BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Venner A, Anaclet C, Broadhurst RY, Saper CB, Fuller PM. A Novel Population of Wake-Promoting GABAergic Neurons in the Ventral Lateral Hypothalamus. Curr Biol 2016;26:2137-43. [PMID: 27426511 DOI: 10.1016/j.cub.2016.05.078] [Cited by in Crossref: 92] [Cited by in F6Publishing: 83] [Article Influence: 15.3] [Reference Citation Analysis]
Number Citing Articles
1 Saravanapandian V, Nadkarni D, Hsu SH, Hussain SA, Maski K, Golshani P, Colwell CS, Balasubramanian S, Dixon A, Geschwind DH, Jeste SS. Abnormal sleep physiology in children with 15q11.2-13.1 duplication (Dup15q) syndrome. Mol Autism 2021;12:54. [PMID: 34344470 DOI: 10.1186/s13229-021-00460-8] [Reference Citation Analysis]
2 Li R, Wang YQ, Liu WY, Zhang MQ, Li L, Cherasse Y, Schiffmann SN, de Kerchove d'Exaerde A, Lazarus M, Qu WM, Huang ZL. Activation of adenosine A2A receptors in the olfactory tubercle promotes sleep in rodents. Neuropharmacology 2020;168:107923. [PMID: 31874169 DOI: 10.1016/j.neuropharm.2019.107923] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
3 Heiss JE, Yamanaka A, Kilduff TS. Parallel Arousal Pathways in the Lateral Hypothalamus. eNeuro 2018;5:ENEURO. [PMID: 30225361 DOI: 10.1523/ENEURO.0228-18.2018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
4 Kaur S, Wang JL, Ferrari L, Thankachan S, Kroeger D, Venner A, Lazarus M, Wellman A, Arrigoni E, Fuller PM, Saper CB. A Genetically Defined Circuit for Arousal from Sleep during Hypercapnia. Neuron 2017;96:1153-1167.e5. [PMID: 29103805 DOI: 10.1016/j.neuron.2017.10.009] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 12.0] [Reference Citation Analysis]
5 Islam MT, Rumpf F, Tsuno Y, Kodani S, Sakurai T, Matsui A, Maejima T, Mieda M. Vasopressin neurons in the paraventricular hypothalamus promote wakefulness via lateral hypothalamic orexin neurons. Curr Biol 2022:S0960-9822(22)01121-6. [PMID: 35907397 DOI: 10.1016/j.cub.2022.07.020] [Reference Citation Analysis]
6 Bell BJ, Wang AA, Kim DW, Xiong J, Blackshaw S, Wu MN. Characterization of mWake expression in the murine brain. J Comp Neurol 2021;529:1954-87. [PMID: 33140455 DOI: 10.1002/cne.25066] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Hall S, Deurveilher S, Ko KR, Burns J, Semba K. Region-specific increases in FosB/ΔFosB immunoreactivity in the rat brain in response to chronic sleep restriction. Behav Brain Res 2017;322:9-17. [PMID: 28089853 DOI: 10.1016/j.bbr.2017.01.024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
8 Webb JM, Ma M, Yin C, Ptáček LJ, Fu YH. An excitatory peri-tegmental reticular nucleus circuit for wake maintenance. Proc Natl Acad Sci U S A 2022;119:e2203266119. [PMID: 35901245 DOI: 10.1073/pnas.2203266119] [Reference Citation Analysis]
9 Venner A, Todd WD, Fraigne J, Bowrey H, Eban-Rothschild A, Kaur S, Anaclet C. Newly identified sleep-wake and circadian circuits as potential therapeutic targets. Sleep 2019;42:zsz023. [PMID: 30722061 DOI: 10.1093/sleep/zsz023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
10 Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2019;154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
11 Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC, Ba W, Miracca G, Wang D, Li L, Guo J, Chen M, Li Y, Yustos R, Vyssotski AL, Burdakov D, Yang Q, Dong H, Franks NP, Wisden W. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci 2019;22:106-19. [PMID: 30559475 DOI: 10.1038/s41593-018-0288-9] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 18.3] [Reference Citation Analysis]
