID: 33594159 DOI: 10.1038/s41598-021-83237-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
7 Komolafe TE, Cao Y, Nguchu BA, Monkam P, Olaniyi EO, Sun H, Zheng J, Yang X. Diagnostic Test Accuracy of Deep Learning Detection of COVID-19: A Systematic Review and Meta-Analysis. Acad Radiol 2021;28:1507-23. [PMID: 34649779 DOI: 10.1016/j.acra.2021.08.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Laino ME, Ammirabile A, Posa A, Cancian P, Shalaby S, Savevski V, Neri E. The Applications of Artificial Intelligence in Chest Imaging of COVID-19 Patients: A Literature Review. Diagnostics (Basel) 2021;11:1317. [PMID: 34441252 DOI: 10.3390/diagnostics11081317] [Reference Citation Analysis]
9 Abbasi WA, Abbas SA, Andleeb S, Ul Islam G, Ajaz SA, Arshad K, Khalil S, Anjam A, Ilyas K, Saleem M, Chughtai J, Abbas A. COVIDC: An expert system to diagnose COVID-19 and predict its severity using chest CT scans: Application in radiology. Inform Med Unlocked 2021;23:100540. [PMID: 33644298 DOI: 10.1016/j.imu.2021.100540] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Liu Q, Pang B, Li H, Zhang B, Liu Y, Lai L, Le W, Li J, Xia T, Zhang X, Ou C, Ma J, Li S, Guo X, Zhang S, Zhang Q, Jiang M, Zeng Q. Machine learning models for predicting critical illness risk in hospitalized patients with COVID-19 pneumonia. J Thorac Dis 2021;13:1215-29. [PMID: 33717594 DOI: 10.21037/jtd-20-2580] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Zhang Q, Chen Z, Liu G, Zhang W, Du Q, Tan J, Gao Q. Artificial Intelligence Clinicians Can Use Chest Computed Tomography Technology to Automatically Diagnose Coronavirus Disease 2019 (COVID-19) Pneumonia and Enhance Low-Quality Images. Infect Drug Resist 2021;14:671-87. [PMID: 33658806 DOI: 10.2147/IDR.S296346] [Reference Citation Analysis]
12 Kriza C, Amenta V, Zenié A, Panidis D, Chassaigne H, Urbán P, Holzwarth U, Sauer AV, Reina V, Griesinger CB. Artificial intelligence for imaging-based COVID-19 detection: Systematic review comparing added value of AI versus human readers. Eur J Radiol 2021;145:110028. [PMID: 34839214 DOI: 10.1016/j.ejrad.2021.110028] [Reference Citation Analysis]