BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Moghimi SM. Nanomedicine safety in preclinical and clinical development: focus on idiosyncratic injection/infusion reactions. Drug Discov Today 2018;23:1034-42. [PMID: 29146517 DOI: 10.1016/j.drudis.2017.11.006] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 Crist RM, Dasa SSK, Liu CH, Clogston JD, Dobrovolskaia MA, Stern ST. Challenges in the development of nanoparticle-based imaging agents: Characterization and biology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1665. [PMID: 32830448 DOI: 10.1002/wnan.1665] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
2 Vu VP, Gifford GB, Chen F, Benasutti H, Wang G, Groman EV, Scheinman R, Saba L, Moghimi SM, Simberg D. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat Nanotechnol 2019;14:260-8. [PMID: 30643271 DOI: 10.1038/s41565-018-0344-3] [Cited by in Crossref: 95] [Cited by in F6Publishing: 91] [Article Influence: 31.7] [Reference Citation Analysis]
3 Verbeke R, Lentacker I, De Smedt SC, Dewitte H. Three decades of messenger RNA vaccine development. Nano Today 2019;28:100766. [DOI: 10.1016/j.nantod.2019.100766] [Cited by in Crossref: 53] [Cited by in F6Publishing: 21] [Article Influence: 17.7] [Reference Citation Analysis]
4 Kozma GT, Mészáros T, Vashegyi I, Fülöp T, Örfi E, Dézsi L, Rosivall L, Bavli Y, Urbanics R, Mollnes TE, Barenholz Y, Szebeni J. Pseudo-anaphylaxis to Polyethylene Glycol (PEG)-Coated Liposomes: Roles of Anti-PEG IgM and Complement Activation in a Porcine Model of Human Infusion Reactions. ACS Nano 2019;13:9315-24. [PMID: 31348638 DOI: 10.1021/acsnano.9b03942] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 11.7] [Reference Citation Analysis]
5 Onyeje C, Lavik E. Highlighting the usage of polymeric nanoparticles for the treatment of traumatic brain injury: A review study. Neurochem Int 2021;147:105048. [PMID: 33901586 DOI: 10.1016/j.neuint.2021.105048] [Reference Citation Analysis]
6 Moghimi SM, Simberg D. Translational gaps in animal models of human infusion reactions to nanomedicines. Nanomedicine 2018;13:973-5. [DOI: 10.2217/nnm-2018-0064] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
7 Dobrovolskaia M, Neun BW, Szénási G, Szebeni J; Frederick National Laboratory for Cancer Research, Semmelweis University. Plasma samples from mouse strains and humans demonstrate different susceptibilities to complement activation. prnano 2018;1:208-17. [DOI: 10.33218/prnano1(3).181029.2] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
8 Moghimi SM, Simberg D, Papini E, Farhangrazi ZS. Complement activation by drug carriers and particulate pharmaceuticals: Principles, challenges and opportunities. Adv Drug Deliv Rev 2020;157:83-95. [PMID: 32389761 DOI: 10.1016/j.addr.2020.04.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
9 Alsaleh NB, Brown JM. Engineered Nanomaterials and Type I Allergic Hypersensitivity Reactions. Front Immunol 2020;11:222. [PMID: 32117324 DOI: 10.3389/fimmu.2020.00222] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
10 Valic MS, Halim M, Schimmer P, Zheng G. Guidelines for the experimental design of pharmacokinetic studies with nanomaterials in preclinical animal models. J Control Release 2020;323:83-101. [PMID: 32278829 DOI: 10.1016/j.jconrel.2020.04.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
11 Kumar S, Purtell C, Peterson A, Gibbons P, Khan AM, Heitner SB. Safety profile of ultrasound enhancing agents in echocardiography. Echocardiography 2019;36:1041-4. [PMID: 31038768 DOI: 10.1111/echo.14344] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Christensen JB. Dendrimers for pharmaceutical applications—potential and challenges. Delivery of Drugs. Elsevier; 2020. pp. 29-52. [DOI: 10.1016/b978-0-12-817776-1.00002-x] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Paul F, Cartron G. Infusion-related reactions to rituximab: frequency, mechanisms and predictors. Expert Rev Clin Immunol 2019;15:383-9. [PMID: 30580638 DOI: 10.1080/1744666X.2019.1562905] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 4.7] [Reference Citation Analysis]
