BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Butchart LC, Fox A, Shavlakadze T, Grounds MD. The long and short of non-coding RNAs during post-natal growth and differentiation of skeletal muscles: Focus on lncRNA and miRNAs. Differentiation 2016;92:237-48. [DOI: 10.1016/j.diff.2016.05.003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
Number Citing Articles
1 Lamon S, Zacharewicz E, Butchart LC, Orellana L, Mikovic J, Grounds MD, Russell AP. MicroRNA expression patterns in post-natal mouse skeletal muscle development. BMC Genomics 2017;18:52. [PMID: 28061746 DOI: 10.1186/s12864-016-3399-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
2 Ruan L, Mendhe B, Parker E, Kent A, Isales CM, Hill WD, Mcgee-lawrence M, Fulzele S, Hamrick MW. Long Non-coding RNA MALAT1 Is Depleted With Age in Skeletal Muscle in vivo and MALAT1 Silencing Increases Expression of TGF-β1 in vitro. Front Physiol 2022;12:742004. [DOI: 10.3389/fphys.2021.742004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Xiao J, Hao Q, Wang K, Paul J, Wang Y. Emerging Role of MicroRNAs and Long Noncoding RNAs in Healthy and Diseased Lung. In: Wang Y, editor. Pulmonary Vasculature Redox Signaling in Health and Disease. Cham: Springer International Publishing; 2017. pp. 343-59. [DOI: 10.1007/978-3-319-63245-2_22] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
4 Marceca GP, Nigita G, Calore F, Croce CM. MicroRNAs in Skeletal Muscle and Hints on Their Potential Role in Muscle Wasting During Cancer Cachexia. Front Oncol 2020;10:607196. [PMID: 33330108 DOI: 10.3389/fonc.2020.607196] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Militello G, Hosen MR, Ponomareva Y, Gellert P, Weirick T, John D, Hindi SM, Mamchaoui K, Mouly V, Döring C, Zhang L, Nakamura M, Kumar A, Fukada SI, Dimmeler S, Uchida S. A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1. J Mol Cell Biol 2018;10:102-17. [PMID: 29618024 DOI: 10.1093/jmcb/mjy025] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 10.7] [Reference Citation Analysis]
6 Kanakis I, Alameddine M, Folkes L, Moxon S, Myrtziou I, Ozanne SE, Peffers MJ, Goljanek-Whysall K, Vasilaki A. Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells 2021;10:1166. [PMID: 34064819 DOI: 10.3390/cells10051166] [Reference Citation Analysis]
7 Butchart LC, Terrill JR, Rossetti G, White R, Filipovska A, Grounds MD. Expression patterns of regulatory RNAs, including lncRNAs and tRNAs, during postnatal growth of normal and dystrophic (mdx) mouse muscles, and their response to taurine treatment. Int J Biochem Cell Biol 2018;99:52-63. [PMID: 29578051 DOI: 10.1016/j.biocel.2018.03.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
8 Ren C, Deng M, Fan Y, Yang H, Zhang G, Feng X, Li F, Wang D, Wang F, Zhang Y. Genome-Wide Analysis Reveals Extensive Changes in LncRNAs during Skeletal Muscle Development in Hu Sheep. Genes (Basel) 2017;8:E191. [PMID: 28763026 DOI: 10.3390/genes8080191] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
9 Porcari P, Hall MG, Clark CA, Greally E, Straub V, Blamire AM. The effects of ageing on mouse muscle microstructure: a comparative study of time-dependent diffusion MRI and histological assessment. NMR in Biomedicine 2018;31:e3881. [DOI: 10.1002/nbm.3881] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
10 Liang T, Zhou B, Shi L, Wang H, Chu Q, Xu F, Li Y, Chen R, Shen C, Schinckel AP. IncRNA AK017368 promotes proliferation and suppresses differentiation of myoblasts in skeletal muscle development by attenuating the function of miR‐30c. FASEB j 2017;32:377-89. [DOI: 10.1096/fj.201700560rr] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 6.6] [Reference Citation Analysis]
11 Degirmenci U, Li J, Lim YC, Siang DTC, Lin S, Liang H, Sun L. Silencing an insulin-induced lncRNA, LncASIR, impairs the transcriptional response to insulin signalling in adipocytes. Sci Rep 2019;9:5608. [PMID: 30948776 DOI: 10.1038/s41598-019-42162-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
12 Yue B, Li H, Liu M, Wu J, Li M, Lei C, Huang B, Chen H. Characterization of lncRNA-miRNA-mRNA Network to Reveal Potential Functional ceRNAs in Bovine Skeletal Muscle. Front Genet 2019;10:91. [PMID: 30842787 DOI: 10.3389/fgene.2019.00091] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
