BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ramirez JM, Dashevskiy T, Marlin IA, Baertsch N. Microcircuits in respiratory rhythm generation: commonalities with other rhythm generating networks and evolutionary perspectives. Curr Opin Neurobiol 2016;41:53-61. [PMID: 27589601 DOI: 10.1016/j.conb.2016.08.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Villiere SM, Nakase K, Kollmar R, Silverman J, Sundaram K, Stewart M. Seizure-associated central apnea in a rat model: Evidence for resetting the respiratory rhythm and activation of the diving reflex. Neurobiol Dis 2017;101:8-15. [PMID: 28153424 DOI: 10.1016/j.nbd.2017.01.008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
2 Takakura AC, Malheiros-Lima MR, Moreira TS. Excitatory and inhibitory modulation of parafacial respiratory neurons in the control of active expiration. Respir Physiol Neurobiol 2021;289:103657. [PMID: 33781931 DOI: 10.1016/j.resp.2021.103657] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Cinelli E, Mutolo D, Pantaleo T, Bongianni F. Neural mechanisms underlying respiratory regulation within the preBötzinger complex of the rabbit. Respir Physiol Neurobiol 2021;293:103736. [PMID: 34224867 DOI: 10.1016/j.resp.2021.103736] [Reference Citation Analysis]
4 Li S, Wang F. Vertebrate Evolution Conserves Hindbrain Circuits despite Diverse Feeding and Breathing Modes. eNeuro 2021;8:ENEURO. [PMID: 33707205 DOI: 10.1523/ENEURO.0435-20.2021] [Reference Citation Analysis]
5 Follmann R, Rosa E. Predicting slow and fast neuronal dynamics with machine learning. Chaos 2019;29:113119. [DOI: 10.1063/1.5119723] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
6 Ramirez JM, Baertsch NA. The Dynamic Basis of Respiratory Rhythm Generation: One Breath at a Time. Annu Rev Neurosci 2018;41:475-99. [PMID: 29709210 DOI: 10.1146/annurev-neuro-080317-061756] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
7 Milsom WK, Kinkead R, Hedrick MS, Gilmour K, Perry S, Gargaglioni L, Wang T. Evolution of vertebrate respiratory central rhythm generators. Respir Physiol Neurobiol 2022;295:103781. [PMID: 34481078 DOI: 10.1016/j.resp.2021.103781] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Akins VT, Weragalaarachchi K, Picardo MCD, Revill AL, Del Negro CA. Morphology of Dbx1 respiratory neurons in the preBötzinger complex and reticular formation of neonatal mice. Sci Data 2017;4:170097. [PMID: 28763053 DOI: 10.1038/sdata.2017.97] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
9 Meza R, Huidobro N, Moreno-Castillo M, Mendez-Fernandez A, Flores-Hernandez J, Flores A, Manjarrez E. Resetting the Respiratory Rhythm with a Spinal Central Pattern Generator. eNeuro 2019;6:ENEURO. [PMID: 31043462 DOI: 10.1523/ENEURO.0116-19.2019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Baertsch NA, Severs LJ, Anderson TM, Ramirez JM. A spatially dynamic network underlies the generation of inspiratory behaviors. Proc Natl Acad Sci U S A 2019;116:7493-502. [PMID: 30918122 DOI: 10.1073/pnas.1900523116] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
11 Lima JD, Sobrinho CR, Falquetto B, Santos LK, Takakura AC, Mulkey DK, Moreira TS. Cholinergic neurons in the pedunculopontine tegmental nucleus modulate breathing in rats by direct projections to the retrotrapezoid nucleus. J Physiol 2019;597:1919-34. [PMID: 30724347 DOI: 10.1113/JP277617] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Funk GD. Phylogenetically persistent purinergic modulation of central pattern generators for breathing in lamprey and mammals. J Physiol 2017;595:7011-2. [PMID: 29027203 DOI: 10.1113/JP274908] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
13 Picardo MCD, Sugimura YK, Dorst KE, Kallurkar PS, Akins VT, Ma X, Teruyama R, Guinamard R, Kam K, Saha MS, Del Negro CA. Trpm4 ion channels in pre-Bötzinger complex interneurons are essential for breathing motor pattern but not rhythm. PLoS Biol 2019;17:e2006094. [PMID: 30789900 DOI: 10.1371/journal.pbio.2006094] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
14 Anwar H, Li X, Bucher D, Nadim F. Functional roles of short-term synaptic plasticity with an emphasis on inhibition. Curr Opin Neurobiol 2017;43:71-8. [PMID: 28122326 DOI: 10.1016/j.conb.2017.01.002] [Cited by in Crossref: 29] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
