BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pahar M, Klopper M, Warren R, Niesler T. COVID-19 cough classification using machine learning and global smartphone recordings. Comput Biol Med 2021;135:104572. [PMID: 34182331 DOI: 10.1016/j.compbiomed.2021.104572] [Cited by in Crossref: 4] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Rashed BM, Popescu N. Critical Analysis of the Current Medical Image-Based Processing Techniques for Automatic Disease Evaluation: Systematic Literature Review. Sensors (Basel) 2022;22:7065. [PMID: 36146414 DOI: 10.3390/s22187065] [Reference Citation Analysis]
2 Xia T, Han J, Mascolo C. Exploring machine learning for audio-based respiratory condition screening: A concise review of databases, methods, and open issues. Exp Biol Med (Maywood) 2022;:15353702221115428. [PMID: 35974706 DOI: 10.1177/15353702221115428] [Reference Citation Analysis]
3 Wang G, Wang L, Meng Z, Su X, Jia C, Qiao X, Pan S, Chen Y, Cheng Y, Zhu M. Visual Detection of COVID-19 from Materials Aspect. Adv Fiber Mater . [DOI: 10.1007/s42765-022-00179-y] [Reference Citation Analysis]
4 Wall C, Zhang L, Yu Y, Kumar A, Gao R. A Deep Ensemble Neural Network with Attention Mechanisms for Lung Abnormality Classification Using Audio Inputs. Sensors (Basel) 2022;22:5566. [PMID: 35898070 DOI: 10.3390/s22155566] [Reference Citation Analysis]
5 Sharma G, Umapathy K, Krishnan S. Audio texture analysis of COVID-19 cough, breath, and speech sounds. Biomedical Signal Processing and Control 2022;76:103703. [DOI: 10.1016/j.bspc.2022.103703] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Ramírez-del Real T, Martínez-garcía M, Márquez MF, López-trejo L, Gutiérrez-esparza G, Hernández-lemus E. Individual Factors Associated With COVID-19 Infection: A Machine Learning Study. Front Public Health 2022;10:912099. [DOI: 10.3389/fpubh.2022.912099] [Reference Citation Analysis]
7 Ren Z, Chang Y, Bartl-pokorny KD, Pokorny FB, Schuller BW. The Acoustic Dissection of Cough: Diving into Machine Listening-based COVID-19 Analysis and Detection. Journal of Voice 2022. [DOI: 10.1016/j.jvoice.2022.06.011] [Reference Citation Analysis]
8 Chowdhury NK, Kabir MA, Rahman MM, Islam SMS. Machine learning for detecting COVID-19 from cough sounds: An ensemble-based MCDM method. Computers in Biology and Medicine 2022;145:105405. [DOI: 10.1016/j.compbiomed.2022.105405] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
9 Mazloumi R, Abazari SR, Nafarieh F, Aghsami A, Jolai F. Statistical analysis of blood characteristics of COVID-19 patients and their survival or death prediction using machine learning algorithms. Neural Comput & Applic. [DOI: 10.1007/s00521-022-07325-y] [Reference Citation Analysis]
10 Ismail Z, W Idris WF, Abdullah AH. Graphene-based temperature, humidity, and strain sensor: A review on progress, characterization, and potential applications during Covid-19 pandemic. Sensors International 2022. [DOI: 10.1016/j.sintl.2022.100183] [Reference Citation Analysis]
11 Santosh K, Rasmussen N, Mamun M, Aryal S. A systematic review on cough sound analysis for Covid-19 diagnosis and screening: is my cough sound COVID-19? PeerJ Computer Science 2022;8:e958. [DOI: 10.7717/peerj-cs.958] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Hamdi S, Oussalah M, Moussaoui A, Saidi M. Attention-based hybrid CNN-LSTM and spectral data augmentation for COVID-19 diagnosis from cough sound. J Intell Inf Syst 2022;:1-23. [PMID: 35498369 DOI: 10.1007/s10844-022-00707-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Haq IU, Du X, Jan H. Implementation of smart social distancing for COVID-19 based on deep learning algorithm. Multimed Tools Appl. [DOI: 10.1007/s11042-022-13154-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Rostami M, Oussalah M. A novel explainable COVID-19 diagnosis method by integration of feature selection with random forest. Inform Med Unlocked 2022;30:100941. [PMID: 35399333 DOI: 10.1016/j.imu.2022.100941] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Rahman T, Ibtehaz N, Khandakar A, Hossain MSA, Mekki YMS, Ezeddin M, Bhuiyan EH, Ayari MA, Tahir A, Qiblawey Y, Mahmud S, Zughaier SM, Abbas T, Al-maadeed S, Chowdhury MEH. QUCoughScope: An Intelligent Application to Detect COVID-19 Patients Using Cough and Breath Sounds. Diagnostics 2022;12:920. [DOI: 10.3390/diagnostics12040920] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
16 Anand S, Sharma V, Pourush R, Jaiswal S. A comprehensive survey on the biomedical signal processing methods for the detection of COVID-19. Ann Med Surg (Lond) 2022;76:103519. [PMID: 35401978 DOI: 10.1016/j.amsu.2022.103519] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Ye Z, Ling Y, Yang M, Xu Y, Zhu L, Yan Z, Chen PY. A Breathable, Reusable, and Zero-Power Smart Face Mask for Wireless Cough and Mask-Wearing Monitoring. ACS Nano 2022. [PMID: 35298138 DOI: 10.1021/acsnano.1c11041] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
