BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: El-fergany AA. Parameters identification of PV model using improved slime mould optimizer and Lambert W-function. Energy Reports 2021;7:875-87. [DOI: 10.1016/j.egyr.2021.01.093] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 19.0] [Reference Citation Analysis]
Number Citing Articles
1 El‐dabah MA, El‐sehiemy RA, Hasanien HM, Saad B. Photovoltaic model parameters identification using an innovative optimization algorithm. IET Renewable Power Gen 2023. [DOI: 10.1049/rpg2.12712] [Reference Citation Analysis]
2 Gholami A, Ameri M, Zandi M, Gavagsaz Ghoachani R, Gholami M. A fast and precise double-diode model for predicting photovoltaic panel electrical behavior in variable environmental conditions. International Journal of Ambient Energy 2023. [DOI: 10.1080/01430750.2023.2173290] [Reference Citation Analysis]
3 Lakshmanan M, Kumar C, Jasper JS. Optimal parameter characterization of an enhanced mathematical model of solar photovoltaic cell/module using an improved white shark optimization algorithm. Optim Control Appl Methods 2023. [DOI: 10.1002/oca.2984] [Reference Citation Analysis]
4 Gharehchopogh FS, Ucan A, Ibrikci T, Arasteh B, Isik G. Slime Mould Algorithm: A Comprehensive Survey of Its Variants and Applications. Arch Comput Methods Eng 2023;:1-41. [PMID: 36685136 DOI: 10.1007/s11831-023-09883-3] [Reference Citation Analysis]
5 Shaheen A, El-sehiemy R, El-fergany A, Ginidi A. Representations of solar photovoltaic triple-diode models using artificial hummingbird optimizer. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2022;44:8787-8810. [DOI: 10.1080/15567036.2022.2125126] [Reference Citation Analysis]
6 Chen H, Li C, Mafarja M, Heidari AA, Chen Y, Cai Z. Slime mould algorithm: a comprehensive review of recent variants and applications. International Journal of Systems Science 2022. [DOI: 10.1080/00207721.2022.2153635] [Reference Citation Analysis]
7 Behera S, Choudhury NBD. Modelling and simulations of modified slime mould algorithm based on fuzzy PID to design an optimal battery management system in microgrid. Cleaner Energy Systems 2022;3:100029. [DOI: 10.1016/j.cles.2022.100029] [Reference Citation Analysis]
8 Soliman MA, Hasanien HM, Turky RA, Muyeen S. Hybrid African vultures–grey wolf optimizer approach for electrical parameters extraction of solar panel models. Energy Reports 2022;8:14888-14900. [DOI: 10.1016/j.egyr.2022.10.401] [Reference Citation Analysis]
9 Younis A, Bakhit A, Onsa M, Hashim M. A comprehensive and critical review of bio-inspired metaheuristic frameworks for extracting parameters of solar cell single and double diode models. Energy Reports 2022;8:7085-106. [DOI: 10.1016/j.egyr.2022.05.160] [Reference Citation Analysis]
10 Ali HH, Fathy A, Al-dhaifallah M, Abdelaziz AY, Ebeed M. An efficient capuchin search algorithm for extracting the parameters of different PV cells/modules. Front Energy Res 2022;10:1028816. [DOI: 10.3389/fenrg.2022.1028816] [Reference Citation Analysis]
11 Bogar E. Chaos Game Optimization-Least Squares Algorithm for Photovoltaic Parameter Estimation. Arab J Sci Eng. [DOI: 10.1007/s13369-022-07364-6] [Reference Citation Analysis]
12 Mohammed Ridha H, Hizam H, Mirjalili S, Lutfi Othman M, Effendy Ya'acob M, Ahmadipour M. Novel parameter extraction for Single, Double, and three diodes photovoltaic models based on robust adaptive arithmetic optimization algorithm and adaptive damping method of Berndt-Hall-Hall-Hausman. Solar Energy 2022;243:35-61. [DOI: 10.1016/j.solener.2022.07.029] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Zheng Y, Zhang E, An P. Peafowl optimization algorithm based PV cell models parameter identification. Front Energy Res 2022;10:985523. [DOI: 10.3389/fenrg.2022.985523] [Reference Citation Analysis]
14 Yu S, Heidari AA, He C, Cai Z, Althobaiti MM, Mansour RF, Liang G, Chen H. Parameter estimation of static solar photovoltaic models using Laplacian Nelder-Mead hunger games search. Solar Energy 2022;242:79-104. [DOI: 10.1016/j.solener.2022.06.046] [Reference Citation Analysis]
