BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Meffre J, Sicre M, Diarra M, Marchessaux F, Paleressompoulle D, Ambroggi F. Orexin in the Posterior Paraventricular Thalamus Mediates Hunger-Related Signals in the Nucleus Accumbens Core. Current Biology 2019;29:3298-3306.e4. [DOI: 10.1016/j.cub.2019.07.069] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Vertes RP, Linley SB, Rojas AKP. Structural and functional organization of the midline and intralaminar nuclei of the thalamus. Front Behav Neurosci 2022;16:964644. [DOI: 10.3389/fnbeh.2022.964644] [Reference Citation Analysis]
2 Kirouac GJ, Li S, Li S. Convergence of monosynaptic inputs from neurons in the brainstem and forebrain on parabrachial neurons that project to the paraventricular nucleus of the thalamus. Brain Struct Funct 2022. [PMID: 35838792 DOI: 10.1007/s00429-022-02534-6] [Reference Citation Analysis]
3 Yaeger JDW, Krupp KT, Summers TR, Summers CH. Contextual generalization of social stress learning is modulated by orexin receptors in basolateral amygdala. Neuropharmacology 2022;215:109168. [PMID: 35724928 DOI: 10.1016/j.neuropharm.2022.109168] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Dumont C, Li G, Castel J, Luquet S, Gangarossa G. Hindbrain catecholaminergic inputs to the paraventricular thalamus scale feeding and metabolic efficiency in stress-related contexts. J Physiol 2022. [PMID: 35648134 DOI: 10.1113/JP282996] [Reference Citation Analysis]
5 Ye Q, Nunez J, Zhang X. Oxytocin Receptor-Expressing Neurons in the Paraventricular Thalamus Regulate Feeding Motivation through Excitatory Projections to the Nucleus Accumbens Core. J Neurosci 2022;42:3949-64. [PMID: 35387870 DOI: 10.1523/JNEUROSCI.2042-21.2022] [Reference Citation Analysis]
6 Kirouac GJ, Li S, Li S. Convergence of monosynaptic inputs from neurons in the brainstem and forebrain on parabrachial neurons that project to the paraventricular nucleus of the thalamus.. [DOI: 10.1101/2022.02.23.481069] [Reference Citation Analysis]
7 Shima Y, Skibbe H, Sasagawa Y, Fujimori N, Nikaido I, Hattori N, Kato T. Distinctiveness and continuity in transcriptome and connectivity in the anterior-posterior axis of the paraventricular nucleus of thalamus.. [DOI: 10.1101/2022.02.13.480207] [Reference Citation Analysis]
8 Dumont C, Li G, Castel J, Luquet S, Gangarossa G. Hindbrain catecholaminergic inputs to the paraventricular thalamus scale feeding and metabolic efficiency in stress-related contexts.. [DOI: 10.1101/2022.02.03.478953] [Reference Citation Analysis]
9 Vaseghi S, Zarrabian S, Haghparast A. Reviewing the role of the orexinergic system and stressors in modulating mood and reward-related behaviors. Neurosci Biobehav Rev 2021;133:104516. [PMID: 34973302 DOI: 10.1016/j.neubiorev.2021.104516] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Marcos P, Coveñas R. Involvement of the Orexinergic System in Feeding. Applied Sciences 2021;12:86. [DOI: 10.3390/app12010086] [Reference Citation Analysis]
11 Ni RJ, Shu YM, Li T, Zhou JN. Whole-Brain Afferent Inputs to the Caudate Nucleus, Putamen, and Accumbens Nucleus in the Tree Shrew Striatum. Front Neuroanat 2021;15:763298. [PMID: 34795566 DOI: 10.3389/fnana.2021.763298] [Reference Citation Analysis]
12 Ye Q, Zhang X. Serotonin activates paraventricular thalamic neurons through direct depolarization and indirect disinhibition from zona incerta. J Physiol 2021;599:4883-900. [PMID: 34510418 DOI: 10.1113/JP282088] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zhao S, Wang S, Li H, Guo J, Li J, Wang D, Zhang X, Yin L, Li R, Li A, Li H, Fan Z, Yang Q, Zhong H, Dong H. Activation of Orexinergic Neurons Inhibits the Anesthetic Effect of Desflurane on Consciousness State via Paraventricular Thalamic Nucleus in Rats. Anesth Analg 2021;133:781-93. [PMID: 34403389 DOI: 10.1213/ANE.0000000000005651] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Ma J, du Hoffmann J, Kindel M, Beas BS, Chudasama Y, Penzo MA. Divergent projections of the paraventricular nucleus of the thalamus mediate the selection of passive and active defensive behaviors. Nat Neurosci 2021;24:1429-40. [PMID: 34413514 DOI: 10.1038/s41593-021-00912-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
15 De Groote A, de Kerchove d'Exaerde A. Thalamo-Nucleus Accumbens Projections in Motivated Behaviors and Addiction. Front Syst Neurosci 2021;15:711350. [PMID: 34335197 DOI: 10.3389/fnsys.2021.711350] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
16 Iglesias AG, Flagel SB. The Paraventricular Thalamus as a Critical Node of Motivated Behavior via the Hypothalamic-Thalamic-Striatal Circuit. Front Integr Neurosci 2021;15:706713. [PMID: 34220458 DOI: 10.3389/fnint.2021.706713] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
