BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jia H, Truica CI, Wang B, Wang Y, Ren X, Harvey HA, Song J, Yang JM. Immunotherapy for triple-negative breast cancer: Existing challenges and exciting prospects. Drug Resist Updat. 2017;32:1-15. [PMID: 29145974 DOI: 10.1016/j.drup.2017.07.002] [Cited by in Crossref: 55] [Cited by in F6Publishing: 54] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang J, Xia Y, Zhou X, Yu H, Tan Y, Du Y, Zhang Q, Wu Y. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front Pharmacol 2022;13:977660. [DOI: 10.3389/fphar.2022.977660] [Reference Citation Analysis]
2 Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, Chen Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol 2022;15:121. [PMID: 36038913 DOI: 10.1186/s13045-022-01341-0] [Reference Citation Analysis]
3 Vtorushin S, Dulesova A, Krakhmal N. Luminal androgen receptor (LAR) subtype of triple-negative breast cancer: molecular, morphological, and clinical features. J Zhejiang Univ Sci B 2022;23:617-24. [PMID: 35953756 DOI: 10.1631/jzus.B2200113] [Reference Citation Analysis]
4 Ma J, Zhao W, Zhang H, Chu Z, Liu H, Fang X, Tang D. Long non-coding RNA ANRIL promotes chemoresistance in triple-negative breast cancer via enhancing aerobic glycolysis. Life Sci 2022;306:120810. [PMID: 35850243 DOI: 10.1016/j.lfs.2022.120810] [Reference Citation Analysis]
5 Borgovan T, Yanamandra N, Schmidt H. INNATE IMMUNITY AS A TARGET FOR NOVEL THERAPEUTICS IN TRIPLE NEGATIVE BREAST CANCER. Expert Opinion on Investigational Drugs. [DOI: 10.1080/13543784.2022.2096005] [Reference Citation Analysis]
6 Zhou Y, Che Y, Fu Z, Zhang H, Wu H. Triple-Negative Breast Cancer Analysis Based on Metabolic Gene Classification and Immunotherapy. Front Public Health 2022;10:902378. [DOI: 10.3389/fpubh.2022.902378] [Reference Citation Analysis]
7 Liu C, Li Y, Xing X, Zhuang J, Wang J, Wang C, Zhang L, Liu L, Feng F, Li H, Gao C, Yu Y, Liu J, Sun C. Immunogenomic landscape analyses of immune molecule signature-based risk panel for patients with triple-negative breast cancer. Mol Ther Nucleic Acids 2022;28:670-84. [PMID: 35614988 DOI: 10.1016/j.omtn.2022.04.034] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Rizzo A, Cusmai A, Massafra R, Bove S, Comes MC, Fanizzi A, Rinaldi L, Acquafredda S, Gadaleta-Caldarola G, Oreste D, Zito A, Giotta F, Lorusso V, Palmiotti G. Pathological Complete Response to Neoadjuvant Chemoimmunotherapy for Early Triple-Negative Breast Cancer: An Updated Meta-Analysis. Cells 2022;11:1857. [PMID: 35740985 DOI: 10.3390/cells11121857] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Kumar US, Natarajan A, Massoud TF, Paulmurugan R. FN3 linked nanobubbles as a targeted contrast agent for US imaging of cancer-associated human PD-L1. J Control Release 2022:S0168-3659(22)00226-7. [PMID: 35469983 DOI: 10.1016/j.jconrel.2022.04.030] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Chaudhuri A, Kumar DN, Dehari D, Singh S, Kumar P, Bolla PK, Kumar D, Agrawal AK. Emergence of Nanotechnology as a Powerful Cavalry against Triple-Negative Breast Cancer (TNBC). Pharmaceuticals 2022;15:542. [DOI: 10.3390/ph15050542] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Tan Z, Kan C, Sun M, Yang F, Wong M, Wang S, Zheng H. Mapping Breast Cancer Microenvironment Through Single-Cell Omics. Front Immunol 2022;13:868813. [DOI: 10.3389/fimmu.2022.868813] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Pi M, Kuang H, Yue C, Yang Q, Wu A, Li Y, Assaraf YG, Yang D, Wu S. Targeting metabolism to overcome cancer drug resistance: A promising therapeutic strategy for diffuse large B cell lymphoma. Drug Resistance Updates 2022;61:100822. [DOI: 10.1016/j.drup.2022.100822] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