14 Ziemba B, Sikorska H, Jander M, Kuncman W, Danilewicz M, Appelhans D, Bryszewska M, Borowiec M, Franiak-Pietryga I. Anti-Tumour Activity of Glycodendrimer Nanoparticles in a Subcutaneous MEC-1 Xenograft Model of Human Chronic Lymphocytic Leukemia. Anticancer Agents Med Chem 2020;20:325-34. [PMID: 31738155 DOI: 10.2174/1871520619666191019093558] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Fülöp T, Kozma GT, Vashegyi I, Mészáros T, Rosivall L, Urbanics R, Storm G, Metselaar JM, Szebeni J. Liposome-induced hypersensitivity reactions: Risk reduction by design of safe infusion protocols in pigs. Journal of Controlled Release 2019;309:333-8. [DOI: 10.1016/j.jconrel.2019.07.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
16 Franiak-Pietryga I, Ziemba B, Sikorska H, Jander M, Kuncman W, Danilewicz M, Appelhans D, Lewkowicz P, Ostrowska K, Bryszewska M, Borowiec M. Maltotriose-modified poly(propylene imine) Glycodendrimers as a potential novel platform in the treatment of chronic lymphocytic Leukemia. A proof-of-concept pilot study in the animal model of CLL. Toxicol Appl Pharmacol 2020;403:115139. [PMID: 32687837 DOI: 10.1016/j.taap.2020.115139] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Gifford G, Vu VP, Banda NK, Holers VM, Wang G, Groman EV, Backos D, Scheinman R, Moghimi SM, Simberg D. Complement therapeutics meets nanomedicine: overcoming human complement activation and leukocyte uptake of nanomedicines with soluble domains of CD55. J Control Release 2019;302:181-9. [PMID: 30974134 DOI: 10.1016/j.jconrel.2019.04.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
18 Mészáros T, Kozma GT, Shimizu T, Miyahara K, Turjeman K, Ishida T, Barenholz Y, Urbanics R, Szebeni J. Involvement of complement activation in the pulmonary vasoactivity of polystyrene nanoparticles in pigs: unique surface properties underlying alternative pathway activation and instant opsonization. Int J Nanomedicine 2018;13:6345-57. [PMID: 30349254 DOI: 10.2147/IJN.S161369] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
19 Maisha N, Rubenstein M, Bieberich CJ, Lavik E. Getting to the Core of It All: Nanocapsules to Mitigate Infusion Reactions Can Promote Hemostasis and Be a Platform for Intravenous Therapies. Nano Lett 2021;21:9069-76. [PMID: 34714087 DOI: 10.1021/acs.nanolett.1c02746] [Reference Citation Analysis]
20 Milosevits G, Mészáros T, Őrfi E, Bakos T, Garami M, Kovács G, Dézsi L, Hamar P, Győrffy B, Szabó A, Szénási G, Szebeni J. Complement-mediated hypersensitivity reactions to an amphotericin B-containing lipid complex (Abelcet) in pediatric patients and anesthetized rats: Benefits of slow infusion. Nanomedicine 2021;34:102366. [PMID: 33549818 DOI: 10.1016/j.nano.2021.102366] [Reference Citation Analysis]
21 Szebeni J, Bedőcs P, Dézsi L, Urbanics R. A porcine model of complement activation-related pseudoallergy to nano-pharmaceuticals: Pros and cons of translation to a preclinical safety test. PRNANO 2018;1:63-73. [DOI: 10.29016/180427.1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
22 Giannakou C, Park MVDZ, Bosselaers IEM, de Jong WH, van der Laan JW, van Loveren H, Vandebriel RJ, Geertsma RE. Nonclinical regulatory immunotoxicity testing of nanomedicinal products: Proposed strategy and possible pitfalls. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1633. [PMID: 32266791 DOI: 10.1002/wnan.1633] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Bisso S, Leroux J. Nanopharmaceuticals: A focus on their clinical translatability. International Journal of Pharmaceutics 2020;578:119098. [DOI: 10.1016/j.ijpharm.2020.119098] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
24 Szebeni J, Bawa R. Human Clinical Relevance of the Porcine Model of Pseudoallergic Infusion Reactions. Biomedicines 2020;8:E82. [PMID: 32276476 DOI: 10.3390/biomedicines8040082] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