17 Penzo MA, Gao C. The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends Neurosci 2021;44:538-49. [PMID: 33775435 DOI: 10.1016/j.tins.2021.03.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
18 Muthmainah M, Gogos A, Sumithran P, Brown RM. Orexins (hypocretins): The intersection between homeostatic and hedonic feeding. J Neurochem 2021;157:1473-94. [PMID: 33608877 DOI: 10.1111/jnc.15328] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
19 Kirouac GJ. The Paraventricular Nucleus of the Thalamus as an Integrating and Relay Node in the Brain Anxiety Network. Front Behav Neurosci 2021;15:627633. [PMID: 33732118 DOI: 10.3389/fnbeh.2021.627633] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 25.0] [Reference Citation Analysis]
20 McNally GP. Motivational competition and the paraventricular thalamus. Neurosci Biobehav Rev 2021;125:193-207. [PMID: 33609570 DOI: 10.1016/j.neubiorev.2021.02.021] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
21 Zhou K, Zhu L, Hou G, Chen X, Chen B, Yang C, Zhu Y. The Contribution of Thalamic Nuclei in Salience Processing. Front Behav Neurosci 2021;15:634618. [PMID: 33664657 DOI: 10.3389/fnbeh.2021.634618] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
22 Sicre M, Meffre J, Ambroggi F. Two distinct neuronal populations in the rat parafascicular nucleus oppositely encode the engagement in stimulus-driven reward-seeking.. [DOI: 10.1101/2021.02.14.431166] [Reference Citation Analysis]
23 Barrett LR, Nunez J, Zhang X. Oxytocin activation of paraventricular thalamic neurons promotes feeding motivation to attenuate stress-induced hypophagia. Neuropsychopharmacology 2021;46:1045-56. [PMID: 33495546 DOI: 10.1038/s41386-021-00961-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
24 Alonso-Caraballo Y, Guha SK, Chartoff EH. The neurobiology of abstinence-induced reward-seeking in males and females. Pharmacol Biochem Behav 2021;200:173088. [PMID: 33333134 DOI: 10.1016/j.pbb.2020.173088] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
25 Sofia Beas B, Gu X, Leng Y, Koita O, Rodriguez-Gonzalez S, Kindel M, Matikainen-Ankney BA, Larsen RS, Kravitz AV, Hoon MA, Penzo MA. A ventrolateral medulla-midline thalamic circuit for hypoglycemic feeding. Nat Commun 2020;11:6218. [PMID: 33277492 DOI: 10.1038/s41467-020-19980-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
26 Matzeu A, Martin-Fardon R. Blockade of Orexin Receptors in the Posterior Paraventricular Nucleus of the Thalamus Prevents Stress-Induced Reinstatement of Reward-Seeking Behavior in Rats With a History of Ethanol Dependence. Front Integr Neurosci 2020;14:599710. [PMID: 33240054 DOI: 10.3389/fnint.2020.599710] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
27 McGinty JF, Otis JM. Heterogeneity in the Paraventricular Thalamus: The Traffic Light of Motivated Behaviors. Front Behav Neurosci 2020;14:590528. [PMID: 33177999 DOI: 10.3389/fnbeh.2020.590528] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
28 Pandey S, Barson JR. Heightened Exploratory Behavior Following Chronic Excessive Ethanol Drinking: Mediation by Neurotensin Receptor Type 2 in the Anterior Paraventricular Thalamus. Alcohol Clin Exp Res 2020;44:1747-59. [PMID: 32623746 DOI: 10.1111/acer.14406] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
29 Lafferty CK, Britt JP. Off-Target Influences of Arch-Mediated Axon Terminal Inhibition on Network Activity and Behavior. Front Neural Circuits 2020;14:10. [PMID: 32269514 DOI: 10.3389/fncir.2020.00010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
30 Hopf FW. Recent perspectives on orexin/hypocretin promotion of addiction-related behaviors. Neuropharmacology 2020;168:108013. [PMID: 32092435 DOI: 10.1016/j.neuropharm.2020.108013] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
31 Gao C, Leng Y, Ma J, Rooke V, Rodriguez-Gonzalez S, Ramakrishnan C, Deisseroth K, Penzo MA. Two genetically, anatomically and functionally distinct cell types segregate across anteroposterior axis of paraventricular thalamus. Nat Neurosci 2020;23:217-28. [PMID: 31932767 DOI: 10.1038/s41593-019-0572-3] [Cited by in Crossref: 58] [Cited by in F6Publishing: 63] [Article Influence: 29.0] [Reference Citation Analysis]
32 Sicre M, Meffre J, Louber D, Ambroggi F. The Nucleus Accumbens Core Is Necessary for Responding to Incentive But Not Instructive Stimuli. J Neurosci 2020;40:1332-43. [PMID: 31862857 DOI: 10.1523/JNEUROSCI.0194-19.2019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]