13 Marqués M, Sorolla MA, Urdanibia I, Parisi E, Hidalgo I, Morales S, Salud A, Sorolla A. Are Transcription Factors Plausible Oncotargets for Triple Negative Breast Cancers? Cancers (Basel) 2022;14:1101. [PMID: 35267409 DOI: 10.3390/cancers14051101] [Reference Citation Analysis]
14 Hou K, Ning Z, Chen H, Wu Y. Nanomaterial Technology and Triple Negative Breast Cancer. Front Oncol 2021;11:828810. [PMID: 35096628 DOI: 10.3389/fonc.2021.828810] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Karpagam S, Mamindla A, Kumar Sali V, Niranjana RS, Periasamy VS, Alshatwi AA, Akbarsha MA, Rajendiran V. Folic acid-conjugated mixed-ligand copper(II) complexes as promising cytotoxic agents for triple-negative breast cancers: A case study using MDA-MB-231 cell. Inorganica Chimica Acta 2022;531:120729. [DOI: 10.1016/j.ica.2021.120729] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Cheng Z, Du Y, Yu L, Yuan Z, Tian J. Application of Noninvasive Imaging to Combined Immune Checkpoint Inhibitors for Breast Cancer: Facts and Future. Mol Imaging Biol 2022. [PMID: 35102468 DOI: 10.1007/s11307-021-01688-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Malla RR, Vasudevaraju P, Vempati RK, Rakshmitha M, Merchant N, Nagaraju GP. Regulatory T cells: Their role in triple-negative breast cancer progression and metastasis. Cancer 2022. [PMID: 34990009 DOI: 10.1002/cncr.34084] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
18 Hu Y, Zou D. Combined mRNAs and clinical factors model on predicting prognosis in patients with triple-negative breast cancer. PLoS One 2021;16:e0260811. [PMID: 34965257 DOI: 10.1371/journal.pone.0260811] [Reference Citation Analysis]
19 Saravanakumar K, Anbazhagan S, Pujani Usliyanage J, Vishven Naveen K, Wijesinghe U, Xiaowen H, Vishnu Priya V, Thiripuranathar G, Wang MH. A comprehensive review on immuno-nanomedicine for breast cancer therapy: Technical challenges and troubleshooting measures. Int Immunopharmacol 2021;103:108433. [PMID: 34922248 DOI: 10.1016/j.intimp.2021.108433] [Reference Citation Analysis]
20 Rizzo A, Ricci AD, Lanotte L, Lombardi L, Di Federico A, Brandi G, Gadaleta-Caldarola G. Immune-based combinations for metastatic triple negative breast cancer in clinical trials: current knowledge and therapeutic prospects. Expert Opin Investig Drugs 2021;:1-9. [PMID: 34802383 DOI: 10.1080/13543784.2022.2009456] [Reference Citation Analysis]
21 Guo J, Yi X, Ji Z, Yao M, Yang Y, Song W, Huang M. Development of a Prognostic Model Based on the Identification of EMT-Related lncRNAs in Triple-Negative Breast Cancer. J Oncol 2021;2021:9219961. [PMID: 34873403 DOI: 10.1155/2021/9219961] [Reference Citation Analysis]
22 Rizzo A, Ricci AD. Biomarkers for breast cancer immunotherapy: PD-L1, TILs, and beyond. Expert Opin Investig Drugs 2021;:1-7. [PMID: 34793275 DOI: 10.1080/13543784.2022.2008354] [Reference Citation Analysis]
