BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Arrigoni E, Saper CB. What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation. Curr Opin Neurobiol 2014;29:165-71. [PMID: 25064179 DOI: 10.1016/j.conb.2014.07.016] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
Number Citing Articles
1 Kelly MJ, Qiu J, Rønnekleiv OK. TRPCing around the hypothalamus. Front Neuroendocrinol 2018;51:116-24. [PMID: 29859883 DOI: 10.1016/j.yfrne.2018.05.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
2 Ehmann N, Pauls D. Optogenetics: Illuminating neuronal circuits of memory formation. Journal of Neurogenetics 2020;34:47-54. [DOI: 10.1080/01677063.2019.1708352] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Bandaru SS, Khanday MA, Ibrahim N, Naganuma F, Vetrivelan R. Sleep-Wake Control by Melanin-Concentrating Hormone (MCH) Neurons: a Review of Recent Findings. Curr Neurol Neurosci Rep 2020;20:55. [PMID: 33006677 DOI: 10.1007/s11910-020-01075-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Liu S, Li C, Xing Y, Wang Y, Tao F. Role of Neuromodulation and Optogenetic Manipulation in Pain Treatment. Curr Neuropharmacol 2016;14:654-61. [PMID: 26935535 DOI: 10.2174/1570159x14666160303110503] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Liu S, Tang Y, Xing Y, Kramer P, Bellinger L, Tao F. Potential Application of Optogenetic Stimulation in the Treatment of Pain and Migraine Headache: A Perspective from Animal Studies. Brain Sci 2019;9:E26. [PMID: 30699891 DOI: 10.3390/brainsci9020026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
6 Barbano MF, Wang HL, Morales M, Wise RA. Feeding and Reward Are Differentially Induced by Activating GABAergic Lateral Hypothalamic Projections to VTA. J Neurosci 2016;36:2975-85. [PMID: 26961951 DOI: 10.1523/JNEUROSCI.3799-15.2016] [Cited by in Crossref: 59] [Cited by in F6Publishing: 42] [Article Influence: 9.8] [Reference Citation Analysis]
7 Zhang Y, Castro DC, Han Y, Wu Y, Guo H, Weng Z, Xue Y, Ausra J, Wang X, Li R, Wu G, Vázquez-Guardado A, Xie Y, Xie Z, Ostojich D, Peng D, Sun R, Wang B, Yu Y, Leshock JP, Qu S, Su CJ, Shen W, Hang T, Banks A, Huang Y, Radulovic J, Gutruf P, Bruchas MR, Rogers JA. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc Natl Acad Sci U S A 2019;116:21427-37. [PMID: 31601737 DOI: 10.1073/pnas.1909850116] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 14.3] [Reference Citation Analysis]
8 Svensson E, Apergis-Schoute J, Burnstock G, Nusbaum MP, Parker D, Schiöth HB. General Principles of Neuronal Co-transmission: Insights From Multiple Model Systems. Front Neural Circuits 2018;12:117. [PMID: 30728768 DOI: 10.3389/fncir.2018.00117] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 9.0] [Reference Citation Analysis]
9 Colton GF, Cook AP, Nusbaum MP. Different microcircuit responses to comparable input from one versus both copies of an identified projection neuron. J Exp Biol 2020;223:jeb228114. [PMID: 32820029 DOI: 10.1242/jeb.228114] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Qiu J, Nestor CC, Zhang C, Padilla SL, Palmiter RD, Kelly MJ, Rønnekleiv OK. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons. Elife 2016;5:e16246. [PMID: 27549338 DOI: 10.7554/eLife.16246] [Cited by in Crossref: 79] [Cited by in F6Publishing: 62] [Article Influence: 13.2] [Reference Citation Analysis]
11 Hume C, Allchorne A, Grinevich V, Leng G, Ludwig M. Effects of optogenetic stimulation of vasopressinergic retinal afferents on suprachiasmatic neurones. J Neuroendocrinol 2019;31. [DOI: 10.1111/jne.12806] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
12 Liu S, Shao Z, Puche A, Wachowiak M, Rothermel M, Shipley MT. Muscarinic receptors modulate dendrodendritic inhibitory synapses to sculpt glomerular output. J Neurosci 2015;35:5680-92. [PMID: 25855181 DOI: 10.1523/JNEUROSCI.4953-14.2015] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 4.1] [Reference Citation Analysis]
13 Johnson C, Hong W, Micevych P. Optogenetic Activation of β-Endorphin Terminals in the Medial Preoptic Nucleus Regulates Female Sexual Receptivity. eNeuro 2020;7:ENEURO. [PMID: 31941660 DOI: 10.1523/ENEURO.0315-19.2019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
14 White BH. What genetic model organisms offer the study of behavior and neural circuits. J Neurogenet 2016;30:54-61. [PMID: 27328841 DOI: 10.1080/01677063.2016.1177049] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
15 Liu JJ, Mirabella VR, Pang ZP. Cell type- and pathway-specific synaptic regulation of orexin neurocircuitry. Brain Res 2020;1731:145974. [PMID: 30296428 DOI: 10.1016/j.brainres.2018.10.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
