BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Usseglio G, Gatier E, Heuzé A, Hérent C, Bouvier J. Control of Orienting Movements and Locomotion by Projection-Defined Subsets of Brainstem V2a Neurons. Curr Biol 2020;30:4665-4681.e6. [PMID: 33007251 DOI: 10.1016/j.cub.2020.09.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Hérent C, Diem S, Fortin G, Bouvier J. Absent phasing of respiratory and locomotor rhythms in running mice. Elife 2020;9:e61919. [PMID: 33258770 DOI: 10.7554/eLife.61919] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Grillner S. Evolution of the vertebrate motor system - from forebrain to spinal cord. Curr Opin Neurobiol 2021;71:11-8. [PMID: 34450468 DOI: 10.1016/j.conb.2021.07.016] [Reference Citation Analysis]
3 van der Zouwen CI, Boutin J, Fougère M, Flaive A, Vivancos M, Santuz A, Akay T, Sarret P, Ryczko D. Freely Behaving Mice Can Brake and Turn During Optogenetic Stimulation of the Mesencephalic Locomotor Region. Front Neural Circuits 2021;15:639900. [PMID: 33897379 DOI: 10.3389/fncir.2021.639900] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
4 Lemieux M, Thiry L, Laflamme OD, Bretzner F. Role of DSCAM in the Development of Neural Control of Movement and Locomotion. Int J Mol Sci 2021;22:8511. [PMID: 34445216 DOI: 10.3390/ijms22168511] [Reference Citation Analysis]
5 Russo M, Ozeri-Engelhard N, Hupfeld K, Nettekoven C, Thibault S, Sedaghat-Nejad E, Buchwald D, Xing D, Zobeiri O, Kilteni K, Albert ST, Ariani G. Highlights from the 30th Annual Meeting of the Society for the Neural Control of Movement. J Neurophysiol 2021;126:967-75. [PMID: 34406885 DOI: 10.1152/jn.00334.2021] [Reference Citation Analysis]
6 Gonçalves AI, Zavatone-veth JA, Carey MR, Clark DA. Parallel locomotor control strategies in mice and flies. Current Opinion in Neurobiology 2022;73:102516. [DOI: 10.1016/j.conb.2022.01.001] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Arber S, Costa RM. Networking brainstem and basal ganglia circuits for movement. Nat Rev Neurosci. [DOI: 10.1038/s41583-022-00581-w] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Chopek JW, Zhang Y, Brownstone RM. Intrinsic brainstem circuits comprised of Chx10-expressing neurons contribute to reticulospinal output in mice. J Neurophysiol 2021;126:1978-90. [PMID: 34669520 DOI: 10.1152/jn.00322.2021] [Reference Citation Analysis]
9 Wheatcroft T, Saleem AB, Solomon SG. Functional Organisation of the Mouse Superior Colliculus. Front Neural Circuits 2022;16:792959. [DOI: 10.3389/fncir.2022.792959] [Reference Citation Analysis]
10 Mitrevica Z, Murray AJ. Orienting Movements: Brainstem Neurons at the Wheel. Curr Biol 2020;30:R1418-20. [PMID: 33290707 DOI: 10.1016/j.cub.2020.09.060] [Reference Citation Analysis]
11 Guérout N. Plasticity of the Injured Spinal Cord. Cells 2021;10:1886. [PMID: 34440655 DOI: 10.3390/cells10081886] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Fougère M, van der Zouwen CI, Boutin J, Neszvecsko K, Sarret P, Ryczko D. Optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus controls locomotion in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A 2021;118:e2110934118. [PMID: 34670837 DOI: 10.1073/pnas.2110934118] [Reference Citation Analysis]
13 Stachowski NJ, Dougherty KJ. Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways. Int J Mol Sci 2021;22:2667. [PMID: 33800863 DOI: 10.3390/ijms22052667] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Flaive A, Ryczko D. From retina to motoneurons: A substrate for visuomotor transformation in salamanders. J Comp Neurol 2022. [PMID: 35662021 DOI: 10.1002/cne.25348] [Reference Citation Analysis]
15 Ausborn J, Shevtsova NA, Danner SM. Computational Modeling of Spinal Locomotor Circuitry in the Age of Molecular Genetics. Int J Mol Sci 2021;22:6835. [PMID: 34202085 DOI: 10.3390/ijms22136835] [Reference Citation Analysis]
16 Chang SJ, Santamaria AJ, Sanchez FJ, Villamil LM, Saraiva PP, Benavides F, Nunez-Gomez Y, Solano JP, Opris I, Guest JD, Noga BR. Deep brain stimulation of midbrain locomotor circuits in the freely moving pig. Brain Stimul 2021;14:467-76. [PMID: 33652130 DOI: 10.1016/j.brs.2021.02.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
17 Akay T, Murray AJ. Relative Contribution of Proprioceptive and Vestibular Sensory Systems to Locomotion: Opportunities for Discovery in the Age of Molecular Science. Int J Mol Sci 2021;22:1467. [PMID: 33540567 DOI: 10.3390/ijms22031467] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Chaterji S, Barik A, Sathyamurthy A. Intraspinal injection of adeno-associated viruses into the adult mouse spinal cord. STAR Protoc 2021;2:100786. [PMID: 34505088 DOI: 10.1016/j.xpro.2021.100786] [Reference Citation Analysis]