23 Xin Y, Shen G, Zheng Y, Guan Y, Huo X, Li J, Ren D, Zhao F, Liu Z, Li Z, Zhao J. Immune checkpoint inhibitors plus neoadjuvant chemotherapy in early triple-negative breast cancer: a systematic review and meta-analysis. BMC Cancer 2021;21:1261. [PMID: 34814874 DOI: 10.1186/s12885-021-08997-w] [Reference Citation Analysis]
24 Liu X, Xing H, Liu H, Chen J. Current status and future perspectives on immunotherapy in neoadjuvant therapy of resectable non-small cell lung cancer. Asia Pac J Clin Oncol 2021. [PMID: 34811893 DOI: 10.1111/ajco.13665] [Reference Citation Analysis]
25 Du J, Dong Y, Li Y. Identification and Prognostic Value Exploration of Cyclophosphamide (Cytoxan)-Centered Chemotherapy Response-Associated Genes in Breast Cancer. DNA Cell Biol 2021;40:1356-68. [PMID: 34704810 DOI: 10.1089/dna.2021.0077] [Reference Citation Analysis]
26 Dong X, Liu C, Yuan J, Wang S, Ding N, Li Y, Wu Y, Xiao Z. Prognostic Roles of Neutrophil-to-Lymphocyte Ratio and Stromal Tumor-Infiltrating Lymphocytes and Their Relationship in Locally Advanced Triple-Negative Breast Cancer Treated with Neoadjuvant Chemotherapy. Breast Care (Basel) 2021;16:328-34. [PMID: 34602938 DOI: 10.1159/000509498] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Lejeune M, Plancoulaine B, Elie N, Bosch R, Fontoura L, de Villasante I, Korzyńska A, Navarro AG, Colón ES, López C. How the variability between computer-assisted analysis procedures evaluating immune markers can influence patients' outcome prediction. Histochem Cell Biol 2021. [PMID: 34383240 DOI: 10.1007/s00418-021-02022-8] [Reference Citation Analysis]
28 Kumari M, Krishnamurthy PT, Sola P. Targeted Drug Therapy to Overcome Chemoresistance in Triple-negative Breast Cancer. Curr Cancer Drug Targets 2020;20:559-72. [PMID: 32370716 DOI: 10.2174/1568009620666200506110850] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Zhang D, Wang Y, Yang Q. A High Epigenetic Risk Score Shapes the Non-Inflamed Tumor Microenvironment in Breast Cancer. Front Mol Biosci 2021;8:675198. [PMID: 34381812 DOI: 10.3389/fmolb.2021.675198] [Reference Citation Analysis]
30 Zhao M, Yang X, Fu H, Chen C, Zhang Y, Wu Z, Duan Y, Sun Y. Immune/Hypoxic Tumor Microenvironment Regulation-Enhanced Photodynamic Treatment Realized by pH-Responsive Phase Transition-Targeting Nanobubbles. ACS Appl Mater Interfaces 2021;13:32763-79. [PMID: 34235912 DOI: 10.1021/acsami.1c07323] [Reference Citation Analysis]
31 Chen M, Miao Y, Qian K, Zhou X, Guo L, Qiu Y, Wang R, Gan Y, Zhang X. Detachable Liposomes Combined Immunochemotherapy for Enhanced Triple-Negative Breast Cancer Treatment through Reprogramming of Tumor-Associated Macrophages. Nano Lett 2021;21:6031-41. [PMID: 34240603 DOI: 10.1021/acs.nanolett.1c01210] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Chatterjee S, Chatterjee A, Jana S, Dey S, Roy H, Das MK, Alam J, Adhikary A, Chowdhury A, Biswas A, Manna D, Bhattacharyya A. Transforming growth factor beta orchestrates PD-L1 enrichment in tumor-derived exosomes and mediates CD8 T-cell dysfunction regulating early phosphorylation of TCR signalome in breast cancer. Carcinogenesis 2021;42:38-47. [PMID: 32832992 DOI: 10.1093/carcin/bgaa092] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
33 Barzaman K, Moradi-Kalbolandi S, Hosseinzadeh A, Kazemi MH, Khorramdelazad H, Safari E, Farahmand L. Breast cancer immunotherapy: Current and novel approaches. Int Immunopharmacol 2021;98:107886. [PMID: 34153663 DOI: 10.1016/j.intimp.2021.107886] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021;14:589. [PMID: 34207383 DOI: 10.3390/ph14060589] [Reference Citation Analysis]