12 Lüthi A. Sleep: The Very Long Posited (VLPO) Synaptic Pathways of Arousal. Curr Biol 2019;29:R1310-2. [PMID: 31846678 DOI: 10.1016/j.cub.2019.11.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Venner A, Broadhurst RY, Sohn LT, Todd WD, Fuller PM. Selective activation of serotoninergic dorsal raphe neurons facilitates sleep through anxiolysis. Sleep 2020;43:zsz231. [PMID: 31553451 DOI: 10.1093/sleep/zsz231] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
14 Shi Y, Xiao D, Dai L, Si Y, Fang Q, Wei X. The hypnotic effect of propofol involves inhibition of GABAergic neurons in the lateral hypothalamus. NeuroReport 2019;30:927-32. [DOI: 10.1097/wnr.0000000000001292] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Gompf HS, Anaclet C. The neuroanatomy and neurochemistry of sleep-wake control. Curr Opin Physiol 2020;15:143-51. [PMID: 32647777 DOI: 10.1016/j.cophys.2019.12.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
16 Anaclet C, De Luca R, Venner A, Malyshevskaya O, Lazarus M, Arrigoni E, Fuller PM. Genetic Activation, Inactivation, and Deletion Reveal a Limited And Nuanced Role for Somatostatin-Containing Basal Forebrain Neurons in Behavioral State Control. J Neurosci 2018;38:5168-81. [PMID: 29735555 DOI: 10.1523/JNEUROSCI.2955-17.2018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 De Luca R, Nardone S, Grace KP, Venner A, Cristofolini M, Bandaru SS, Sohn LT, Kong D, Mochizuki T, Viberti B, Zhu L, Zito A, Scammell TE, Saper CB, Lowell BB, Fuller PM, Arrigoni E. Orexin neurons inhibit sleep to promote arousal. Nat Commun 2022;13:4163. [PMID: 35851580 DOI: 10.1038/s41467-022-31591-y] [Reference Citation Analysis]
18 Yu X, Ba W, Zhao G, Ma Y, Harding EC, Yin L, Wang D, Li H, Zhang P, Shi Y, Yustos R, Vyssotski AL, Dong H, Franks NP, Wisden W. Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior. Mol Psychiatry 2020. [PMID: 32555422 DOI: 10.1038/s41380-020-0810-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
19 Ferrari LL, Ogbeide-Latario OE, Gompf HS, Anaclet C. Validation of DREADD Agonists and Administration Route in a Murine Model of Sleep Enhancement. J Neurosci Methods 2022;:109679. [PMID: 35914577 DOI: 10.1016/j.jneumeth.2022.109679] [Reference Citation Analysis]
20 Zhang Z, Beier C, Weil T, Hattar S. The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep. Nat Commun 2021;12:5115. [PMID: 34433830 DOI: 10.1038/s41467-021-25378-w] [Reference Citation Analysis]
21 Pintwala S, Peever J. Circuit mechanisms of sleepiness and cataplexy in narcolepsy. Current Opinion in Neurobiology 2017;44:50-8. [DOI: 10.1016/j.conb.2017.02.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
22 Wigren HK, Porkka-Heiskanen T. Novel concepts in sleep regulation. Acta Physiol (Oxf) 2018;222:e13017. [PMID: 29253320 DOI: 10.1111/apha.13017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
23 Arrigoni E, Fuller PM. The Circuit, Cellular, and Synaptic Bases of Sleep-Wake Regulation. Handbook of Sleep Research. Elsevier; 2019. pp. 65-88. [DOI: 10.1016/b978-0-12-813743-7.00005-0] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 Sotelo MI, Tyan J, Markunas C, Sulaman BA, Horwitz L, Lee H, Morrow JG, Rothschild G, Duan B, Eban-Rothschild A. Lateral hypothalamic neuronal ensembles regulate pre-sleep nest-building behavior. Curr Biol 2022:S0960-9822(21)01740-1. [PMID: 35051354 DOI: 10.1016/j.cub.2021.12.053] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
25 Oishi Y, Xu Q, Wang L, Zhang BJ, Takahashi K, Takata Y, Luo YJ, Cherasse Y, Schiffmann SN, de Kerchove d'Exaerde A, Urade Y, Qu WM, Huang ZL, Lazarus M. Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat Commun 2017;8:734. [PMID: 28963505 DOI: 10.1038/s41467-017-00781-4] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 16.6] [Reference Citation Analysis]