15 Cinelli E, Mutolo D, Iovino L, Pantaleo T, Bongianni F. Key role of 5-HT1A receptors in the modulation of the neuronal network underlying the respiratory rhythm generation in lampreys. Eur J Neurosci 2020;52:3903-17. [PMID: 32378271 DOI: 10.1111/ejn.14769] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Baertsch NA, Baertsch HC, Ramirez JM. The interdependence of excitation and inhibition for the control of dynamic breathing rhythms. Nat Commun 2018;9:843. [PMID: 29483589 DOI: 10.1038/s41467-018-03223-x] [Cited by in Crossref: 63] [Cited by in F6Publishing: 53] [Article Influence: 15.8] [Reference Citation Analysis]
17 Mutolo D, Bongianni F, Pantaleo T, Cinelli E. The lamprey respiratory network: Some evolutionary aspects. Respir Physiol Neurobiol 2021;294:103766. [PMID: 34329767 DOI: 10.1016/j.resp.2021.103766] [Reference Citation Analysis]
18 Yeh SY, Huang WH, Wang W, Ward CS, Chao ES, Wu Z, Tang B, Tang J, Sun JJ, Esther van der Heijden M, Gray PA, Xue M, Ray RS, Ren D, Zoghbi HY. Respiratory Network Stability and Modulatory Response to Substance P Require Nalcn. Neuron 2017;94:294-303.e4. [PMID: 28392070 DOI: 10.1016/j.neuron.2017.03.024] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 7.4] [Reference Citation Analysis]
19 Vann NC, Pham FD, Dorst KE, Del Negro CA. Dbx1 Pre-Bötzinger Complex Interneurons Comprise the Core Inspiratory Oscillator for Breathing in Unanesthetized Adult Mice. eNeuro 2018;5:ENEURO. [PMID: 29845107 DOI: 10.1523/ENEURO.0130-18.2018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
20 Burton MT, Santin JM. A direct excitatory action of lactate ions in the central respiratory network of bullfrogs, Lithobates catesbeianus. J Exp Biol 2020;223:jeb235705. [PMID: 33161381 DOI: 10.1242/jeb.235705] [Reference Citation Analysis]
21 Cinelli E, Iovino L, Mutolo D. ATP and astrocytes play a prominent role in the control of the respiratory pattern generator in the lamprey. J Physiol 2017;595:7063-79. [PMID: 28734063 DOI: 10.1113/JP274749] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 2.2] [Reference Citation Analysis]
22 Thoby-Brisson M. Neural mechanisms for sigh generation during prenatal development. J Neurophysiol 2018;120:1162-72. [PMID: 29897860 DOI: 10.1152/jn.00314.2018] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
23 Harris KD, Dashevskiy T, Mendoza J, Garcia AJ 3rd, Ramirez JM, Shea-Brown E. Different roles for inhibition in the rhythm-generating respiratory network. J Neurophysiol 2017;118:2070-88. [PMID: 28615332 DOI: 10.1152/jn.00174.2017] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
24 Anderson TM, Ramirez JM. Respiratory rhythm generation: triple oscillator hypothesis. F1000Res 2017;6:139. [PMID: 28299192 DOI: 10.12688/f1000research.10193.1] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 9.0] [Reference Citation Analysis]
25 Ausborn J, Koizumi H, Barnett WH, John TT, Zhang R, Molkov YI, Smith JC, Rybak IA. Organization of the core respiratory network: Insights from optogenetic and modeling studies. PLoS Comput Biol 2018;14:e1006148. [PMID: 29698394 DOI: 10.1371/journal.pcbi.1006148] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
26 Dubois CJ, Cardoit L, Schwarz V, Markkanen M, Airaksinen MS, Uvarov P, Simmers J, Thoby-Brisson M. Role of the K+-Cl- Cotransporter KCC2a Isoform in Mammalian Respiration at Birth. eNeuro 2018;5:ENEURO. [PMID: 30406192 DOI: 10.1523/ENEURO.0264-18.2018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
27 Baertsch NA, Ramirez JM. Insights into the dynamic control of breathing revealed through cell-type-specific responses to substance P. Elife 2019;8:e51350. [PMID: 31804180 DOI: 10.7554/eLife.51350] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
28 Ramirez JM, Baertsch N. Defining the Rhythmogenic Elements of Mammalian Breathing. Physiology (Bethesda) 2018;33:302-16. [PMID: 30109823 DOI: 10.1152/physiol.00025.2018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
29 Hayes JA, Kottick A, Picardo MCD, Halleran AD, Smith RD, Smith GD, Saha MS, Del Negro CA. Transcriptome of neonatal preBötzinger complex neurones in Dbx1 reporter mice. Sci Rep 2017;7:8669. [PMID: 28819234 DOI: 10.1038/s41598-017-09418-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]