BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bogdan C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine X 2020;2:100041. [PMID: 33604563 DOI: 10.1016/j.cytox.2020.100041] [Cited by in Crossref: 7] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Teixeira MV, Soares SAE, Souza VA, de Souza Marques AM, de Almeida Soares CM, Baeza LC, de Oliveira MAP. Murine macrophages do not support the proliferation of Leishmania (Viannia) braziliensis amastigotes even in absence of nitric oxide and presence of high arginase activity. Parasitol Res 2022. [PMID: 35939146 DOI: 10.1007/s00436-022-07614-4] [Reference Citation Analysis]
2 Sasse C, Barinberg D, Obermeyer S, Debus A, Schleicher U, Bogdan C. Eosinophils, but Not Type 2 Innate Lymphoid Cells, Are the Predominant Source of Interleukin 4 during the Innate Phase of Leishmania major Infection. Pathogens 2022;11:828. [PMID: 35894051 DOI: 10.3390/pathogens11080828] [Reference Citation Analysis]
3 Al-khalaifah HS. Major Molecular Factors Related to Leishmania Pathogenicity. Front Immunol 2022;13:847797. [DOI: 10.3389/fimmu.2022.847797] [Reference Citation Analysis]
4 Carter NS, Kawasaki Y, Nahata SS, Elikaee S, Rajab S, Salam L, Alabdulal MY, Broessel KK, Foroghi F, Abbas A, Poormohamadian R, Roberts SC. Polyamine Metabolism in Leishmania Parasites: A Promising Therapeutic Target. Medical Sciences 2022;10:24. [DOI: 10.3390/medsci10020024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Volpedo G, Bhattacharya P, Gannavaram S, Pacheco-fernandez T, Oljuskin T, Dey R, Satoskar AR, Nakhasi HL. The History of Live Attenuated Centrin Gene-Deleted Leishmania Vaccine Candidates. Pathogens 2022;11:431. [DOI: 10.3390/pathogens11040431] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Reverte M, Snäkä T, Fasel N. The Dangerous Liaisons in the Oxidative Stress Response to Leishmania Infection. Pathogens 2022;11:409. [DOI: 10.3390/pathogens11040409] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Magold AI, Swartz MA. Pathogenic Exploitation of Lymphatic Vessels. Cells 2022;11:979. [DOI: 10.3390/cells11060979] [Reference Citation Analysis]
8 Yasmin H, Adhikary A, Al-ahdal MN, Roy S, Kishore U. Host–Pathogen Interaction in Leishmaniasis: Immune Response and Vaccination Strategies. Immuno 2022;2:218-54. [DOI: 10.3390/immuno2010015] [Reference Citation Analysis]
9 Dias BT, Goundry A, Vivarini AC, Costa TFR, Mottram JC, Lopes UG, Lima APCA. Toll-Like Receptor- and Protein Kinase R-Induced Type I Interferon Sustains Infection of Leishmania donovani in Macrophages. Front Immunol 2022;13:801182. [DOI: 10.3389/fimmu.2022.801182] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
10 Osero BO, Cele Z, Aruleba RT, Maine RA, Ozturk M, Lutz MB, Brombacher F, Hurdayal R. Interleukin-4 Responsive Dendritic Cells Are Dispensable to Host Resistance Against Leishmania mexicana Infection. Front Immunol 2022;12:759021. [DOI: 10.3389/fimmu.2021.759021] [Reference Citation Analysis]
11 Khandibharad S, Singh S. Computational System Level Approaches for Discerning Reciprocal Regulation of IL10 and IL12 in Leishmaniasis. Front Genet 2022;12:784664. [DOI: 10.3389/fgene.2021.784664] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Das A, Kamran M, Ali N. HO-3867 Induces ROS-Dependent Stress Response and Apoptotic Cell Death in Leishmania donovani. Front Cell Infect Microbiol 2021;11:774899. [PMID: 34926321 DOI: 10.3389/fcimb.2021.774899] [Reference Citation Analysis]
13 Xu L, Ling J, Su C, Su YW, Xu Y, Jiang Z. Emerging Roles on Immunological Effect of Indoleamine 2,3-Dioxygenase in Liver Injuries. Front Med (Lausanne) 2021;8:756435. [PMID: 34869457 DOI: 10.3389/fmed.2021.756435] [Reference Citation Analysis]
14 Volpedo G, Pacheco-Fernandez T, Bhattacharya P, Oljuskin T, Dey R, Gannavaram S, Satoskar AR, Nakhasi HL. Determinants of Innate Immunity in Visceral Leishmaniasis and Their Implication in Vaccine Development. Front Immunol 2021;12:748325. [PMID: 34712235 DOI: 10.3389/fimmu.2021.748325] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Peterson DR, Baran AM, Bhattacharya S, Branche AR, Croft DP, Corbett AM, Walsh EE, Falsey AR, Mariani TJ. Gene Expression Risk Scores for COVID-19 Illness Severity. bioRxiv 2021:2021. [PMID: 34462743 DOI: 10.1101/2021.08.24.457521] [Reference Citation Analysis]
16 Keshav P, Goyal DK, Kaur S. Antileishmanial potential of immunomodulator gallic acid against experimental murine visceral leishmaniasis. Parasite Immunol 2021;:e12875. [PMID: 34347892 DOI: 10.1111/pim.12875] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Saunders EC, Sernee MF, Ralton JE, McConville MJ. Metabolic stringent response in intracellular stages of Leishmania. Curr Opin Microbiol 2021;63:126-32. [PMID: 34340099 DOI: 10.1016/j.mib.2021.07.007] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
18 Dos Santos AGA, da Silva MGL, Carneiro EL, de Lima LL, Fernandes ACBS, Silveira TGV, Sant'Ana DMG, Nogueira-Melo GA. A New Target Organ of Leishmania (Viannia) braziliensis Chronic Infection: The Intestine. Front Cell Infect Microbiol 2021;11:687499. [PMID: 34336715 DOI: 10.3389/fcimb.2021.687499] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
19 Mamani-Huanca M, Muxel SM, Acuña SM, Floeter-Winter LM, Barbas C, López-Gonzálvez Á. Metabolomic Reprogramming of C57BL/6-Macrophages during Early Infection with L. amazonensis. Int J Mol Sci 2021;22:6883. [PMID: 34206906 DOI: 10.3390/ijms22136883] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
20 Vellozo NS, Rigoni TS, Lopes MF. New Therapeutic Tools to Shape Monocyte Functional Phenotypes in Leishmaniasis. Front Immunol 2021;12:704429. [PMID: 34249011 DOI: 10.3389/fimmu.2021.704429] [Reference Citation Analysis]
21 Lu JJ, Abudukeyoumu A, Zhang X, Liu LB, Li MQ, Xie F. Heme oxygenase 1: a novel oncogene in multiple gynecological cancers. Int J Biol Sci 2021;17:2252-61. [PMID: 34239353 DOI: 10.7150/ijbs.61073] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
22 Parab AR, McCall LI. Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis. Infect Immun 2021;89:e00644-20. [PMID: 33526564 DOI: 10.1128/IAI.00644-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]