26 Adamantidis A, Lüthi A. Optogenetic Dissection of Sleep-Wake States In Vitro and In Vivo. Handb Exp Pharmacol 2019;253:125-51. [PMID: 29687163 DOI: 10.1007/164_2018_94] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
27 Shiromani PJ, Peever JH. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit. Sleep 2017;40. [PMID: 28329204 DOI: 10.1093/sleep/zsx032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
28 Johansson M, Månsson M, Lins LE, Scharschmidt B, Doverskog M, Bäckström T. GR3027 reversal of neurosteroid-induced, GABA-A receptor-mediated inhibition of human brain function: an allopregnanolone challenge study. Psychopharmacology (Berl) 2018;235:1533-43. [PMID: 29492615 DOI: 10.1007/s00213-018-4864-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
29 Todd WD, Fenselau H, Wang JL, Zhang R, Machado NL, Venner A, Broadhurst RY, Kaur S, Lynagh T, Olson DP, Lowell BB, Fuller PM, Saper CB. A hypothalamic circuit for the circadian control of aggression. Nat Neurosci 2018;21:717-24. [PMID: 29632359 DOI: 10.1038/s41593-018-0126-0] [Cited by in Crossref: 65] [Cited by in F6Publishing: 53] [Article Influence: 16.3] [Reference Citation Analysis]
30 Tish MM, Geerling JC. The Brain and the Bladder: Forebrain Control of Urinary (In)Continence. Front Physiol 2020;11:658. [PMID: 32719609 DOI: 10.3389/fphys.2020.00658] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Qualls-Creekmore E, Münzberg H. Modulation of Feeding and Associated Behaviors by Lateral Hypothalamic Circuits. Endocrinology 2018;159:3631-42. [PMID: 30215694 DOI: 10.1210/en.2018-00449] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
32 Cerri M, Amici R. Thermoregulation and Sleep: Functional Interaction and Central Nervous Control. Compr Physiol 2021;11:1591-604. [PMID: 33792906 DOI: 10.1002/cphy.c140012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Sil’kis IG. A Neurochemical Approach to the Search for Drugs for the Treatment of Symptoms of Alzheimer’s Disease. Neurochem J 2018;12:15-22. [DOI: 10.1134/s1819712418010130] [Reference Citation Analysis]
34 Tesoriero C, Del Gallo F, Bentivoglio M. Sleep and brain infections. Brain Res Bull 2019;145:59-74. [PMID: 30016726 DOI: 10.1016/j.brainresbull.2018.07.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
35 Chen CR, Zhong YH, Jiang S, Xu W, Xiao L, Wang Z, Qu WM, Huang ZL. Dysfunctions of the paraventricular hypothalamic nucleus induce hypersomnia in mice. Elife 2021;10:e69909. [PMID: 34787078 DOI: 10.7554/eLife.69909] [Reference Citation Analysis]
36 Rukhadze I, Carballo NJ, Bandaru SS, Malhotra A, Fuller PM, Fenik VB. Catecholaminergic A1/C1 neurons contribute to the maintenance of upper airway muscle tone but may not participate in NREM sleep-related depression of these muscles. Respir Physiol Neurobiol 2017;244:41-50. [PMID: 28711601 DOI: 10.1016/j.resp.2017.07.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
37 Erickson ETM, Ferrari LL, Gompf HS, Anaclet C. Differential Role of Pontomedullary Glutamatergic Neuronal Populations in Sleep-Wake Control. Front Neurosci 2019;13:755. [PMID: 31417341 DOI: 10.3389/fnins.2019.00755] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
38 Nollet M, Wisden W, Franks NP. Sleep deprivation and stress: a reciprocal relationship. Interface Focus 2020;10:20190092. [PMID: 32382403 DOI: 10.1098/rsfs.2019.0092] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 9.5] [Reference Citation Analysis]
39 Varin C, Bonnavion P. Pharmacosynthetic Deconstruction of Sleep-Wake Circuits in the Brain. Handb Exp Pharmacol 2019;253:153-206. [PMID: 30689084 DOI: 10.1007/164_2018_183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
40 Chang G, Yasmin N, Collier AD, Karatayev O, Khalizova N, Onoichenco A, Fam M, Albeg AS, Campbell S, Leibowitz SF. Fibroblast growth factor 2: Role in prenatal alcohol-induced stimulation of hypothalamic peptide neurons. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2022. [DOI: 10.1016/j.pnpbp.2022.110536] [Reference Citation Analysis]