35 Wang B, Li R, Wu S, Liu X, Ren J, Li J, Bi K, Wang Y, Jia H. Breast Cancer Resistance to Cyclin-Dependent Kinases 4/6 Inhibitors: Intricacy of the Molecular Mechanisms. Front Oncol 2021;11:651541. [PMID: 34123801 DOI: 10.3389/fonc.2021.651541] [Reference Citation Analysis]
36 Yi H, Li Y, Tan Y, Fu S, Tang F, Deng X. Immune Checkpoint Inhibition for Triple-Negative Breast Cancer: Current Landscape and Future Perspectives. Front Oncol 2021;11:648139. [PMID: 34094935 DOI: 10.3389/fonc.2021.648139] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Vtorushin SV, Krakhmal NV, Zavyalova MV. [Triple-negative breast cancer. Modern molecular genetic concepts and their clinical significance]. Arkh Patol 2021;83:46-51. [PMID: 33822554 DOI: 10.17116/patol20218302146] [Reference Citation Analysis]
38 Zhang J, An L, Zhou X, Shi R, Wang H. Analysis of tumor mutation burden combined with immune infiltrates in endometrial cancer. Ann Transl Med 2021;9:551. [PMID: 33987249 DOI: 10.21037/atm-20-6049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Jiang K, Dong M, Li C, Sheng J. Unraveling Heterogeneity of Tumor Cells and Microenvironment and Its Clinical Implications for Triple Negative Breast Cancer. Front Oncol 2021;11:557477. [PMID: 33854958 DOI: 10.3389/fonc.2021.557477] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Jiang T, Chen X, Ren X, Yang JM, Cheng Y. Emerging role of autophagy in anti-tumor immunity: Implications for the modulation of immunotherapy resistance. Drug Resist Updat 2021;56:100752. [PMID: 33765484 DOI: 10.1016/j.drup.2021.100752] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Liao M, Zhang J, Wang G, Wang L, Liu J, Ouyang L, Liu B. Small-Molecule Drug Discovery in Triple Negative Breast Cancer: Current Situation and Future Directions. J Med Chem 2021;64:2382-418. [PMID: 33650861 DOI: 10.1021/acs.jmedchem.0c01180] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 20.0] [Reference Citation Analysis]
42 Zhang Y, Fan Y, Jing X, Zhao L, Liu T, Wang L, Zhang L, Gu S, Zhao X, Teng Y. OTUD5-mediated deubiquitination of YAP in macrophage promotes M2 phenotype polarization and favors triple-negative breast cancer progression. Cancer Lett 2021;504:104-15. [PMID: 33587979 DOI: 10.1016/j.canlet.2021.02.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Setordzi P, Chang X, Liu Z, Wu Y, Zuo D. The recent advances of PD-1 and PD-L1 checkpoint signaling inhibition for breast cancer immunotherapy. Eur J Pharmacol 2021;895:173867. [PMID: 33460617 DOI: 10.1016/j.ejphar.2021.173867] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Li Z, Li Y, Wang X, Yang Q. PPP2R2B downregulation is associated with immune evasion and predicts poor clinical outcomes in triple-negative breast cancer. Cancer Cell Int 2021;21:13. [PMID: 33407498 DOI: 10.1186/s12935-020-01707-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
45 Zhang Y, Gao Y, Li Y, Zhang X, Xie H. Characterization of the Relationship Between the Expression of Aspartate β-Hydroxylase and the Pathological Characteristics of Breast Cancer. Med Sci Monit 2020;26:e926752. [PMID: 33380715 DOI: 10.12659/MSM.926752] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
