BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu F, Ning Z, Liu Y, Liu D, Tian J, Luo H, An W, Huang Y, Zou J, Liu C, Liu C, Wang L, Liu Z, Qi R, Zuo C, Zhang Q, Wang J, Zhao D, Duan Y, Peng B, Qi X, Zhang Y, Yang Y, Hou J, Dong J, Li Z, Ding H, Zhang Y, Qi X. Development and validation of a radiomics signature for clinically significant portal hypertension in cirrhosis (CHESS1701): a prospective multicenter study. EBioMedicine 2018;36:151-8. [PMID: 30268833 DOI: 10.1016/j.ebiom.2018.09.023] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Wan S, Wei Y, Zhang X, Yang C, Hu F, Song B. Computed Tomography-Based Texture Features for the Risk Stratification of Portal Hypertension and Prediction of Survival in Patients With Cirrhosis: A Preliminary Study. Front Med 2022;9:863596. [DOI: 10.3389/fmed.2022.863596] [Reference Citation Analysis]
2 Zhang J, Ma G, Cheng J, Song S, Zhang Y, Shi LQ. Diagnostic classification of solitary pulmonary nodules using support vector machine model based on 2-[18F]fluoro-2-deoxy-D-glucose PET/computed tomography texture features: . Nuclear Medicine Communications 2020;41:560-6. [DOI: 10.1097/mnm.0000000000001193] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
3 Hai Y, Chong W, Eisenbrey JR, Forsberg F. Network Meta-Analysis: Noninvasive Imaging Modalities for Identifying Clinically Significant Portal Hypertension. Dig Dis Sci 2021. [PMID: 34275089 DOI: 10.1007/s10620-021-07168-y] [Reference Citation Analysis]
4 Wan S, Liu X, Jiang H, Teng Z, Song B. Noninvasive imaging assessment of portal hypertension: where are we now and where does the future lie? Expert Rev Mol Diagn 2021;21:343-5. [PMID: 33749473 DOI: 10.1080/14737159.2021.1904897] [Reference Citation Analysis]
5 Bari H, Wadhwani S, Dasari BVM. Role of artificial intelligence in hepatobiliary and pancreatic surgery. World J Gastrointest Surg 2021; 13(1): 7-18 [PMID: 33552391 DOI: 10.4240/wjgs.v13.i1.7] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Liu C, Shao R, Wang S, Wang G, Wang L, Zhang M, Liu Y, Liang M, Li X, Kang N, Wang J, Xu D, Mao H, Zhang C, Qi X. The Presence of Ascites Affects the Predictive Value of HVPG on Early Rebleeding in Patients with Cirrhosis. Gastroenterol Res Pract 2020;2020:1329857. [PMID: 33299405 DOI: 10.1155/2020/1329857] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Meng D, Wei Y, Feng X, Kang B, Wang X, Qi J, Zhao X, Zhu Q. CT-Based Radiomics Score Can Accurately Predict Esophageal Variceal Rebleeding in Cirrhotic Patients. Front Med (Lausanne) 2021;8:745931. [PMID: 34805214 DOI: 10.3389/fmed.2021.745931] [Reference Citation Analysis]
8 Wang P, Qi X, Xu K. Evolution, progress, and prospects of research on transjugular intrahepatic portosystemic shunt applications. J Interv Med 2021;4:57-61. [PMID: 34805949 DOI: 10.1016/j.jimed.2021.02.001] [Reference Citation Analysis]