41 Todd WD, Venner A, Anaclet C, Broadhurst RY, De Luca R, Bandaru SS, Issokson L, Hablitz LM, Cravetchi O, Arrigoni E, Campbell JN, Allen CN, Olson DP, Fuller PM. Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. Nat Commun 2020;11:4410. [PMID: 32879310 DOI: 10.1038/s41467-020-17197-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
42 Verstegen AMJ, Klymko N, Zhu L, Mathai JC, Kobayashi R, Venner A, Ross RA, VanderHorst VG, Arrigoni E, Geerling JC, Zeidel ML. Non-Crh Glutamatergic Neurons in Barrington's Nucleus Control Micturition via Glutamatergic Afferents from the Midbrain and Hypothalamus. Curr Biol 2019;29:2775-2789.e7. [PMID: 31422881 DOI: 10.1016/j.cub.2019.07.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
43 Liu C, Zhou X, Zhu Q, Fu B, Cao S, Zhang Y, Zhang L, Zhang Y, Yu T. Dopamine neurons in the ventral periaqueductal gray modulate isoflurane anesthesia in rats. CNS Neurosci Ther 2020;26:1121-33. [PMID: 32881314 DOI: 10.1111/cns.13447] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
44 Ferrari LL, Park D, Zhu L, Palmer MR, Broadhurst RY, Arrigoni E. Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. J Neurosci 2018;38:1588-99. [PMID: 29311142 DOI: 10.1523/JNEUROSCI.1925-17.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
45 Zhao S, Li R, Li H, Wang S, Zhang X, Wang D, Guo J, Li H, Li A, Tong T, Zhong H, Yang Q, Dong H. Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Modulate the Anesthetic Potency of Isoflurane in Mice. Neurosci Bull 2021;37:934-46. [PMID: 33847915 DOI: 10.1007/s12264-021-00674-z] [Reference Citation Analysis]
46 Brickley SG, Franks NP, Wisden W. Modulation of GABA A receptor function and sleep. Current Opinion in Physiology 2018;2:51-7. [DOI: 10.1016/j.cophys.2017.12.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Mascetti GG. Adaptation and survival: hypotheses about the neural mechanisms of unihemispheric sleep. Laterality 2021;26:71-93. [PMID: 33054668 DOI: 10.1080/1357650X.2020.1828446] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Gazea M, Furdan S, Sere P, Oesch L, Molnár B, Di Giovanni G, Fenno LE, Ramakrishnan C, Mattis J, Deisseroth K, Dymecki SM, Adamantidis AR, Lőrincz ML. Reciprocal Lateral Hypothalamic and Raphe GABAergic Projections Promote Wakefulness. J Neurosci 2021;41:4840-9. [PMID: 33888606 DOI: 10.1523/JNEUROSCI.2850-20.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019;17:e3000172. [PMID: 30893297 DOI: 10.1371/journal.pbio.3000172] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
50 Kim JH, Ki Y, Lee H, Hur MS, Baik B, Hur JH, Nam D, Lim C. The voltage-gated potassium channel Shaker promotes sleep via thermosensitive GABA transmission. Commun Biol 2020;3:174. [PMID: 32296133 DOI: 10.1038/s42003-020-0902-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
51 Zhu L, Chamberlin NL, Arrigoni E. Muscarinic Inhibition of Hypoglossal Motoneurons: Possible Implications for Upper Airway Muscle Hypotonia during REM Sleep. J Neurosci 2019;39:7910-9. [PMID: 31420456 DOI: 10.1523/JNEUROSCI.0461-19.2019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
52 Liang Y, Shi W, Xiang A, Hu D, Wang L, Zhang L. The NAergic locus coeruleus-ventrolateral preoptic area neural circuit mediates rapid arousal from sleep. Curr Biol 2021:S0960-9822(21)00826-5. [PMID: 34270948 DOI: 10.1016/j.cub.2021.06.031] [Reference Citation Analysis]
53 Oesch LT, Gazea M, Gent TC, Bandarabadi M, Gutierrez Herrera C, Adamantidis AR. REM sleep stabilizes hypothalamic representation of feeding behavior. Proc Natl Acad Sci U S A 2020;117:19590-8. [PMID: 32732431 DOI: 10.1073/pnas.1921909117] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