15 Kumar C, Magdalin Mary D. A novel chaotic-driven Tuna Swarm Optimizer with Newton-Raphson method for parameter identification of three-diode equivalent circuit model of solar photovoltaic cells/modules. Optik 2022;264:169379. [DOI: 10.1016/j.ijleo.2022.169379] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Eltamaly AM. Musical chairs algorithm for parameters estimation of PV cells. Solar Energy 2022;241:601-20. [DOI: 10.1016/j.solener.2022.06.043] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Ridha HM, Hizam H, Mirjalili S, Othman ML, Ya'acob ME, Ahmadipour M. Parameter extraction of single, double, and three diodes photovoltaic model based on guaranteed convergence arithmetic optimization algorithm and modified third order Newton Raphson methods. Renewable and Sustainable Energy Reviews 2022;162:112436. [DOI: 10.1016/j.rser.2022.112436] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Restrepo-cuestas BJ, Durango-flórez M, Trejos-grisales LA, Ramos-paja CA. Analysis of Electrical Models for Photovoltaic Cells under Uniform and Partial Shading Conditions. Computation 2022;10:111. [DOI: 10.3390/computation10070111] [Reference Citation Analysis]
19 Nunes H, Pombo J, Mariano S, do Rosario Calado M. Newton-Raphson method versus Lambert W function for photovoltaic parameter estimation. 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe) 2022. [DOI: 10.1109/eeeic/icpseurope54979.2022.9854525] [Reference Citation Analysis]
20 Yin S, Luo Q, Zhou G, Zhou Y, Zhu B. An equilibrium optimizer slime mould algorithm for inverse kinematics of the 7-DOF robotic manipulator. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-13516-3] [Reference Citation Analysis]
21 Zhong C, Li G, Meng Z. A hybrid teaching–learning slime mould algorithm for global optimization and reliability-based design optimization problems. Neural Comput & Applic. [DOI: 10.1007/s00521-022-07277-3] [Reference Citation Analysis]
22 Long W, Jiao J, Liang X, Xu M, Tang M, Cai S. Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm. Energy 2022;249:123760. [DOI: 10.1016/j.energy.2022.123760] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
23 Premkumar M, Jangir P, Kumar C, Sundarsingh Jebaseelan SDT, Alhelou HH, Madurai Elavarasan R, Chen H. Constraint estimation in three‐diode solar photovoltaic model using Gaussian and Cauchy mutation‐based hunger games search optimizer and enhanced Newton–Raphson method. IET Renewable Power Gen. [DOI: 10.1049/rpg2.12475] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
24 Nayagam VS, Kumar SS, Thiyagarajan V, Kamal N, Nisha N, Isaac JS, Kassa A, Mohanavel V. A Novel Optimization Algorithm for Modifying the Parameter Unit of Solar PV Cell. International Journal of Photoenergy 2022;2022:1-10. [DOI: 10.1155/2022/5240115] [Reference Citation Analysis]
25 Alfadhli J, Jaragh A, Alfailakawi MG, Ahmad I. FP-SMA: an adaptive, fluctuant population strategy for slime mould algorithm. Neural Comput & Applic. [DOI: 10.1007/s00521-022-07034-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Ridha HM, Hizam H, Mirjalili S, Othman ML, Ya’acob ME. Zero root-mean-square error for single- and double-diode photovoltaic models parameter determination. Neural Comput & Applic. [DOI: 10.1007/s00521-022-07047-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 Rai R, Das A, Dhal KG. Nature-inspired optimization algorithms and their significance in multi-thresholding image segmentation: an inclusive review. Evolving Systems. [DOI: 10.1007/s12530-022-09425-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
28 Yin S, Luo Q, Zhou Y. EOSMA: An Equilibrium Optimizer Slime Mould Algorithm for Engineering Design Problems. Arab J Sci Eng. [DOI: 10.1007/s13369-021-06513-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Ridha HM, Hizam H, Mirjalili S, Othman ML, Ya'acob ME, Abualigah L. A Novel Theoretical and Practical Methodology for Extracting the Parameters of the Single and Double Diode Photovoltaic Models. IEEE Access 2022;10:11110-37. [DOI: 10.1109/access.2022.3142779] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