9 Liu Y, Ning Z, Örmeci N, An W, Yu Q, Han K, Huang Y, Liu D, Liu F, Li Z, Ding H, Luo H, Zuo C, Liu C, Wang J, Zhang C, Ji J, Wang W, Wang Z, Wang W, Yuan M, Li L, Zhao Z, Wang G, Li M, Liu Q, Lei J, Liu C, Tang T, Akçalar S, Çelebioğlu E, Üstüner E, Bilgiç S, Ellik Z, Asiller ÖÖ, Liu Z, Teng G, Chen Y, Hou J, Li X, He X, Dong J, Tian J, Liang P, Ju S, Zhang Y, Qi X. Deep Convolutional Neural Network-Aided Detection of Portal Hypertension in Patients With Cirrhosis. Clin Gastroenterol Hepatol 2020;18:2998-3007.e5. [PMID: 32205218 DOI: 10.1016/j.cgh.2020.03.034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
10 Hu W, Yang H, Xu H, Mao Y. Radiomics based on artificial intelligence in liver diseases: where we are? Gastroenterol Rep (Oxf) 2020;8:90-7. [PMID: 32280468 DOI: 10.1093/gastro/goaa011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
11 Bao H, Chen T, Zhu J, Xie H, Chen F. CEUS-Based Radiomics Can Show Changes in Protein Levels in Liver Metastases After Incomplete Thermal Ablation. Front Oncol 2021;11:694102. [PMID: 34513676 DOI: 10.3389/fonc.2021.694102] [Reference Citation Analysis]
12 Sarkany D, Berliner L. Radiomics Can Provide a Deeper Role for Radiology in Precision Medicine of Hepatic Diseases. Acad Radiol 2021:S1076-6332(21)00174-4. [PMID: 34088591 DOI: 10.1016/j.acra.2021.04.005] [Reference Citation Analysis]
13 Sabottke CF, Spieler BM, Moawad AW, Elsayes KM. Artificial Intelligence in Imaging of Chronic Liver Diseases: Current Update and Future Perspectives. Magn Reson Imaging Clin N Am 2021;29:451-63. [PMID: 34243929 DOI: 10.1016/j.mric.2021.05.011] [Reference Citation Analysis]
14 Ding Z, Lin K, Fu J, Huang Q, Fang G, Tang Y, You W, Lin Z, Lin Z, Pan X, Zeng Y. An MR-based radiomics model for differentiation between hepatocellular carcinoma and focal nodular hyperplasia in non-cirrhotic liver. World J Surg Oncol 2021;19:181. [PMID: 34154624 DOI: 10.1186/s12957-021-02266-7] [Reference Citation Analysis]
15 Horvat N, Miranda J, El Homsi M, Peoples JJ, Long NM, Simpson AL, Do RKG. A primer on texture analysis in abdominal radiology. Abdom Radiol (NY) 2021. [PMID: 34825946 DOI: 10.1007/s00261-021-03359-3] [Reference Citation Analysis]
16 Reiberger T. The Value of Liver and Spleen Stiffness for Evaluation of Portal Hypertension in Compensated Cirrhosis. Hepatol Commun 2021. [PMID: 34904404 DOI: 10.1002/hep4.1855] [Reference Citation Analysis]
17 Lin Y, Li L, Yu D, Liu Z, Zhang S, Wang Q, Li Y, Cheng B, Qiao J, Gao Y. A novel radiomics-platelet nomogram for the prediction of gastroesophageal varices needing treatment in cirrhotic patients. Hepatol Int 2021;15:995-1005. [PMID: 34115257 DOI: 10.1007/s12072-021-10208-4] [Reference Citation Analysis]
18 Rana R, Wang S, Li J, Basnet S, Zheng L, Yang C. Diagnostic accuracy of non-invasive methods detecting clinically significant portal hypertension in liver cirrhosis: a systematic review and meta-analysis. Minerva Med 2020;111:266-80. [PMID: 31638361 DOI: 10.23736/S0026-4806.19.06143-3] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
19 Xu G, Li F, Mao Y. Portal pressure monitoring-state-of-the-art and future perspective. Ann Transl Med. 2019;7:583. [PMID: 31807564 DOI: 10.21037/atm.2019.09.22] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
