BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: González JA, Jensen LT, Iordanidou P, Strom M, Fugger L, Burdakov D. Inhibitory Interplay between Orexin Neurons and Eating. Curr Biol 2016;26:2486-91. [PMID: 27546579 DOI: 10.1016/j.cub.2016.07.013] [Cited by in Crossref: 63] [Cited by in F6Publishing: 50] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Hurley SW, Arseth HA, Johnson AK. Orexin neurons couple neural systems mediating fluid balance with motivation-related circuits. Behav Neurosci 2018;132:284-92. [PMID: 29952605 DOI: 10.1037/bne0000250] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
2 Sieminski M, Szypenbejl J, Partinen E. Orexins, Sleep, and Blood Pressure. Curr Hypertens Rep. 2018;20:79. [PMID: 29992504 DOI: 10.1007/s11906-018-0879-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
3 Blasiak A, Gundlach AL, Hess G, Lewandowski MH. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control. Front Neurosci 2017;11:127. [PMID: 28373831 DOI: 10.3389/fnins.2017.00127] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
4 Almeneessier AS, BaHammam AS. How does diurnal intermittent fasting impact sleep, daytime sleepiness, and markers of the biological clock? Current insights. Nat Sci Sleep 2018;10:439-52. [PMID: 30573998 DOI: 10.2147/NSS.S165637] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
5 Concetti C, Bracey EF, Peleg-Raibstein D, Burdakov D. Control of fear extinction by hypothalamic melanin-concentrating hormone-expressing neurons. Proc Natl Acad Sci U S A 2020;117:22514-21. [PMID: 32848057 DOI: 10.1073/pnas.2007993117] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Lee J, Raycraft L, Johnson AW. The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol Behav 2021;229:113234. [PMID: 33130035 DOI: 10.1016/j.physbeh.2020.113234] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
7 Burdakov D, Karnani MM. Ultra-sparse Connectivity within the Lateral Hypothalamus. Curr Biol 2020;30:4063-4070.e2. [PMID: 32822604 DOI: 10.1016/j.cub.2020.07.061] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The Physiological Control of Eating: Signals, Neurons, and Networks. Physiol Rev 2021. [PMID: 34486393 DOI: 10.1152/physrev.00028.2020] [Reference Citation Analysis]
9 van der Klaauw AA. Neuropeptides in Obesity and Metabolic Disease. Clin Chem 2018;64:173-82. [PMID: 29097517 DOI: 10.1373/clinchem.2017.281568] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
10 Gao XB, Horvath TL. Feeding Behavior: Hypocretin/Orexin Neurons Act between Food Seeking and Eating. Curr Biol 2016;26:R845-7. [PMID: 27676302 DOI: 10.1016/j.cub.2016.07.069] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
11 Karnani MM, Schöne C, Bracey EF, González JA, Viskaitis P, Li HT, Adamantidis A, Burdakov D. Role of spontaneous and sensory orexin network dynamics in rapid locomotion initiation. Prog Neurobiol 2020;187:101771. [PMID: 32058043 DOI: 10.1016/j.pneurobio.2020.101771] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
12 Rilling FL, Reyes M, Blanco E, Burrows R, Peirano P, Algarín C, Meroño T, Gahagan S. Association of fasting Orexin-A levels with energy intake at breakfast and subsequent snack in Chilean adolescents. Psychoneuroendocrinology 2022;140:105718. [DOI: 10.1016/j.psyneuen.2022.105718] [Reference Citation Analysis]
13 Bracey EF, Burdakov D. Fast sensory representations in the lateral hypothalamus and their roles in brain function. Physiology & Behavior 2020;222:112952. [DOI: 10.1016/j.physbeh.2020.112952] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
14 Challet E. The circadian regulation of food intake. Nat Rev Endocrinol 2019;15:393-405. [PMID: 31073218 DOI: 10.1038/s41574-019-0210-x] [Cited by in Crossref: 96] [Cited by in F6Publishing: 79] [Article Influence: 32.0] [Reference Citation Analysis]
