BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Elemans CP. The singer and the song: the neuromechanics of avian sound production. Curr Opin Neurobiol 2014;28:172-8. [PMID: 25171107 DOI: 10.1016/j.conb.2014.07.022] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 3.6] [Reference Citation Analysis]
Number Citing Articles
1 Kelley DB. Convergent and divergent neural circuit architectures that support acoustic communication. Front Neural Circuits 2022;16. [DOI: 10.3389/fncir.2022.976789] [Reference Citation Analysis]
2 Amador A, Mindlin GB. Synthetic Birdsongs as a Tool to Induce, and Iisten to, Replay Activity in Sleeping Birds. Front Neurosci 2021;15:647978. [PMID: 34290576 DOI: 10.3389/fnins.2021.647978] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Rinnert P, Nieder A. Neural Code of Motor Planning and Execution during Goal-Directed Movements in Crows. J Neurosci 2021;41:4060-72. [PMID: 33608384 DOI: 10.1523/JNEUROSCI.0739-20.2021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
4 Méndez JM, Goller F. Multifunctional bilateral muscle control of vocal output in the songbird syrinx. J Neurophysiol 2020;124:1857-74. [PMID: 33026896 DOI: 10.1152/jn.00332.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Burke JE, Schmidt MF. Neural Control of Birdsong. eLS 2020. [DOI: 10.1002/9780470015902.a0029190] [Reference Citation Analysis]
6 Yamahachi H, Zai AT, Tachibana RO, Stepien AE, Rodrigues DI, Cavé-Lopez S, Lorenz C, Arneodo EM, Giret N, Hahnloser RHR. Undirected singing rate as a non-invasive tool for welfare monitoring in isolated male zebra finches. PLoS One 2020;15:e0236333. [PMID: 32776943 DOI: 10.1371/journal.pone.0236333] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
7 Adam I, Elemans CPH. Increasing Muscle Speed Drives Changes in the Neuromuscular Transform of Motor Commands during Postnatal Development in Songbirds. J Neurosci 2020;40:6722-31. [PMID: 32487696 DOI: 10.1523/JNEUROSCI.0111-20.2020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
8 Jiang W, Rasmussen JH, Xue Q, Ding M, Zheng X, Elemans CPH. High-fidelity continuum modeling predicts avian voiced sound production. Proc Natl Acad Sci U S A 2020;117:4718-23. [PMID: 32054784 DOI: 10.1073/pnas.1922147117] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
9 Adam I, Elemans CP. Increasing muscle speed drives changes in the neuromuscular transform of motor commands during postnatal development in songbirds.. [DOI: 10.1101/2020.02.19.955799] [Reference Citation Analysis]
10 Kriesell HJ, Le Bohec C, Cerwenka AF, Hertel M, Robin JP, Ruthensteiner B, Gahr M, Aubin T, Düring DN. Vocal tract anatomy of king penguins: morphological traits of two-voiced sound production. Front Zool 2020;17:5. [PMID: 32021638 DOI: 10.1186/s12983-020-0351-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
11 Leblois A, Perkel DJ. The Song Circuit as a Model of Basal Ganglia Function. The Neuroethology of Birdsong 2020. [DOI: 10.1007/978-3-030-34683-6_4] [Reference Citation Analysis]
12 Jiang W, Rasmussen J, Xue Q, Ding M, Zheng X, Elemans C. High-fidelity continuum modeling predicts avian voiced sound production.. [DOI: 10.1101/790857] [Reference Citation Analysis]
13 Adam I, Elemans CPH. Vocal Motor Performance in Birdsong Requires Brain-Body Interaction. eNeuro 2019;6:ENEURO. [PMID: 31182473 DOI: 10.1523/ENEURO.0053-19.2019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
14 Lattenkamp EZ, Vernes SC. Vocal learning: a language-relevant trait in need of a broad cross-species approach. Current Opinion in Behavioral Sciences 2018;21:209-15. [DOI: 10.1016/j.cobeha.2018.04.007] [Cited by in Crossref: 39] [Cited by in F6Publishing: 15] [Article Influence: 9.8] [Reference Citation Analysis]
15 Szipl G, Ringler E, Spreafico M, Bugnyar T. Calls during agonistic interactions vary with arousal and raise audience attention in ravens. Front Zool 2017;14:57. [PMID: 29299036 DOI: 10.1186/s12983-017-0244-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
16 Düring DN, Knörlein BJ, Elemans CPH. In situ vocal fold properties and pitch prediction by dynamic actuation of the songbird syrinx. Sci Rep 2017;7:11296. [PMID: 28900151 DOI: 10.1038/s41598-017-11258-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