18 Saroja S, Madavan R, Haseena S, Pepsi MBB, Karthick A, Mohanavel V, Muhibbullah M, Chen H. Human Centered Decision-Making for COVID-19 Testing Center Location Selection: Tamil Nadu—A Case Study. Computational and Mathematical Methods in Medicine 2022;2022:1-13. [DOI: 10.1155/2022/2048294] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Verde L, De Pietro G, Ghoneim A, Alrashoud M, Al-Mutib KN, Sannino G. Exploring the Use of Artificial Intelligence Techniques to Detect the Presence of Coronavirus Covid-19 Through Speech and Voice Analysis. IEEE Access 2021;9:65750-7. [PMID: 35256922 DOI: 10.1109/ACCESS.2021.3075571] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
20 Biabani SAA, Tayyib NA. A Review on the Use of Machine Learning Against the Covid-19 Pandemic. Eng Technol Appl Sci Res 2022;12:8039-44. [DOI: 10.48084/etasr.4628] [Reference Citation Analysis]
21 Son M, Lee S. COVID-19 Diagnosis from Crowdsourced Cough Sound Data. Applied Sciences 2022;12:1795. [DOI: 10.3390/app12041795] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Ijaz A, Nabeel M, Masood U, Mahmood T, Hashmi MS, Posokhova I, Rizwan A, Imran A. Towards using cough for respiratory disease diagnosis by leveraging Artificial Intelligence: A survey. Informatics in Medicine Unlocked 2022. [DOI: 10.1016/j.imu.2021.100832] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Saeed U, Shah SY, Ahmad J, Imran MA, Abbasi QH, Shah SA. Machine learning empowered COVID-19 patient monitoring using non-contact sensing: An extensive review. J Pharm Anal 2022. [PMID: 35003825 DOI: 10.1016/j.jpha.2021.12.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
24 Mahmood AF, Mahmood SW. Cough/X-ray/CT (CXC) website for testing COVID-19 and auto-informing results. Review of Scientific Instruments 2022;93:013705. [DOI: 10.1063/5.0076314] [Reference Citation Analysis]
25 Pahar M, Klopper M, Warren R, Niesler T. COVID-19 detection in cough, breath and speech using deep transfer learning and bottleneck features. Comput Biol Med 2021;141:105153. [PMID: 34954610 DOI: 10.1016/j.compbiomed.2021.105153] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
26 Pahar M, Klopper M, Reeve B, Warren R, Theron G, Niesler T. Automatic cough classification for tuberculosis screening in a real-world environment. Physiol Meas 2021;42. [PMID: 34649231 DOI: 10.1088/1361-6579/ac2fb8] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
27 Alqudaihi KS, Aslam N, Khan IU, Almuhaideb AM, Alsunaidi SJ, Ibrahim NMAR, Alhaidari FA, Shaikh FS, Alsenbel YM, Alalharith DM, Alharthi HM, Alghamdi WM, Alshahrani MS. Cough Sound Detection and Diagnosis Using Artificial Intelligence Techniques: Challenges and Opportunities. IEEE Access 2021;9:102327-44. [PMID: 34786317 DOI: 10.1109/ACCESS.2021.3097559] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
28 Kobat MA, Kivrak T, Barua PD, Tuncer T, Dogan S, Tan RS, Ciaccio EJ, Acharya UR. Automated COVID-19 and Heart Failure Detection Using DNA Pattern Technique with Cough Sounds. Diagnostics (Basel) 2021;11:1962. [PMID: 34829308 DOI: 10.3390/diagnostics11111962] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Verde L, De Pietro G, Sannino G. Artificial Intelligence Techniques for the Non-invasive Detection of COVID-19 Through the Analysis of Voice Signals. Arab J Sci Eng 2021;:1-11. [PMID: 34642613 DOI: 10.1007/s13369-021-06041-4] [Reference Citation Analysis]
30 Suppakitjanusant P, Sungkanuparph S, Wongsinin T, Virapongsiri S, Kasemkosin N, Chailurkit L, Ongphiphadhanakul B. Identifying individuals with recent COVID-19 through voice classification using deep learning. Sci Rep 2021;11:19149. [PMID: 34580407 DOI: 10.1038/s41598-021-98742-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Tena A, Clarià F, Solsona F. Automated detection of COVID-19 cough. Biomed Signal Process Control 2022;71:103175. [PMID: 34539811 DOI: 10.1016/j.bspc.2021.103175] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 16.0] [Reference Citation Analysis]
32 Deshpande G, Batliner A, Schuller BW. AI-Based human audio processing for COVID-19: A comprehensive overview. Pattern Recognit 2022;122:108289. [PMID: 34483372 DOI: 10.1016/j.patcog.2021.108289] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
33 Melek M. Diagnosis of COVID-19 and non-COVID-19 patients by classifying only a single cough sound. Neural Comput Appl 2021;:1-12. [PMID: 34345119 DOI: 10.1007/s00521-021-06346-3] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
34 Melek Manshouri N. Identifying COVID-19 by using spectral analysis of cough recordings: a distinctive classification study. Cogn Neurodyn 2021;:1-15. [PMID: 34341676 DOI: 10.1007/s11571-021-09695-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Mohammed EA, Keyhani M, Sanati-Nezhad A, Hejazi SH, Far BH. An ensemble learning approach to digital corona virus preliminary screening from cough sounds. Sci Rep 2021;11:15404. [PMID: 34321592 DOI: 10.1038/s41598-021-95042-2] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
36 El-Rashidy N, Abdelrazik S, Abuhmed T, Amer E, Ali F, Hu JW, El-Sappagh S. Comprehensive Survey of Using Machine Learning in the COVID-19 Pandemic. Diagnostics (Basel) 2021;11:1155. [PMID: 34202587 DOI: 10.3390/diagnostics11071155] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]