25 Bullock CJ, Bussy C. Biocompatibility Considerations in the Design of Graphene Biomedical Materials. Adv Mater Interfaces 2019. [DOI: 10.1002/admi.201900229] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
26 Decuzzi P, Peer D, Mascolo DD, Palange AL, Manghnani PN, Moghimi SM, Farhangrazi ZS, Howard KA, Rosenblum D, Liang T, Chen Z, Wang Z, Zhu JJ, Gu Z, Korin N, Letourneur D, Chauvierre C, van der Meel R, Kiessling F, Lammers T. Roadmap on nanomedicine. Nanotechnology 2021;32:012001. [PMID: 33043901 DOI: 10.1088/1361-6528/abaadb] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
27 Ziemba B, Borowiec M, Franiak-Pietryga I. There and back again: a dendrimer's tale. Drug Chem Toxicol 2021;:1-16. [PMID: 33910437 DOI: 10.1080/01480545.2021.1915327] [Reference Citation Analysis]
28 Vauthier C. A journey through the emergence of nanomedicines with poly(alkylcyanoacrylate) based nanoparticles. J Drug Target 2019;27:502-24. [PMID: 30889991 DOI: 10.1080/1061186X.2019.1588280] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Maisha N, Coombs T, Lavik E. Development of a Sensitive Assay to Screen Nanoparticles in vitro for Complement Activation. ACS Biomater Sci Eng 2020;6:4903-15. [PMID: 33313396 DOI: 10.1021/acsbiomaterials.0c00722] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Ma Q, Pollard KM, Brown JM, Italiani P, Moghimi SM. Editorial: Immune Mechanisms in the Pathologic Response to Particles, Fibers, and Nanomaterials. Front Immunol 2021;12:665810. [PMID: 33815427 DOI: 10.3389/fimmu.2021.665810] [Reference Citation Analysis]
31 Szebeni J, Simberg D, González-Fernández Á, Barenholz Y, Dobrovolskaia MA. Roadmap and strategy for overcoming infusion reactions to nanomedicines. Nat Nanotechnol 2018;13:1100-8. [PMID: 30348955 DOI: 10.1038/s41565-018-0273-1] [Cited by in Crossref: 64] [Cited by in F6Publishing: 62] [Article Influence: 16.0] [Reference Citation Analysis]
32 Moghimi SM, Simberg D, Skotland T, Yaghmur A, Hunter AC. The Interplay Between Blood Proteins, Complement, and Macrophages on Nanomedicine Performance and Responses. J Pharmacol Exp Ther 2019;370:581-92. [PMID: 30940695 DOI: 10.1124/jpet.119.258012] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 9.3] [Reference Citation Analysis]
33 Wang JB, Di Ianni T, Vyas DB, Huang Z, Park S, Hosseini-Nassab N, Aryal M, Airan RD. Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention. Front Neurosci 2020;14:675. [PMID: 32760238 DOI: 10.3389/fnins.2020.00675] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
34 Tavano R, Gabrielli L, Lubian E, Fedeli C, Visentin S, Polverino De Laureto P, Arrigoni G, Geffner-Smith A, Chen F, Simberg D, Morgese G, Benetti EM, Wu L, Moghimi SM, Mancin F, Papini E. C1q-Mediated Complement Activation and C3 Opsonization Trigger Recognition of Stealth Poly(2-methyl-2-oxazoline)-Coated Silica Nanoparticles by Human Phagocytes. ACS Nano 2018;12:5834-47. [PMID: 29750504 DOI: 10.1021/acsnano.8b01806] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 11.0] [Reference Citation Analysis]
35 Brenner JS, Mitragotri S, Muzykantov VR. Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers. Annu Rev Biomed Eng 2021;23:225-48. [PMID: 33788581 DOI: 10.1146/annurev-bioeng-121219-024239] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Moghimi SM, Simberg D. Critical issues and pitfalls in serum and plasma handling for complement analysis in nanomedicine and bionanotechnology. Nano Today 2022;44:101479. [DOI: 10.1016/j.nantod.2022.101479] [Reference Citation Analysis]
37 Romero EL, Morilla MJ. Preclinical autophagy modulatory nanomedicines: big challenges, slow advances. Expert Opin Drug Deliv 2021;:1-19. [PMID: 34030559 DOI: 10.1080/17425247.2021.1933428] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Moghimi SM. Allergic Reactions and Anaphylaxis to LNP-Based COVID-19 Vaccines. Mol Ther 2021;29:898-900. [PMID: 33571463 DOI: 10.1016/j.ymthe.2021.01.030] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]