20 Wan S, Wei Y, Zhang X, Liu X, Zhang W, He Y, Yuan F, Yao S, Yue Y, Song B. Multiparametric radiomics nomogram may be used for predicting the severity of esophageal varices in cirrhotic patients. Ann Transl Med 2020;8:186. [PMID: 32309333 DOI: 10.21037/atm.2020.01.122] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Zou Z, Lin S, Li X, Qi X. Comment on “Somatostatin as Inflow Modulator in Liver-transplant Recipients With Severe Portal Hypertension: A Randomized Trial”. Annals of Surgery 2019;270:e95-6. [DOI: 10.1097/sla.0000000000003350] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
22 Lin JY, Zhang CH, Zheng L, Song CL, Deng WS, Zhu YM, Zheng L, Wu LZ, Sun LC, Luo M. Assessment of a biofluid mechanics-based model for calculating portal pressure in canines. BMC Vet Res 2020;16:308. [PMID: 32843036 DOI: 10.1186/s12917-020-02478-1] [Reference Citation Analysis]
23 Li X, Kang N, Qi X, Huang Y. Artificial intelligence in the diagnosis of cirrhosis and portal hypertension. J Med Ultrason (2001) 2021. [PMID: 34787742 DOI: 10.1007/s10396-021-01153-8] [Reference Citation Analysis]
24 Huang Y, Huang F, Yang L, Hu W, Liu Y, Lin Z, Meng X, Zeng M, He C, Xu Q, Xie G, Liu C, Liang M, Li X, Kang N, Xu D, Wang J, Zhang L, Mao X, Yang C, Xu M, Qi X, Mao H. Development and validation of a radiomics signature as a non-invasive complementary predictor of gastroesophageal varices and high-risk varices in compensated advanced chronic liver disease: A multicenter study. J Gastroenterol Hepatol 2021;36:1562-70. [PMID: 33074566 DOI: 10.1111/jgh.15306] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
25 Sung YS, Park B, Park HJ, Lee SS. Radiomics and deep learning in liver diseases. J Gastroenterol Hepatol 2021;36:561-8. [PMID: 33709608 DOI: 10.1111/jgh.15414] [Reference Citation Analysis]
26 Liu H, Sun J, Liu G, Liu X, Zhou Q, Zhou J. Establishment of a non-invasive prediction model for the risk of oesophageal variceal bleeding using radiomics based on CT. Clin Radiol 2022:S0009-9260(22)00055-1. [PMID: 35241274 DOI: 10.1016/j.crad.2022.01.046] [Reference Citation Analysis]
27 Liu C, Ji D, Huang F, Huang Y, Du X, Liu C, Mao X, Zhang Q, Fang C, Ju S, An W, Chen G, Qi X. Accuracy of liver stiffness-based model by different imaging modalities in compensated advanced chronic liver disease. Eur J Gastroenterol Hepatol 2020;32:386-8. [PMID: 31490416 DOI: 10.1097/MEG.0000000000001508] [Reference Citation Analysis]
28 Zhou LL, Wang GC, Zhang MY, Huang GJ, Li W, Wang LY, Wang AH, Zhang CQ. Nomogram for hepatic venous pressure gradient in patients with cirrhosis. J Dig Dis 2021;22:488-95. [PMID: 34272920 DOI: 10.1111/1751-2980.13033] [Reference Citation Analysis]
29 Wei J, Jiang H, Gu D, Niu M, Fu F, Han Y, Song B, Tian J. Radiomics in liver diseases: Current progress and future opportunities. Liver Int 2020;40:2050-63. [PMID: 32515148 DOI: 10.1111/liv.14555] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