16 Kanda T, Ohyama K, Muramoto H, Kitajima N, Sekiya H. Promising techniques to illuminate neuromodulatory control of the cerebral cortex in sleeping and waking states. Neurosci Res 2017;118:92-103. [PMID: 28434992 DOI: 10.1016/j.neures.2017.04.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Jiang J, Cui H, Rahmouni K. Optogenetics and pharmacogenetics: principles and applications. Am J Physiol Regul Integr Comp Physiol 2017;313:R633-45. [PMID: 28794102 DOI: 10.1152/ajpregu.00091.2017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
18 Shao YQ, Fan L, Wu WY, Zhu YJ, Xu HT. A developmental switch between electrical and neuropeptide communication in the ventromedial hypothalamus. Curr Biol 2022:S0960-9822(22)00788-6. [PMID: 35659861 DOI: 10.1016/j.cub.2022.05.029] [Reference Citation Analysis]
19 Lim MA, Chitturi J, Laskova V, Meng J, Findeis D, Wiekenberg A, Mulcahy B, Luo L, Li Y, Lu Y, Hung W, Qu Y, Ho CY, Holmyard D, Ji N, McWhirter R, Samuel AD, Miller DM, Schnabel R, Calarco JA, Zhen M. Neuroendocrine modulation sustains the C. elegans forward motor state. Elife 2016;5:e19887. [PMID: 27855782 DOI: 10.7554/eLife.19887] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
20 Adamantidis A, Lüthi A. Optogenetic Dissection of Sleep-Wake States In Vitro and In Vivo. Handb Exp Pharmacol 2019;253:125-51. [PMID: 29687163 DOI: 10.1007/164_2018_94] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
21 Bo A, Si L, Wang Y, Bao L, Yuan H. Mechanism of Mongolian medical warm acupuncture in treating insomnia by regulating miR-101a in rats with insomnia. Exp Ther Med 2017;14:289-97. [PMID: 28672928 DOI: 10.3892/etm.2017.4452] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
22 Liu JJ, Tsien RW, Pang ZP. Hypothalamic melanin-concentrating hormone regulates hippocampus-dorsolateral septum activity. Nat Neurosci 2022;25:61-71. [PMID: 34980924 DOI: 10.1038/s41593-021-00984-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Chee MJ, Arrigoni E, Maratos-Flier E. Melanin-concentrating hormone neurons release glutamate for feedforward inhibition of the lateral septum. J Neurosci 2015;35:3644-51. [PMID: 25716862 DOI: 10.1523/JNEUROSCI.4187-14.2015] [Cited by in Crossref: 49] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
24 Mickelsen LE, Kolling FW 4th, Chimileski BR, Fujita A, Norris C, Chen K, Nelson CE, Jackson AC. Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis. eNeuro 2017;4:ENEURO. [PMID: 28966976 DOI: 10.1523/ENEURO.0013-17.2017] [Cited by in Crossref: 48] [Cited by in F6Publishing: 33] [Article Influence: 9.6] [Reference Citation Analysis]
25 Yeo SH, Colledge WH. The Role of Kiss1 Neurons As Integrators of Endocrine, Metabolic, and Environmental Factors in the Hypothalamic-Pituitary-Gonadal Axis. Front Endocrinol (Lausanne) 2018;9:188. [PMID: 29755406 DOI: 10.3389/fendo.2018.00188] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
26 Vetrivelan R, Kong D, Ferrari LL, Arrigoni E, Madara JC, Bandaru SS, Lowell BB, Lu J, Saper CB. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 2016;336:102-13. [PMID: 27595887 DOI: 10.1016/j.neuroscience.2016.08.046] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 8.2] [Reference Citation Analysis]
27 Klawonn AM, Malenka RC. Nucleus Accumbens Modulation in Reward and Aversion. Cold Spring Harb Symp Quant Biol 2018;83:119-29. [PMID: 30674650 DOI: 10.1101/sqb.2018.83.037457] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
28 Godfrey N, Borgland SL. Diversity in the lateral hypothalamic input to the ventral tegmental area. Neuropharmacology 2019;154:4-12. [DOI: 10.1016/j.neuropharm.2019.05.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
29 Mandelblat-Cerf Y, Ramesh RN, Burgess CR, Patella P, Yang Z, Lowell BB, Andermann ML. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales. Elife 2015;4. [PMID: 26159614 DOI: 10.7554/eLife.07122] [Cited by in Crossref: 117] [Cited by in F6Publishing: 78] [Article Influence: 16.7] [Reference Citation Analysis]
30 Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature 2016;538:51-9. [PMID: 27708309 DOI: 10.1038/nature19773] [Cited by in Crossref: 166] [Cited by in F6Publishing: 141] [Article Influence: 27.7] [Reference Citation Analysis]
31 Sorooshyari S, Huerta R, de Lecea L. A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition. Front Neurol 2015;6:32. [PMID: 25767461 DOI: 10.3389/fneur.2015.00032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
32 Li X, Bucher D, Nadim F. Distinct Co-Modulation Rules of Synapses and Voltage-Gated Currents Coordinate Interactions of Multiple Neuromodulators. J Neurosci 2018;38:8549-62. [PMID: 30126969 DOI: 10.1523/JNEUROSCI.1117-18.2018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
33 Rønnekleiv OK, Qiu J, Kelly MJ. Arcuate Kisspeptin Neurons Coordinate Reproductive Activities with Metabolism. Semin Reprod Med 2019;37:131-40. [PMID: 31869841 DOI: 10.1055/s-0039-3400251] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
34 Adamantidis AR. Sleep: the sound of a local alarm clock. Curr Biol 2015;25:R49-51. [PMID: 25562304 DOI: 10.1016/j.cub.2014.11.022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]