46 Wang M, Yin S, Qin Q, Peng Y, Hu Z, Zhu X, Liu L, Li X. Stenotrophomonas-maltophilia inhibits host cellular immunity by activating PD-1/PD-L1 signaling pathway to induce T-cell exhaustion. Mol Immunol 2021;130:37-48. [PMID: 33360150 DOI: 10.1016/j.molimm.2020.12.019] [Reference Citation Analysis]
47 Sheng J, Li C, Dong M, Jiang K. Identification by Comprehensive Bioinformatics Analysis of KIF15 as a Candidate Risk Gene for Triple-Negative Breast Cancer. Cancer Manag Res 2020;12:12337-48. [PMID: 33293861 DOI: 10.2147/CMAR.S262017] [Reference Citation Analysis]
48 Zhu J, Wang H, Ma T, He Y, Shen M, Song W, Wang JJ, Shi JP, Wu MY, Liu C, Wang WJ, Huang YQ. Identification of immune-related genes as prognostic factors in bladder cancer. Sci Rep 2020;10:19695. [PMID: 33184436 DOI: 10.1038/s41598-020-76688-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
49 Dees S, Ganesan R, Singh S, Grewal IS. Bispecific Antibodies for Triple Negative Breast Cancer. Trends Cancer 2021;7:162-73. [PMID: 33041246 DOI: 10.1016/j.trecan.2020.09.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
50 Chen H, Zhang Y, Cao X, Mou P. MiR-27a Facilitates Breast Cancer Progression via GSK-3β. Technol Cancer Res Treat 2020;19:1533033820965576. [PMID: 33025840 DOI: 10.1177/1533033820965576] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Zhang T, Feng X, Zhou T, Zhou N, Shi X, Zhu X, Qiu J, Deng G, Qiu C. miR-497 induces apoptosis by the IRAK2/NF-κB axis in the canine mammary tumour. Vet Comp Oncol 2021;19:69-78. [PMID: 32706167 DOI: 10.1111/vco.12626] [Reference Citation Analysis]
52 Behravan J, Razazan A, Behravan G. Towards Breast Cancer Vaccines, Progress and Challenges. Curr Drug Discov Technol 2019;16:251-8. [PMID: 29732989 DOI: 10.2174/1570163815666180502164652] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
53 Wang F, Cao X, Yin L, Wang Q, He Z. Identification of SCARA5 Gene as a Potential Immune-Related Biomarker for Triple-Negative Breast Cancer by Integrated Analysis. DNA Cell Biol 2020;39:1813-24. [PMID: 32816580 DOI: 10.1089/dna.2020.5449] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
54 Zhao E, Lan Y, Quan F, Zhu X, A S, Wan L, Xu J, Hu J. Identification of a Six-lncRNA Signature With Prognostic Value for Breast Cancer Patients. Front Genet 2020;11:673. [PMID: 32849766 DOI: 10.3389/fgene.2020.00673] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
55 Li Q, Liu J, Jia Y, Li T, Zhang M. miR-623 suppresses cell proliferation, migration and invasion through direct inhibition of XRCC5 in breast cancer. Aging (Albany NY) 2020;12:10246-58. [PMID: 32501811 DOI: 10.18632/aging.103182] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
56 Hu Q, Egranov SD, Lin C, Yang L. Long noncoding RNA loss in immune suppression in cancer. Pharmacol Ther 2020;213:107591. [PMID: 32473960 DOI: 10.1016/j.pharmthera.2020.107591] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
57 Hu MH, Wu TY, Huang Q, Jin G. New substituted quinoxalines inhibit triple-negative breast cancer by specifically downregulating the c-MYC transcription. Nucleic Acids Res 2019;47:10529-42. [PMID: 31584090 DOI: 10.1093/nar/gkz835] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 14.5] [Reference Citation Analysis]
58 Tafreshi NK, Morse DL, Lee MC. Narrowing the focus: Therapeutic cell surface targets for refractory triple-negative breast cancer. World J Clin Oncol 2020; 11(4): 169-179 [PMID: 32355639 DOI: 10.5306/wjco.v11.i4.169] [Reference Citation Analysis]