54 Liu K, Kim J, Kim DW, Zhang YS, Bao H, Denaxa M, Lim SA, Kim E, Liu C, Wickersham IR, Pachnis V, Hattar S, Song J, Brown SP, Blackshaw S. Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep. Nature 2017;548:582-7. [PMID: 28847002 DOI: 10.1038/nature23663] [Cited by in Crossref: 85] [Cited by in F6Publishing: 66] [Article Influence: 17.0] [Reference Citation Analysis]
55 Xu Q, Wang DR, Dong H, Chen L, Lu J, Lazarus M, Cherasse Y, Chen GH, Qu WM, Huang ZL. Medial Parabrachial Nucleus Is Essential in Controlling Wakefulness in Rats. Front Neurosci 2021;15:645877. [PMID: 33841086 DOI: 10.3389/fnins.2021.645877] [Reference Citation Analysis]
56 Arrigoni E, Fuller PM. The Sleep-Promoting Ventrolateral Preoptic Nucleus: What Have We Learned over the Past 25 Years? Int J Mol Sci 2022;23:2905. [PMID: 35328326 DOI: 10.3390/ijms23062905] [Reference Citation Analysis]
57 Luo T, Yu S, Cai S, Zhang Y, Jiao Y, Yu T, Yu W. Parabrachial Neurons Promote Behavior and Electroencephalographic Arousal From General Anesthesia. Front Mol Neurosci 2018;11:420. [PMID: 30564094 DOI: 10.3389/fnmol.2018.00420] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
58 Rossier D, La Franca V, Salemi T, Natale S, Gross CT. A neural circuit for competing approach and defense underlying prey capture. Proc Natl Acad Sci U S A 2021;118:e2013411118. [PMID: 33876745 DOI: 10.1073/pnas.2013411118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
59 Cheng Z, Yang W, Li B, Cui R. KLF4 Exerts Sedative Effects in Pentobarbital-Treated Mice. J Mol Neurosci 2021;71:596-606. [PMID: 32789565 DOI: 10.1007/s12031-020-01680-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
60 Kosse C, Burdakov D. Fast and Slow Oscillations Recruit Molecularly-Distinct Subnetworks of Lateral Hypothalamic Neurons In Situ. eNeuro 2018;5:ENEURO. [PMID: 29423437 DOI: 10.1523/ENEURO.0012-18.2018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
61 Zegarra‐valdivia JA, Pignatelli J, Fernandez de Sevilla ME, Fernandez AM, Munive V, Martinez‐rachadell L, Nuñez A, Torres Aleman I. Insulin‐like growth factor I modulates sleep through hypothalamic orexin neurons. FASEB j 2020;34:15975-90. [DOI: 10.1096/fj.202001281rr] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
62 Blanco-Centurion C, Luo S, Vidal-Ortiz A, Swank C, Shiromani PJ. Activity of a subset of vesicular GABA-transporter neurons in the ventral zona incerta anticipates sleep onset. Sleep 2021;44:zsaa268. [PMID: 33270105 DOI: 10.1093/sleep/zsaa268] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
63 Venner A, Mochizuki T, De Luca R, Anaclet C, Scammell TE, Saper CB, Arrigoni E, Fuller PM. Reassessing the Role of Histaminergic Tuberomammillary Neurons in Arousal Control. J Neurosci 2019;39:8929-39. [PMID: 31548232 DOI: 10.1523/JNEUROSCI.1032-19.2019] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
64 Bogus-nowakowska K, Robak A, Kalinowski D, Kozłowska A, Równiak M. GABAergic and Glutamatergic Phenotypes of Neurons Expressing Calcium-Binding Proteins in the Preoptic Area of the Guinea Pig. IJMS 2022;23:7963. [DOI: 10.3390/ijms23147963] [Reference Citation Analysis]
65 Wang RF, Guo H, Jiang SY, Liu ZL, Qu WM, Huang ZL, Wang L. Control of wakefulness by lateral hypothalamic glutamatergic neurons in male mice. J Neurosci Res 2021;99:1689-703. [PMID: 33713502 DOI: 10.1002/jnr.24828] [Reference Citation Analysis]
66 Fenik VB. Contribution of Neurochemical Inputs to the Decrease of Motoneuron Excitability During Non-REM and REM Sleep: A Systematic Review. Front Neurol 2018;9:629. [PMID: 30108546 DOI: 10.3389/fneur.2018.00629] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