30 Garbuzenko DV, Arefyev NO. Primary prevention of bleeding from esophageal varices in patients with liver cirrhosis: An update and review of the literature. J Evid Based Med 2020;13:313-24. [PMID: 33037792 DOI: 10.1111/jebm.12407] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Kennedy P, Bane O, Hectors SJ, Fischman A, Schiano T, Lewis S, Taouli B. Noninvasive imaging assessment of portal hypertension. Abdom Radiol 2020;45:3473-95. [DOI: 10.1007/s00261-020-02729-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
32 Li P, Wu L, Li Z, Li J, Ye W, Shi Z, Xu Z, Zhu C, Ye H, Liu Z, Liang C. Spleen Radiomics Signature: A Potential Biomarker for Prediction of Early and Late Recurrences of Hepatocellular Carcinoma After Resection. Front Oncol 2021;11:716849. [PMID: 34485152 DOI: 10.3389/fonc.2021.716849] [Reference Citation Analysis]
33 Park HJ, Park B, Lee SS. Radiomics and Deep Learning: Hepatic Applications. Korean J Radiol. 2020;21:387-401. [PMID: 32193887 DOI: 10.3348/kjr.2019.0752] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
34 Fang C, Zhang P, Qi X. Digital and intelligent liver surgery in the new era: Prospects and dilemmas. EBioMedicine 2019;41:693-701. [PMID: 30773479 DOI: 10.1016/j.ebiom.2019.02.017] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
35 Yan X, Shao R, Wang Y, Mao X, Lei J, Zhang L, Zheng J, Liu A, Zhao H, Gao F, Wang J, Li P, Yao S, Xu M, Xu J, Liu D, Mi Y, Gong X, Ye J, Deng M, Dang T, Ji J, Shao C, Liu C, Gu Y, Wu Y, Wang F, Teng G, Li X, Qi X, Ju S, Qi X. Functional magnetic resonance imaging-based assessment of terlipressin vs. octreotide on renal function in cirrhotic patients with acute variceal bleeding (CHESS1903): study protocol of a multicenter randomized controlled trial. Ann Transl Med 2019;7:586. [PMID: 31807567 DOI: 10.21037/atm.2019.09.141] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
36 Sarin SK, Choudhury A, Sharma MK, Maiwall R, Al Mahtab M, Rahman S, Saigal S, Saraf N, Soin AS, Devarbhavi H, Kim DJ, Dhiman RK, Duseja A, Taneja S, Eapen CE, Goel A, Ning Q, Chen T, Ma K, Duan Z, Yu C, Treeprasertsuk S, Hamid SS, Butt AS, Jafri W, Shukla A, Saraswat V, Tan SS, Sood A, Midha V, Goyal O, Ghazinyan H, Arora A, Hu J, Sahu M, Rao PN, Lee GH, Lim SG, Lesmana LA, Lesmana CR, Shah S, Prasad VGM, Payawal DA, Abbas Z, Dokmeci AK, Sollano JD, Carpio G, Shresta A, Lau GK, Fazal Karim M, Shiha G, Gani R, Kalista KF, Yuen MF, Alam S, Khanna R, Sood V, Lal BB, Pamecha V, Jindal A, Rajan V, Arora V, Yokosuka O, Niriella MA, Li H, Qi X, Tanaka A, Mochida S, Chaudhuri DR, Gane E, Win KM, Chen WT, Rela M, Kapoor D, Rastogi A, Kale P, Sharma CB, Bajpai M, Singh V, Premkumar M, Maharashi S, Olithselvan A, Philips CA, Srivastava A, Yachha SK, Wani ZA, Thapa BR, Saraya A, Shalimar, Kumar A, Wadhawan M, Gupta S, Madan K, Sakhuja P, Vij V, Sharma BC, Garg H, Garg V, Kalal C, Anand L, Vyas T, Mathur RP, Kumar G, Jain P, Pasupuleti SSR, Chawla YK, Chowdhury A, Song DS, Yang JM, Yoon EL;  APASL ACLF Research Consortium (AARC) for APASL ACLF working Party. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific association for the study of the liver (APASL): an update. Hepatol Int. 2019;13:353-390. [PMID: 31172417 DOI: 10.1007/s12072-019-09946-3] [Cited by in Crossref: 134] [Cited by in F6Publishing: 109] [Article Influence: 44.7] [Reference Citation Analysis]