15 Huang C, AlMarabeh S, Cavers J, Abdulla MH, Johns EJ. Effects of intracerebroventricular leptin and orexin-A on the baroreflex control of renal sympathetic nerve activity in conscious rats fed a normal or high-fat diet. Clin Exp Pharmacol Physiol 2021;48:585-96. [PMID: 33352624 DOI: 10.1111/1440-1681.13451] [Reference Citation Analysis]
16 Lord MN, Subramanian K, Kanoski SE, Noble EE. Melanin-concentrating hormone and food intake control: Sites of action, peptide interactions, and appetition. Peptides 2021;137:170476. [PMID: 33370567 DOI: 10.1016/j.peptides.2020.170476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
17 Petrovich GD. Lateral Hypothalamus as a Motivation-Cognition Interface in the Control of Feeding Behavior. Front Syst Neurosci 2018;12:14. [PMID: 29713268 DOI: 10.3389/fnsys.2018.00014] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
18 Rilling FL, Reyes M, Blanco E, Burrows R, Peirano P, Algarín C, Meroño T, Gahagan S. Association of fasting orexin-A levels with energy intake at breakfast and subsequent snack in Chilean adolescents. Psychoneuroendocrinology 2022. [DOI: 10.1016/j.psyneuen.2022.105679] [Reference Citation Analysis]
19 Rossi MA, Stuber GD. Overlapping Brain Circuits for Homeostatic and Hedonic Feeding. Cell Metab 2018;27:42-56. [PMID: 29107504 DOI: 10.1016/j.cmet.2017.09.021] [Cited by in Crossref: 112] [Cited by in F6Publishing: 99] [Article Influence: 22.4] [Reference Citation Analysis]
20 Jais A, Brüning JC. Arcuate nucleus-dependent regulation of metabolism - pathways to obesity and diabetes mellitus. Endocr Rev 2021:bnab025. [PMID: 34490882 DOI: 10.1210/endrev/bnab025] [Reference Citation Analysis]
21 Kosse C, Schöne C, Bracey E, Burdakov D. Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice. Proc Natl Acad Sci U S A 2017;114:4525-30. [PMID: 28396414 DOI: 10.1073/pnas.1619700114] [Cited by in Crossref: 47] [Cited by in F6Publishing: 35] [Article Influence: 9.4] [Reference Citation Analysis]
22 Schöne C, Burdakov D. Orexin/Hypocretin and Organizing Principles for a Diversity of Wake-Promoting Neurons in the Brain. Curr Top Behav Neurosci 2017;33:51-74. [PMID: 27830577 DOI: 10.1007/7854_2016_45] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
23 González JA, Prehn JH. Orexin-A/hypocretin-1 Immunoreactivity in the Lateral Hypothalamus is Reduced in Genetically Obese but not in Diet-induced Obese Mice. Neuroscience 2018;369:183-91. [DOI: 10.1016/j.neuroscience.2017.11.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
24 Pace M, Falappa M, Freschi A, Balzani E, Berteotti C, Lo Martire V, Kaveh F, Hovig E, Zoccoli G, Amici R, Cerri M, Urbanucci A, Tucci V. Loss of Snord116 impacts lateral hypothalamus, sleep, and food-related behaviors. JCI Insight 2020;5:137495. [PMID: 32365348 DOI: 10.1172/jci.insight.137495] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
25 Straat ME, Schinkelshoek MS, Fronczek R, Lammers GJ, Rensen PCN, Boon MR. Role of Brown Adipose Tissue in Adiposity Associated With Narcolepsy Type 1. Front Endocrinol (Lausanne) 2020;11:145. [PMID: 32373062 DOI: 10.3389/fendo.2020.00145] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Kosse C, Burdakov D. Fast and Slow Oscillations Recruit Molecularly-Distinct Subnetworks of Lateral Hypothalamic Neurons In Situ. eNeuro 2018;5:ENEURO. [PMID: 29423437 DOI: 10.1523/ENEURO.0012-18.2018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
27 Linehan V, Fang LZ, Hirasawa M. Short-term high-fat diet primes excitatory synapses for long-term depression in orexin neurons. J Physiol 2018;596:305-16. [PMID: 29143330 DOI: 10.1113/JP275177] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 3.4] [Reference Citation Analysis]