67 Huang Y, Li Y, Leng Z. Melatonin inhibits GABAergic neurons in the hypothalamus consistent with a reduction in wakefulness. NeuroReport 2020;31:92-8. [DOI: 10.1097/wnr.0000000000001374] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
68 Venner A, De Luca R, Sohn LT, Bandaru SS, Verstegen AMJ, Arrigoni E, Fuller PM. An Inhibitory Lateral Hypothalamic-Preoptic Circuit Mediates Rapid Arousals from Sleep. Curr Biol 2019;29:4155-4168.e5. [PMID: 31761703 DOI: 10.1016/j.cub.2019.10.026] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
69 Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020;45:6-20. [PMID: 31216564 DOI: 10.1038/s41386-019-0444-2] [Cited by in Crossref: 62] [Cited by in F6Publishing: 42] [Article Influence: 20.7] [Reference Citation Analysis]
70 Jha PK, Bouâouda H, Kalsbeek A, Challet E. Distinct feedback actions of behavioural arousal to the master circadian clock in nocturnal and diurnal mammals. Neurosci Biobehav Rev 2021;123:48-60. [PMID: 33440199 DOI: 10.1016/j.neubiorev.2020.12.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
71 Qualls-Creekmore E, Yu S, Francois M, Hoang J, Huesing C, Bruce-Keller A, Burk D, Berthoud HR, Morrison CD, Münzberg H. Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion. J Neurosci 2017;37:6053-65. [PMID: 28539422 DOI: 10.1523/JNEUROSCI.0155-17.2017] [Cited by in Crossref: 51] [Cited by in F6Publishing: 32] [Article Influence: 10.2] [Reference Citation Analysis]
72 Vanini G, Torterolo P. Sleep-Wake Neurobiology. Adv Exp Med Biol 2021;1297:65-82. [PMID: 33537937 DOI: 10.1007/978-3-030-61663-2_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
73 Yin L, Li L, Deng J, Wang D, Guo Y, Zhang X, Li H, Zhao S, Zhong H, Dong H. Optogenetic/Chemogenetic Activation of GABAergic Neurons in the Ventral Tegmental Area Facilitates General Anesthesia via Projections to the Lateral Hypothalamus in Mice. Front Neural Circuits 2019;13:73. [PMID: 31798420 DOI: 10.3389/fncir.2019.00073] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
74 Ono D, Mukai Y, Hung CJ, Chowdhury S, Sugiyama T, Yamanaka A. The mammalian circadian pacemaker regulates wakefulness via CRF neurons in the paraventricular nucleus of the hypothalamus. Sci Adv 2020;6:eabd0384. [PMID: 33158870 DOI: 10.1126/sciadv.abd0384] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
75 Oesch LT, Adamantidis AR. How REM sleep shapes hypothalamic computations for feeding behavior. Trends Neurosci 2021;44:990-1003. [PMID: 34663506 DOI: 10.1016/j.tins.2021.09.003] [Reference Citation Analysis]
76 Rogers AA, Aiani LM, Blanpain LT, Yuxian S, Moore R, Willie JT. Deep brain stimulation of hypothalamus for narcolepsy-cataplexy in mice. Brain Stimul 2020;13:1305-16. [PMID: 32320748 DOI: 10.1016/j.brs.2020.04.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
77 Feng ZX, Dong H, Qu WM, Zhang W. Oral Delivered Dexmedetomidine Promotes and Consolidates Non-rapid Eye Movement Sleep via Sleep-Wake Regulation Systems in Mice. Front Pharmacol 2018;9:1196. [PMID: 30568589 DOI: 10.3389/fphar.2018.01196] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
78 Schwartz MD, Palmerston JB, Lee DL, Hoener MC, Kilduff TS. Deletion of Trace Amine-Associated Receptor 1 Attenuates Behavioral Responses to Caffeine. Front Pharmacol 2018;9:35. [PMID: 29456505 DOI: 10.3389/fphar.2018.00035] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
79 Cerri M, Luppi M, Tupone D, Zamboni G, Amici R. REM Sleep and Endothermy: Potential Sites and Mechanism of a Reciprocal Interference. Front Physiol 2017;8:624. [PMID: 28883799 DOI: 10.3389/fphys.2017.00624] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
