BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pincebourde S, Woods HA. There is plenty of room at the bottom: microclimates drive insect vulnerability to climate change. Current Opinion in Insect Science 2020;41:63-70. [DOI: 10.1016/j.cois.2020.07.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Youngsteadt E, Prado SG, Keleher KJ, Kirchner M. Can behaviour and physiology mitigate effects of warming on ectotherms? A test in urban ants. J Anim Ecol 2023. [PMID: 36642830 DOI: 10.1111/1365-2656.13860] [Reference Citation Analysis]
2 Régnier B, Legrand J, Calatayud PA, Rebaudo F. Developmental Differentiations of Major Maize Stemborers Due to Global Warming in Temperate and Tropical Climates. Insects 2023;14. [PMID: 36661979 DOI: 10.3390/insects14010051] [Reference Citation Analysis]
3 Kong JD, Wu NC. Can we improve our ability to interpret ectotherm thermal tolerance?. [DOI: 10.1101/2022.12.14.520433] [Reference Citation Analysis]
4 Briscoe NJ, Morris SD, Mathewson PD, Buckley LB, Jusup M, Levy O, Maclean IMD, Pincebourde S, Riddell EA, Roberts JA, Schouten R, Sears MW, Kearney MR. Mechanistic forecasts of species responses to climate change: The promise of biophysical ecology. Glob Chang Biol 2022. [PMID: 36515542 DOI: 10.1111/gcb.16557] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Chown SL. Macrophysiology for decision‐making. Journal of Zoology 2022. [DOI: 10.1111/jzo.13029] [Reference Citation Analysis]
6 Franzén M, Francioli Y, Askling J, Kindvall O, Johansson V, Forsman A. Yearly weather variation and surface temperature drives the spatiotemporal dynamics of a threatened butterfly and its host plant. Front Ecol Evol 2022;10:917991. [DOI: 10.3389/fevo.2022.917991] [Reference Citation Analysis]
7 Weaving H, Terblanche JS, Pottier P, English S. Meta-analysis reveals weak but pervasive plasticity in insect thermal limits. Nat Commun 2022;13:5292. [PMID: 36075913 DOI: 10.1038/s41467-022-32953-2] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
8 Kovac H, Käfer H, Petrocelli I, Amstrup AB, Stabentheiner A. Energetics of Paper Wasps (Polistes sp.) from Differing Climates during the Breeding Season. Insects 2022;13:800. [DOI: 10.3390/insects13090800] [Reference Citation Analysis]
9 Birrell JH, Woods HA. Going with the flow – how a stream insect, Pteronarcys californica, exploits local flows to increase oxygen availability.. [DOI: 10.1101/2022.06.06.495063] [Reference Citation Analysis]
10 Ballesteros AR, Tan MK, Robillard T. Phenotypic plasticity of acoustic traits in high-frequency lebinthine crickets (Orthoptera: Eneopterinae: Lebinthina). Sci Nat 2022;109:29. [DOI: 10.1007/s00114-022-01800-1] [Reference Citation Analysis]
11 Fowler‐finn KD, Johnson T. Harvesters (Arachnida: Opiliones) mate more at cooler temperatures, but the effect of temperature on mating varies across years. Ethology. [DOI: 10.1111/eth.13311] [Reference Citation Analysis]
12 Bridle J, Hoffmann A. Understanding the biology of species' ranges: when and how does evolution change the rules of ecological engagement? Philos Trans R Soc Lond B Biol Sci 2022;377:20210027. [PMID: 35184590 DOI: 10.1098/rstb.2021.0027] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 O'Donnell MJ. A perspective on insect water balance. J Exp Biol 2022;225:jeb242358. [PMID: 35363855 DOI: 10.1242/jeb.242358] [Reference Citation Analysis]
14 Machekano H, Zidana C, Gotcha N, Nyamukondiwa C. Limited thermal plasticity may constrain ecosystem function in a basally heat tolerant tropical telecoprid dung beetle, Allogymnopleurus thalassinus (Klug, 1855). Sci Rep 2021;11:22192. [PMID: 34772933 DOI: 10.1038/s41598-021-01478-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Ma G, Ma CS. Potential distribution of invasive crop pests under climate change: incorporating mitigation responses of insects into prediction models. Curr Opin Insect Sci 2021;49:15-21. [PMID: 34728406 DOI: 10.1016/j.cois.2021.10.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
16 Mammola S, Pétillon J, Hacala A, Monsimet J, Marti S, Cardoso P, Lafage D, Real R. Challenges and opportunities of species distribution modelling of terrestrial arthropod predators. Divers Distrib 2021;27:2596-614. [DOI: 10.1111/ddi.13434] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
17 Iltis C, Tougeron K, Hance T, Louâpre P, Foray V. A perspective on insect-microbe holobionts facing thermal fluctuations in a climate-change context. Environ Microbiol 2021. [PMID: 34713541 DOI: 10.1111/1462-2920.15826] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
18 Brackley A, Lill JT, Weiss MR. Adaptive ontogenetic shifts in larval responses to environmental cues. Entomol Exp Appl 2021;169:1147-56. [DOI: 10.1111/eea.13114] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Haesen S, Lembrechts JJ, De Frenne P, Lenoir J, Aalto J, Ashcroft MB, Kopecký M, Luoto M, Maclean I, Nijs I, Niittynen P, van den Hoogen J, Arriga N, Brůna J, Buchmann N, Čiliak M, Collalti A, De Lombaerde E, Descombes P, Gharun M, Goded I, Govaert S, Greiser C, Grelle A, Gruening C, Hederová L, Hylander K, Kreyling J, Kruijt B, Macek M, Máliš F, Man M, Manca G, Matula R, Meeussen C, Merinero S, Minerbi S, Montagnani L, Muffler L, Ogaya R, Penuelas J, Plichta R, Portillo-Estrada M, Schmeddes J, Shekhar A, Spicher F, Ujházyová M, Vangansbeke P, Weigel R, Wild J, Zellweger F, Van Meerbeek K. ForestTemp - Sub-canopy microclimate temperatures of European forests. Glob Chang Biol 2021;27:6307-19. [PMID: 34605132 DOI: 10.1111/gcb.15892] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
