BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zulfiqar H, Yuan SS, Huang QL, Sun ZJ, Dao FY, Yu XL, Lin H. Identification of cyclin protein using gradient boost decision tree algorithm. Comput Struct Biotechnol J 2021;19:4123-31. [PMID: 34527186 DOI: 10.1016/j.csbj.2021.07.013] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Su W, Xie XQ, Liu XW, Gao D, Ma CY, Zulfiqar H, Yang H, Lin H, Yu XL, Li YW. iRNA-ac4C: A novel computational method for effectively detecting N4-acetylcytidine sites in human mRNA. Int J Biol Macromol 2023;227:1174-81. [PMID: 36470433 DOI: 10.1016/j.ijbiomac.2022.11.299] [Reference Citation Analysis]
2 Yu H, Luo X. IPPF-FE: an integrated peptide and protein function prediction framework based on fused features and ensemble models. Brief Bioinform 2023;24:bbac476. [PMID: 36403184 DOI: 10.1093/bib/bbac476] [Reference Citation Analysis]
3 Gao W, Xu D, Li H, Du J, Wang G, Li D. Identification of adaptor proteins by incorporating deep learning and PSSM profiles. Methods 2023;209:10-7. [PMID: 36427763 DOI: 10.1016/j.ymeth.2022.11.001] [Reference Citation Analysis]
4 Yue ZX, Yan TC, Xu HQ, Liu YH, Hong YF, Chen GX, Xie T, Tao L. A systematic review on the state-of-the-art strategies for protein representation. Comput Biol Med 2023;152:106440. [PMID: 36543002 DOI: 10.1016/j.compbiomed.2022.106440] [Reference Citation Analysis]
5 Qiu P, Dai J, Wang T, Li H, Ma C, Xi X. Altered Functional Connectivity and Complexity in Major Depressive Disorder after Musical Stimulation. Brain Sci 2022;12. [PMID: 36552139 DOI: 10.3390/brainsci12121680] [Reference Citation Analysis]
6 Li Q, Song Z. Prediction of compressive strength of rice husk ash concrete based on stacking ensemble learning model. Journal of Cleaner Production 2022. [DOI: 10.1016/j.jclepro.2022.135279] [Reference Citation Analysis]
7 Ahmed Z, Zulfiqar H, Tang L, Lin H. A Statistical Analysis of the Sequence and Structure of Thermophilic and Non-Thermophilic Proteins. Int J Mol Sci 2022;23:10116. [PMID: 36077513 DOI: 10.3390/ijms231710116] [Reference Citation Analysis]
8 Charoenkwan P, Kanthawong S, Schaduangrat N, Li’ P, Moni MA, Shoombuatong W. SCMRSA: a New Approach for Identifying and Analyzing Anti-MRSA Peptides Using Estimated Propensity Scores of Dipeptides. ACS Omega. [DOI: 10.1021/acsomega.2c04305] [Reference Citation Analysis]
9 Yuan S, Gao D, Xie X, Ma C, Su W, Zhang Z, Zheng Y, Ding H. IBPred: a sequence-based predictor for identifying ion binding protein in phage. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.08.053] [Reference Citation Analysis]
10 Liu S, Cui C, Chen H, Liu T. Ensemble Learning-Based Feature Selection for Phage Protein Prediction. Front Microbiol 2022;13:932661. [DOI: 10.3389/fmicb.2022.932661] [Reference Citation Analysis]
11 Fan R, Suo B, Ding Y. Identification of Vesicle Transport Proteins via Hypergraph Regularized K-Local Hyperplane Distance Nearest Neighbour Model. Front Genet 2022;13:960388. [DOI: 10.3389/fgene.2022.960388] [Reference Citation Analysis]
12 Bin Heyat MB, Akhtar F, Abbas SJ, Al-Sarem M, Alqarafi A, Stalin A, Abbasi R, Muaad AY, Lai D, Wu K. Wearable Flexible Electronics Based Cardiac Electrode for Researcher Mental Stress Detection System Using Machine Learning Models on Single Lead Electrocardiogram Signal. Biosensors (Basel) 2022;12:427. [PMID: 35735574 DOI: 10.3390/bios12060427] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
13 Lv H, Yan K, Guo Y, Zou Q, Hesham AE, Liu B. AMPpred-EL: An effective antimicrobial peptide prediction model based on ensemble learning. Comput Biol Med 2022;146:105577. [PMID: 35576825 DOI: 10.1016/j.compbiomed.2022.105577] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Hosseinzadeh A, Zhou JL, Zyaie J, Alzainati N, Ibrar I, Altaee A. Machine learning-based modeling and analysis of PFOS removal from contaminated water by nanofiltration process. Separation and Purification Technology 2022;289:120775. [DOI: 10.1016/j.seppur.2022.120775] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Bao W, Cui Q, Chen B, Yang B, Wei L. Phage_UniR_LGBM: Phage Virion Proteins Classification with UniRep Features and LightGBM Model. Computational and Mathematical Methods in Medicine 2022;2022:1-8. [DOI: 10.1155/2022/9470683] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
16 Ma Q. Online Diagnosis and Classification of CT Images Collected by Internet of Things Using Deep Learning. Comput Math Methods Med 2022;2022:5373624. [PMID: 35345522 DOI: 10.1155/2022/5373624] [Reference Citation Analysis]
17 Ahmed Z, Zulfiqar H, Khan AA, Gul I, Dao FY, Zhang ZY, Yu XL, Tang L. iThermo: A Sequence-Based Model for Identifying Thermophilic Proteins Using a Multi-Feature Fusion Strategy. Front Microbiol 2022;13:790063. [PMID: 35273581 DOI: 10.3389/fmicb.2022.790063] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Zulfiqar H, Huang QL, Lv H, Sun ZJ, Dao FY, Lin H. Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique. Int J Mol Sci 2022;23:1251. [PMID: 35163174 DOI: 10.3390/ijms23031251] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
19 Gong Y, Dong B, Zhang Z, Zhai Y, Gao B, Zhang T, Zhang J. VTP-Identifier: Vesicular Transport Proteins Identification Based on PSSM Profiles and XGBoost. Front Genet 2021;12:808856. [PMID: 35047020 DOI: 10.3389/fgene.2021.808856] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Zhai Y, Zhang J, Zhang T, Gong Y, Zhang Z, Zhang D, Zhao Y. AOPM: Application of Antioxidant Protein Classification Model in Predicting the Composition of Antioxidant Drugs. Front Pharmacol 2022;12:818115. [DOI: 10.3389/fphar.2021.818115] [Reference Citation Analysis]
21 Chen Y, Juan L, Lv X, Shi L. Bioinformatics Research on Drug Sensitivity Prediction. Front Pharmacol 2021;12:799712. [PMID: 34955863 DOI: 10.3389/fphar.2021.799712] [Reference Citation Analysis]
22 Guo Y, Ju Y, Chen D, Wang L. Research on the Computational Prediction of Essential Genes. Front Cell Dev Biol 2021;9:803608. [PMID: 34938741 DOI: 10.3389/fcell.2021.803608] [Reference Citation Analysis]
23 Jia Y, Huang S, Zhang T. KK-DBP: A Multi-Feature Fusion Method for DNA-Binding Protein Identification Based on Random Forest. Front Genet 2021;12:811158. [PMID: 34912382 DOI: 10.3389/fgene.2021.811158] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Han S, Wang N, Guo Y, Tang F, Xu L, Ju Y, Shi L. Application of Sparse Representation in Bioinformatics. Front Genet 2021;12. [DOI: 10.3389/fgene.2021.810875] [Reference Citation Analysis]