59 Ding N, Huang J, Li N, Yuan J, Wang S, Xiao Z. Roles of neutrophil/lymphocyte ratio in prognosis and in differentiation of potential beneficiaries in HER2-positive breast cancer with trastuzumab therapy. BMC Cancer 2020;20:235. [PMID: 32192443 DOI: 10.1186/s12885-020-06750-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
60 Luo Y, Yang J, Yu J, Liu X, Yu C, Hu J, Shi H, Ma X. Long Non-coding RNAs: Emerging Roles in the Immunosuppressive Tumor Microenvironment. Front Oncol 2020;10:48. [PMID: 32083005 DOI: 10.3389/fonc.2020.00048] [Cited by in Crossref: 21] [Cited by in F6Publishing: 27] [Article Influence: 10.5] [Reference Citation Analysis]
61 Hu Y, Wang S, Ding N, Li N, Huang J, Xiao Z. Platelet/Lymphocyte Ratio Is Superior to Neutrophil/Lymphocyte Ratio as a Predictor of Chemotherapy Response and Disease-free Survival in Luminal B-like (HER2-) Breast Cancer. Clin Breast Cancer 2020;20:e403-9. [PMID: 32201163 DOI: 10.1016/j.clbc.2020.01.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
62 Verdura S, Cuyàs E, Cortada E, Brunet J, Lopez-Bonet E, Martin-Castillo B, Bosch-Barrera J, Encinar JA, Menendez JA. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging (Albany NY) 2020;12:8-34. [PMID: 31901900 DOI: 10.18632/aging.102646] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 18.0] [Reference Citation Analysis]
63 Yang C, Zhang Z, Zou Y, Gao G, Liu L, Xu H, Liu F. Expression of glucose-regulated protein 78 as prognostic biomarkers for triple-negative breast cancer. Histol Histopathol 2020;35:559-68. [PMID: 31745967 DOI: 10.14670/HH-18-185] [Reference Citation Analysis]
64 Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res 2019;38:430. [PMID: 31661003 DOI: 10.1186/s13046-019-1443-1] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 16.0] [Reference Citation Analysis]
65 Moujaess E, Haddad FG, Eid R, Kourie HR. The emerging use of immune checkpoint blockade in the adjuvant setting for solid tumors: a review. Immunotherapy. 2019;11:1409-1422. [PMID: 31621445 DOI: 10.2217/imt-2019-0087] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
66 Goldman A, Khiste S, Freinkman E, Dhawan A, Majumder B, Mondal J, Pinkerton AB, Eton E, Medhi R, Chandrasekar V, Rahman MM, Ichimura T, Gopinath KS, Majumder P, Kohandel M, Sengupta S. Targeting tumor phenotypic plasticity and metabolic remodeling in adaptive cross-drug tolerance. Sci Signal. 2019;12:pii: eaas8779. [PMID: 31431543 DOI: 10.1126/scisignal.aas8779] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
67 Hu Q, Ye Y, Chan LC, Li Y, Liang K, Lin A, Egranov SD, Zhang Y, Xia W, Gong J, Pan Y, Chatterjee SS, Yao J, Evans KW, Nguyen TK, Park PK, Liu J, Coarfa C, Donepudi SR, Putluri V, Putluri N, Sreekumar A, Ambati CR, Hawke DH, Marks JR, Gunaratne PH, Caudle AS, Sahin AA, Hortobagyi GN, Meric-Bernstam F, Chen L, Yu D, Hung MC, Curran MA, Han L, Lin C, Yang L. Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat Immunol. 2019;20:835-851. [PMID: 31160797 DOI: 10.1038/s41590-019-0400-7] [Cited by in Crossref: 101] [Cited by in F6Publishing: 107] [Article Influence: 33.7] [Reference Citation Analysis]
68 Li Z, Qian J, Li J, Zhu C. Knockdown of lncRNA-HOTAIR downregulates the drug-resistance of breast cancer cells to doxorubicin via the PI3K/AKT/mTOR signaling pathway. Exp Ther Med 2019;18:435-42. [PMID: 31281438 DOI: 10.3892/etm.2019.7629] [Cited by in Crossref: 16] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