30 Demirtas M, Koc K. Parameter Extraction of Photovoltaic Cells and Modules by INFO Algorithm. IEEE Access 2022;10:87022-52. [DOI: 10.1109/access.2022.3198987] [Reference Citation Analysis]
31 Yin S, Luo Q, Du Y, Zhou Y; College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China, Key Laboratory of Guangxi High Schools Complex System and Computational Intelligence, Nanning 530006, China, Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China, College of Information and Communication Engineering, Hainan University, Haikou 570228, China, State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China. . MBE 2022;19:2240-85. [DOI: 10.3934/mbe.2022105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
32 Rizk-allah RM, El-fergany AA. Emended heap-based optimizer for characterizing performance of industrial solar generating units using triple-diode model. Energy 2021;237:121561. [DOI: 10.1016/j.energy.2021.121561] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
33 Kumar C, Mary DM. Parameter estimation of three-diode solar photovoltaic model using an Improved-African Vultures optimization algorithm with Newton–Raphson method. J Comput Electron 2021;20:2563-93. [DOI: 10.1007/s10825-021-01812-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
34 Weng X, Heidari AA, Liang G, Chen H, Ma X. An evolutionary Nelder–Mead slime mould algorithm with random learning for efficient design of photovoltaic models. Energy Reports 2021;7:8784-804. [DOI: 10.1016/j.egyr.2021.11.019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
35 Hachana O, Aoufi B, Tina GM, Sid MA. Photovoltaic mono and bifacial module/string electrical model parameters identification and validation based on a new differential evolution bee colony optimizer. Energy Conversion and Management 2021;248:114667. [DOI: 10.1016/j.enconman.2021.114667] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
36 Venkateswari R, Rajasekar N. Review on parameter estimation techniques of solar photovoltaic systems. Int Trans Electr Energ Syst 2021;31. [DOI: 10.1002/2050-7038.13113] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
37 Yousri D, Fathy A, Rezk H, Babu TS, Berber MR. A reliable approach for modeling the photovoltaic system under partial shading conditions using three diode model and hybrid marine predators-slime mould algorithm. Energy Conversion and Management 2021;243:114269. [DOI: 10.1016/j.enconman.2021.114269] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
38 Yu K, Liu L, Chen Z. An Improved Slime Mould Algorithm for Demand Estimation of Urban Water Resources. Mathematics 2021;9:1316. [DOI: 10.3390/math9121316] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
39 Wang J, Yang B, Li D, Zeng C, Chen Y, Guo Z, Zhang X, Tan T, Shu H, Yu T. Photovoltaic cell parameter estimation based on improved equilibrium optimizer algorithm. Energy Conversion and Management 2021;236:114051. [DOI: 10.1016/j.enconman.2021.114051] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 12.5] [Reference Citation Analysis]
40 [DOI: 10.1109/laedc51812.2021.9437951] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Shi B, Ye H, Zheng J, Zhu Y, Heidari AA, Zheng L, Chen H, Wang L, Wu P. Early Recognition and Discrimination of COVID-19 Severity Using Slime Mould Support Vector Machine for Medical Decision-Making. IEEE Access 2021;9:121996-2015. [DOI: 10.1109/access.2021.3108447] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
42 Premkumar M, Jangir P, Ramakrishnan C, Nalinipriya G, Alhelou HH, Kumar BS. Identification of Solar Photovoltaic Model Parameters Using an Improved Gradient-Based Optimization Algorithm With Chaotic Drifts. IEEE Access 2021;9:62347-79. [DOI: 10.1109/access.2021.3073821] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 13.5] [Reference Citation Analysis]
43 Teh CJQ, Drieberg M, Soeung S, Ahmad R. Simple PV Modeling Under Variable Operating Conditions. IEEE Access 2021;9:96546-58. [DOI: 10.1109/access.2021.3094801] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]