20 Spacht DE, Gantz JD, Devlin JJ, McCabe EA, Lee RE Jr, Denlinger DL, Teets NM. Fine-scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect. Oecologia 2021;197:373-85. [PMID: 34596750 DOI: 10.1007/s00442-021-05035-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Tladi M, Wasserman RJ, Cuthbert RN, Dalu T, Nyamukondiwa C. Thermal limits and preferences of large branchiopods (Branchiopoda: Anostraca and Spinicaudata) from temporary wetland arid zone systems. J Therm Biol 2021;99:102997. [PMID: 34420629 DOI: 10.1016/j.jtherbio.2021.102997] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Gols R, Ojeda-Prieto LM, Li K, van der Putten WH, Harvey JA. Within-patch and edge microclimates vary over a growing season and are amplified during a heatwave: Consequences for ectothermic insects. J Therm Biol 2021;99:103006. [PMID: 34420636 DOI: 10.1016/j.jtherbio.2021.103006] [Reference Citation Analysis]
23 Bourougaaoui A, Robinet C, Ben Jamaa ML, Laparie M. Effects of climate warming on the pine processionary moth at the southern edge of its range: a retrospective analysis on egg survival in Tunisia.. [DOI: 10.1101/2021.08.17.456665] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Sallé A, Cours J, Le Souchu E, Lopez-vaamonde C, Pincebourde S, Bouget C. Climate Change Alters Temperate Forest Canopies and Indirectly Reshapes Arthropod Communities. Front For Glob Change 2021;4:710854. [DOI: 10.3389/ffgc.2021.710854] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
25 Tarusikirwa VL, Cuthbert RN, Mutamiswa R, Gotcha N, Nyamukondiwa C. Water Balance and Desiccation Tolerance of the Invasive South American Tomato Pinworm. J Econ Entomol 2021;114:1743-51. [PMID: 34231839 DOI: 10.1093/jee/toab128] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Cook AM, Berry N, Milner KV, Leigh A. Water availability influences thermal safety margins for leaves. Funct Ecol 2021;35:2179-89. [DOI: 10.1111/1365-2435.13868] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
27 McCain CM, Garfinkel CF. Climate change and elevational range shifts in insects. Curr Opin Insect Sci 2021;47:111-8. [PMID: 34175465 DOI: 10.1016/j.cois.2021.06.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
28 Woods HA, Pincebourde S, Dillon ME, Terblanche JS. Extended phenotypes: buffers or amplifiers of climate change? Trends Ecol Evol 2021;36:889-98. [PMID: 34147289 DOI: 10.1016/j.tree.2021.05.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
29 Abarca M, Spahn R. Direct and indirect effects of altered temperature regimes and phenological mismatches on insect populations. Curr Opin Insect Sci 2021;47:67-74. [PMID: 33989831 DOI: 10.1016/j.cois.2021.04.008] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
30 Pincebourde S, Dillon ME, Woods HA. Body size determines the thermal coupling between insects and plant surfaces. Funct Ecol 2021;35:1424-36. [DOI: 10.1111/1365-2435.13801] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
31 Dongmo MAK, Hanna R, Smith TB, Fiaboe KKM, Fomena A, Bonebrake TC. Local adaptation in thermal tolerance for a tropical butterfly across ecotone and rainforest habitats. Biol Open 2021;10:bio058619. [PMID: 34416009 DOI: 10.1242/bio.058619] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
32 Keosentse O, Mutamiswa R, Du Plessis H, Nyamukondiwa C. Developmental stage variation in Spodoptera frugiperda (Lepidoptera: Noctuidae) low temperature tolerance: implications for overwintering. Austral Entomology 2021;60:400-10. [DOI: 10.1111/aen.12536] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
33 Poitou L, Robinet C, Suppo C, Rousselet J, Laparie M, Pincebourde S. When insect pests build their own thermal niche: The hot nest of the pine processionary moth. J Therm Biol 2021;98:102947. [PMID: 34016364 DOI: 10.1016/j.jtherbio.2021.102947] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
34 Leith NT, Macchiano A, Moore MP, Fowler-Finn KD. Temperature impacts all behavioral interactions during insect and arachnid reproduction. Curr Opin Insect Sci 2021;45:106-14. [PMID: 33831604 DOI: 10.1016/j.cois.2021.03.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
35 Ma G, Hoffmann AA, Ma CS. Are extreme high temperatures at low or high latitudes more likely to inhibit the population growth of a globally distributed aphid? J Therm Biol 2021;98:102936. [PMID: 34016358 DOI: 10.1016/j.jtherbio.2021.102936] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
36 Fitzgerald JL, Stuble KL, Nichols LM, Diamond SE, Wentworth TR, Pelini SL, Gotelli NJ, Sanders NJ, Dunn RR, Penick CA. Abundance of spring‐ and winter‐active arthropods declines with warming. Ecosphere 2021;12. [DOI: 10.1002/ecs2.3473] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
37 Martin Y, Titeux N, Van Dyck H. Range expansion, habitat use, and choosiness in a butterfly under climate change: Marginality and tolerance of oviposition site selection. Ecol Evol 2021;11:2336-45. [PMID: 33717459 DOI: 10.1002/ece3.7202] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]