28 Berrendero F, Flores Á, Robledo P. When orexins meet cannabinoids: Bidirectional functional interactions. Biochemical Pharmacology 2018;157:43-50. [DOI: 10.1016/j.bcp.2018.08.040] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
29 Burdakov D. Reactive and predictive homeostasis: Roles of orexin/hypocretin neurons. Neuropharmacology 2019;154:61-7. [PMID: 30347195 DOI: 10.1016/j.neuropharm.2018.10.024] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
30 Mehr JB, Mitchison D, Bowrey HE, James MH. Sleep dysregulation in binge eating disorder and "food addiction": the orexin (hypocretin) system as a potential neurobiological link. Neuropsychopharmacology 2021. [PMID: 34145404 DOI: 10.1038/s41386-021-01052-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 O'Hearn LA. The therapeutic properties of ketogenic diets, slow-wave sleep, and circadian synchrony. Curr Opin Endocrinol Diabetes Obes 2021;28:503-8. [PMID: 34269711 DOI: 10.1097/MED.0000000000000660] [Reference Citation Analysis]
32 Viskaitis P, Arnold M, Garau C, Jensen LT, Fugger L, Peleg-Raibstein D, Burdakov D. Ingested non-essential amino acids recruit brain orexin cells to suppress eating in mice. Curr Biol 2022:S0960-9822(22)00337-2. [PMID: 35316652 DOI: 10.1016/j.cub.2022.02.067] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Kosse C, Burdakov D. Natural hypothalamic circuit dynamics underlying object memorization. Nat Commun 2019;10:2505. [PMID: 31175285 DOI: 10.1038/s41467-019-10484-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
34 Garau C, Blomeley C, Burdakov D. Orexin neurons and inhibitory Agrp→orexin circuits guide spatial exploration in mice. J Physiol 2020;598:4371-83. [PMID: 32667686 DOI: 10.1113/JP280158] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
35 Concetti C, Burdakov D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front Neurosci 2021;15:639313. [PMID: 33828450 DOI: 10.3389/fnins.2021.639313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
36 Gao XB, Horvath TL. From molecule to behavior: hypocretin/orexin revisited from a sex-dependent perspective. Endocr Rev 2021:bnab042. [PMID: 34792130 DOI: 10.1210/endrev/bnab042] [Reference Citation Analysis]
37 Muthmainah M, Gogos A, Sumithran P, Brown RM. Orexins (hypocretins): The intersection between homeostatic and hedonic feeding. J Neurochem 2021;157:1473-94. [PMID: 33608877 DOI: 10.1111/jnc.15328] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Barlow IL, Rihel J. Zebrafish sleep: from geneZZZ to neuronZZZ. Curr Opin Neurobiol 2017;44:65-71. [PMID: 28391130 DOI: 10.1016/j.conb.2017.02.009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
39 Burdakov D. How orexin signals bias action: Hypothalamic and accumbal circuits. Brain Res 2020;1731:145943. [PMID: 30205111 DOI: 10.1016/j.brainres.2018.09.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
40 Koekkoek LL, Slomp M, Castel J, Mutersbaugh M, Linville I, Serlie MJ, Luquet SH, la Fleur SE. Disruption of lateral hypothalamic calorie detection by a free choice high fat diet. FASEB J 2021;35:e21804. [PMID: 34383974 DOI: 10.1096/fj.202100762R] [Reference Citation Analysis]
41 Horne J. REM sleep vs exploratory wakefulness: Alternatives within adult ‘sleep debt’? Sleep Medicine Reviews 2020;50:101252. [DOI: 10.1016/j.smrv.2019.101252] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Li HT, Donegan DC, Peleg-Raibstein D, Burdakov D. Hypothalamic deep brain stimulation as a strategy to manage anxiety disorders. Proc Natl Acad Sci U S A 2022;119:e2113518119. [PMID: 35412900 DOI: 10.1073/pnas.2113518119] [Reference Citation Analysis]
43 Clifton PG. Neural circuits of eating behaviour: Opportunities for therapeutic development. J Psychopharmacol 2017;31:1388-402. [PMID: 29132237 DOI: 10.1177/0269881117738629] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