80 Blanco-Centurion C, Bendell E, Zou B, Sun Y, Shiromani PJ, Liu M. VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep 2018;4:44-9. [PMID: 30155524 DOI: 10.1016/j.ibror.2018.05.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
81 Bringmann H. Genetic sleep deprivation: using sleep mutants to study sleep functions. EMBO Rep 2019;20:e46807. [PMID: 30804011 DOI: 10.15252/embr.201846807] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
82 Tyree SM, de Lecea L. Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017;18:E1773. [PMID: 28809797 DOI: 10.3390/ijms18081773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
83 Borniger JC, de Lecea L. Peripheral Lipopolyssacharide Rapidly Silences REM-Active LHGABA Neurons. Front Behav Neurosci 2021;15:649428. [PMID: 33716686 DOI: 10.3389/fnbeh.2021.649428] [Reference Citation Analysis]
84 Wisden W, Yu X, Franks NP. GABA Receptors and the Pharmacology of Sleep. Handb Exp Pharmacol 2019;253:279-304. [PMID: 28993837 DOI: 10.1007/164_2017_56] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
85 Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017;93:747-65. [PMID: 28231463 DOI: 10.1016/j.neuron.2017.01.014] [Cited by in Crossref: 298] [Cited by in F6Publishing: 257] [Article Influence: 59.6] [Reference Citation Analysis]
86 Mickelsen LE, Bolisetty M, Chimileski BR, Fujita A, Beltrami EJ, Costanzo JT, Naparstek JR, Robson P, Jackson AC. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat Neurosci 2019;22:642-56. [PMID: 30858605 DOI: 10.1038/s41593-019-0349-8] [Cited by in Crossref: 94] [Cited by in F6Publishing: 73] [Article Influence: 31.3] [Reference Citation Analysis]
87 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 99] [Cited by in F6Publishing: 71] [Article Influence: 19.8] [Reference Citation Analysis]
88 Saper CB, Fuller PM. Wake-sleep circuitry: an overview. Curr Opin Neurobiol 2017;44:186-92. [PMID: 28577468 DOI: 10.1016/j.conb.2017.03.021] [Cited by in Crossref: 168] [Cited by in F6Publishing: 127] [Article Influence: 33.6] [Reference Citation Analysis]
89 Jones BE. Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol 2017;44:101-9. [PMID: 28433001 DOI: 10.1016/j.conb.2017.03.018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
90 Zhong YH, Jiang S, Qu WM, Zhang W, Huang ZL, Chen CR. Saikosaponin a promotes sleep by decreasing neuronal activities in the lateral hypothalamus. J Sleep Res 2021;:e13484. [PMID: 34510626 DOI: 10.1111/jsr.13484] [Reference Citation Analysis]
91 Luo YJ, Li YD, Wang L, Yang SR, Yuan XS, Wang J, Cherasse Y, Lazarus M, Chen JF, Qu WM, Huang ZL. Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors. Nat Commun 2018;9:1576. [PMID: 29679009 DOI: 10.1038/s41467-018-03889-3] [Cited by in Crossref: 67] [Cited by in F6Publishing: 61] [Article Influence: 16.8] [Reference Citation Analysis]
92 Grady FS, Boes AD, Geerling JC. A Century Searching for the Neurons Necessary for Wakefulness. Front Neurosci 2022;16:930514. [DOI: 10.3389/fnins.2022.930514] [Reference Citation Analysis]
93 An S, Sun H, Wu M, Xie D, Hu S, Ding H, Cao J. Medial septum glutamatergic neurons control wakefulness through a septo-hypothalamic circuit. Current Biology 2021;31:1379-1392.e4. [DOI: 10.1016/j.cub.2021.01.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
94 de Vrind VAJ, Rozeboom A, Wolterink-Donselaar IG, Luijendijk-Berg MCM, Adan RAH. Effects of GABA and Leptin Receptor-Expressing Neurons in the Lateral Hypothalamus on Feeding, Locomotion, and Thermogenesis. Obesity (Silver Spring) 2019;27:1123-32. [PMID: 31087767 DOI: 10.1002/oby.22495] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
95 Lüthi A. Sleep: Switching Off the Off-Switch. Current Biology 2016;26:R765-7. [DOI: 10.1016/j.cub.2016.06.059] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]