69 Maimaitiyiming Y, Hong F, Yang C, Naranmandura H. Novel insights into the role of aptamers in the fight against cancer. J Cancer Res Clin Oncol 2019;145:797-810. [PMID: 30830295 DOI: 10.1007/s00432-019-02882-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
70 Hwang SY, Park S, Kwon Y. Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol Ther. 2019;199:30-57. [PMID: 30825473 DOI: 10.1016/j.pharmthera.2019.02.006] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 19.7] [Reference Citation Analysis]
71 Pawar A, Prabhu P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomedicine & Pharmacotherapy 2019;110:319-41. [DOI: 10.1016/j.biopha.2018.11.122] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
72 Wang X, Qi Y, Kong X, Zhai J, Li Y, Song Y, Wang J, Feng X, Fang Y. Immunological therapy: A novel thriving area for triple-negative breast cancer treatment. Cancer Lett 2019;442:409-28. [PMID: 30419345 DOI: 10.1016/j.canlet.2018.10.042] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
73 Shi J, Udayakumar TS, Xu K, Dogan N, Pollack A, Yang Y. Bioluminescence Tomography Guided Small-Animal Radiation Therapy and Tumor Response Assessment. International Journal of Radiation Oncology*Biology*Physics 2018;102:848-57. [DOI: 10.1016/j.ijrobp.2018.01.068] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
74 Chua CYX, Jain P, Susnjar A, Rhudy J, Folci M, Ballerini A, Gilbert A, Singh S, Bruno G, Filgueira CS, Yee C, Butler EB, Grattoni A. Nanofluidic drug-eluting seed for sustained intratumoral immunotherapy in triple negative breast cancer. Journal of Controlled Release 2018;285:23-34. [DOI: 10.1016/j.jconrel.2018.06.035] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
75 Parvizpour S, Razmara J, Pourseif MM, Omidi Y. In silico design of a triple-negative breast cancer vaccine by targeting cancer testis antigens. Bioimpacts 2019;9:45-56. [PMID: 30788259 DOI: 10.15171/bi.2019.06] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
76 Meirson T, Gil-Henn H. Targeting invadopodia for blocking breast cancer metastasis. Drug Resist Updat 2018;39:1-17. [PMID: 30075834 DOI: 10.1016/j.drup.2018.05.002] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 10.0] [Reference Citation Analysis]
77 Huang L, Zeng L, Chu J, Xu P, Lv M, Xu J, Wen J, Li W, Wang L, Wu X, Fu Z, Xie H, Wang S. Chemoresistance‑related long non‑coding RNA expression profiles in human breast cancer cells. Mol Med Rep 2018;18:243-53. [PMID: 29749447 DOI: 10.3892/mmr.2018.8942] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
78 Wu HC, Do C, Andrulis IL, John EM, Daly MB, Buys SS, Chung WK, Knight JA, Bradbury AR, Keegan THM, Schwartz L, Krupska I, Miller RL, Santella RM, Tycko B, Terry MB. Breast cancer family history and allele-specific DNA methylation in the legacy girls study. Epigenetics 2018;13:240-50. [PMID: 29436922 DOI: 10.1080/15592294.2018.1435243] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
79 Kouidhi S, Ben Ayed F, Benammar Elgaaied A. Targeting Tumor Metabolism: A New Challenge to Improve Immunotherapy. Front Immunol 2018;9:353. [PMID: 29527212 DOI: 10.3389/fimmu.2018.00353] [Cited by in Crossref: 68] [Cited by in F6Publishing: 66] [Article Influence: 17.0] [Reference Citation Analysis]