44 Buczek L, Migliaccio J, Petrovich GD. Hedonic Eating: Sex Differences and Characterization of Orexin Activation and Signaling. Neuroscience 2020;436:34-45. [PMID: 32283183 DOI: 10.1016/j.neuroscience.2020.04.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
45 Becker TM, Favero M, Di Marzo V, Cristino L, Busetto G. Endocannabinoid-dependent disinhibition of orexinergic neurons: Electrophysiological evidence in leptin-knockout obese mice. Mol Metab 2017;6:594-601. [PMID: 28580289 DOI: 10.1016/j.molmet.2017.04.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
46 Zhang J, Dulawa SC. The Utility of Animal Models for Studying the Metabo-Psychiatric Origins of Anorexia Nervosa. Front Psychiatry 2021;12:711181. [PMID: 34721100 DOI: 10.3389/fpsyt.2021.711181] [Reference Citation Analysis]
47 Tan Y, Hang F, Liu ZW, Stoiljkovic M, Wu M, Tu Y, Han W, Lee AM, Kelley C, Hajós M, Lu L, de Lecea L, De Araujo I, Picciotto MR, Horvath TL, Gao XB. Impaired hypocretin/orexin system alters responses to salient stimuli in obese male mice. J Clin Invest 2020;130:4985-98. [PMID: 32516139 DOI: 10.1172/JCI130889] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
48 Diniz GB, Candido PL, Klein MO, Alvisi RD, Presse F, Nahon J, Felicio LF, Bittencourt JC. The weaning period promotes alterations in the orexin neuronal population of rats in a suckling-dependent manner. Brain Struct Funct 2018;223:3739-55. [DOI: 10.1007/s00429-018-1723-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
49 Saito YC, Maejima T, Nishitani M, Hasegawa E, Yanagawa Y, Mieda M, Sakurai T. Monoamines Inhibit GABAergic Neurons in Ventrolateral Preoptic Area That Make Direct Synaptic Connections to Hypothalamic Arousal Neurons. J Neurosci 2018;38:6366-78. [PMID: 29915137 DOI: 10.1523/JNEUROSCI.2835-17.2018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
50 Giardino WJ, Eban-Rothschild A, Christoffel DJ, Li SB, Malenka RC, de Lecea L. Parallel circuits from the bed nuclei of stria terminalis to the lateral hypothalamus drive opposing emotional states. Nat Neurosci 2018;21:1084-95. [PMID: 30038273 DOI: 10.1038/s41593-018-0198-x] [Cited by in Crossref: 84] [Cited by in F6Publishing: 73] [Article Influence: 21.0] [Reference Citation Analysis]
51 Sabetghadam A, Grabowiecka-nowak A, Kania A, Gugula A, Blasiak E, Blasiak T, Ma S, Gundlach AL, Blasiak A. Melanin-concentrating hormone and orexin systems in rat nucleus incertus: Dual innervation, bidirectional effects on neuron activity, and differential influences on arousal and feeding. Neuropharmacology 2018;139:238-56. [DOI: 10.1016/j.neuropharm.2018.07.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
52 Barson JR. Orexin/hypocretin and dysregulated eating: Promotion of foraging behavior. Brain Res 2020;1731:145915. [PMID: 30125533 DOI: 10.1016/j.brainres.2018.08.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
53 Huang SC, Li TL, Lee YH, Dai YE, Chen YC, Hwang LL. Role of the orexin 2 receptor in palatable-food consumption-associated cardiovascular reactivity in spontaneously hypertensive rats. Sci Rep 2018;8:12703. [PMID: 30140065 DOI: 10.1038/s41598-018-30970-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
54 Burdakov D, Peleg-raibstein D. Hypothalamic Heuristics for Survival. Trends in Endocrinology & Metabolism 2019;30:689-91. [DOI: 10.1016/j.tem.2019.08.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
55 Liu M, Min T, Zhang H, Liu Y, Wang Z. Pharmacological Characteristics of Porcine Orexin 2 Receptor and Mutants. Front Endocrinol (Lausanne) 2020;11:132. [PMID: 32296386 DOI: 10.3389/fendo.2020.00132] [Reference Citation Analysis]
56 Yates D. Neurophysiology: Inhibitory consumption. Nat Rev Neurosci 2016;17:605. [PMID: 27640981 DOI: 10.1038/nrn.2016.131] [Reference Citation Analysis]