17 Schmidt MF, Goller F. Breathtaking Songs: Coordinating the Neural Circuits for Breathing and Singing. Physiology (Bethesda) 2016;31:442-51. [PMID: 27708050 DOI: 10.1152/physiol.00004.2016] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 4.6] [Reference Citation Analysis]
18 Mukherjee A, Mandre S, Mahadevan L. Controllable biomimetic birdsong. J R Soc Interface 2017;14:20170002. [PMID: 28768878 DOI: 10.1098/rsif.2017.0002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
19 Christensen LA, Allred LM, Goller F, Meyers RA. Is sexual dimorphism in singing behavior related to syringeal muscle composition? The Auk 2017;134:710-20. [DOI: 10.1642/auk-17-3.1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
20 Ladich F, Winkler H. Acoustic communication in terrestrial and aquatic vertebrates. Journal of Experimental Biology 2017;220:2306-17. [DOI: 10.1242/jeb.132944] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 9.2] [Reference Citation Analysis]
21 Kaplan G. Audition and Hemispheric Specialization in Songbirds and New Evidence from Australian Magpies. Symmetry 2017;9:99. [DOI: 10.3390/sym9070099] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
22 Faunes M, Botelho JF, Wild JM. Innervation of the syrinx of the zebra finch (Taeniopygia guttata). J Comp Neurol 2017;525:2847-60. [PMID: 28472866 DOI: 10.1002/cne.24236] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
23 Gadagkar V, Puzerey PA, Chen R, Baird-Daniel E, Farhang AR, Goldberg JH. Dopamine neurons encode performance error in singing birds. Science 2016;354:1278-82. [PMID: 27940871 DOI: 10.1126/science.aah6837] [Cited by in Crossref: 146] [Cited by in F6Publishing: 147] [Article Influence: 24.3] [Reference Citation Analysis]
24 Mencio C, Kuberan B, Goller F. Contributions of rapid neuromuscular transmission to the fine control of acoustic parameters of birdsong. J Neurophysiol 2017;117:637-45. [PMID: 27852738 DOI: 10.1152/jn.00843.2015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
25 Riede T, Eliason CM, Miller EH, Goller F, Clarke JA. Coos, booms, and hoots: The evolution of closed‐mouth vocal behavior in birds. Evolution 2016;70:1734-46. [DOI: 10.1111/evo.12988] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
26 Düring DN, Elemans CPH. Embodied Motor Control of Avian Vocal Production. In: Suthers RA, Fitch WT, Fay RR, Popper AN, editors. Vertebrate Sound Production and Acoustic Communication. Cham: Springer International Publishing; 2016. pp. 119-57. [DOI: 10.1007/978-3-319-27721-9_5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
27 Fitch WT, Suthers RA. Vertebrate Vocal Production: An Introductory Overview. In: Suthers RA, Fitch WT, Fay RR, Popper AN, editors. Vertebrate Sound Production and Acoustic Communication. Cham: Springer International Publishing; 2016. pp. 1-18. [DOI: 10.1007/978-3-319-27721-9_1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Luo J, Wiegrebe L. Biomechanical control of vocal plasticity in an echolocating bat. J Exp Biol 2016;219:878-86. [PMID: 26823102 DOI: 10.1242/jeb.134957] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
29 Suthers RA, Rothgerber JR, Jensen KK. Lingual articulation in songbirds. J Exp Biol 2016;219:491-500. [PMID: 26685174 DOI: 10.1242/jeb.126532] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
30 Elemans CP, Rasmussen JH, Herbst CT, Düring DN, Zollinger SA, Brumm H, Srivastava K, Svane N, Ding M, Larsen ON, Sober SJ, Švec JG. Universal mechanisms of sound production and control in birds and mammals. Nat Commun 2015;6:8978. [PMID: 26612008 DOI: 10.1038/ncomms9978] [Cited by in Crossref: 85] [Cited by in F6Publishing: 90] [Article Influence: 12.1] [Reference Citation Analysis]
31 Ting LH, Chiel HJ, Trumbower RD, Allen JL, McKay JL, Hackney ME, Kesar TM. Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron 2015;86:38-54. [PMID: 25856485 DOI: 10.1016/j.neuron.2015.02.042] [Cited by in Crossref: 251] [Cited by in F6Publishing: 254] [Article Influence: 35.9] [Reference Citation Analysis]
32 Doolittle EL, Gingras B, Endres DM, Fitch WT. Overtone-based pitch selection in hermit thrush song: unexpected convergence with scale construction in human music. Proc Natl Acad Sci U S A 2014;111:16616-21. [PMID: 25368163 DOI: 10.1073/pnas.1406023111] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]