13 Mikovic J, Sadler K, Butchart L, Voisin S, Gerlinger-Romero F, Della Gatta P, Grounds MD, Lamon S. MicroRNA and Long Non-coding RNA Regulation in Skeletal Muscle From Growth to Old Age Shows Striking Dysregulation of the Callipyge Locus. Front Genet 2018;9:548. [PMID: 30505320 DOI: 10.3389/fgene.2018.00548] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
14 Hitachi K, Nakatani M, Funasaki S, Hijikata I, Maekawa M, Honda M, Tsuchida K. Expression Levels of Long Non-Coding RNAs Change in Models of Altered Muscle Activity and Muscle Mass. Int J Mol Sci 2020;21:E1628. [PMID: 32120896 DOI: 10.3390/ijms21051628] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
15 Vicente-garcía C, Hernández-camacho JD, Carvajal JJ. Regulation of myogenic gene expression. Experimental Cell Research 2022. [DOI: 10.1016/j.yexcr.2022.113299] [Reference Citation Analysis]
16 Hamann PD, Roux BT, Heward JA, Love S, McHugh NJ, Jones SW, Lindsay MA. Transcriptional profiling identifies differential expression of long non-coding RNAs in Jo-1 associated and inclusion body myositis. Sci Rep 2017;7:8024. [PMID: 28808260 DOI: 10.1038/s41598-017-08603-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 4.6] [Reference Citation Analysis]
17 Perry MM, Muntoni F. Noncoding RNAs and Duchenne muscular dystrophy. Epigenomics 2016;8:1527-37. [PMID: 27603567 DOI: 10.2217/epi-2016-0088] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
18 Luo J, Shen L, Gan M, Jiang A, Chen L, Ma J, Jin L, Liu Y, Tang G, Jiang Y, Li M, Li X, Zhang S, Zhu L. Profiling of skeletal muscle tissue for long non-coding RNAs related to muscle metabolism in the QingYu pig at the growth inflection point. Anim Biosci 2021;34:1309-20. [PMID: 33152219 DOI: 10.5713/ajas.20.0429] [Reference Citation Analysis]
19 Li Y, Huo C, Lin X, Xu J. Computational Identification of Cross-Talking ceRNAs. Adv Exp Med Biol 2018;1094:97-108. [PMID: 30191491 DOI: 10.1007/978-981-13-0719-5_10] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
20 Ma X, Fu D, Chu M, Ding X, Wu X, Guo X, Kalwar Q, Pei J, Bao P, Liang C, Yan P. Genome-Wide Analysis Reveals Changes in Polled Yak Long Non-coding RNAs in Skeletal Muscle Development. Front Genet 2020;11:365. [PMID: 32351548 DOI: 10.3389/fgene.2020.00365] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Yu H, Waddell JN, Kuang S, Tellam RL, Cockett NE, Bidwell CA. Identification of genes directly responding to DLK1 signaling in Callipyge sheep. BMC Genomics 2018;19:283. [PMID: 29690867 DOI: 10.1186/s12864-018-4682-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
22 Liu X, She Y, Wu H, Zhong D, Zhang J. Long non-coding RNA Gas5 regulates proliferation and apoptosis in HCS-2/8 cells and growth plate chondrocytes by controlling FGF1 expression via miR-21 regulation. J Biomed Sci 2018;25:18. [PMID: 29490650 DOI: 10.1186/s12929-018-0424-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
23 Torroglosa A, Villalba-Benito L, Fernández RM, Luzón-Toro B, Moya-Jiménez MJ, Antiñolo G, Borrego S. Identification of New Potential LncRNA Biomarkers in Hirschsprung Disease. Int J Mol Sci 2020;21:E5534. [PMID: 32748823 DOI: 10.3390/ijms21155534] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
24 Zhang R, Deng Y, Lv Q, Xing Q, Pan Y, Liang J, Jiang M, Wei Y, Shi D, Xie B, Yang S. SQLE Promotes Differentiation and Apoptosis of Bovine Skeletal Muscle-Derived Mesenchymal Stem Cells. Cell Reprogram 2020;22:22-9. [PMID: 32011919 DOI: 10.1089/cell.2019.0077] [Reference Citation Analysis]
25 Yue B, Wang J, Song C, Wu J, Cao X, Huang Y, Lan X, Lei C, Huang B, Chen H. Biogenesis and ceRNA role of circular RNAs in skeletal muscle myogenesis. Int J Biochem Cell Biol 2019;117:105621. [PMID: 31568883 DOI: 10.1016/j.biocel.2019.105621] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
26 Grounds MD. Obstacles and challenges for tissue engineering and regenerative medicine: Australian nuances. Clin Exp Pharmacol Physiol 2018;45:390-400. [DOI: 10.1111/1440-1681.12899] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]