BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Artyomov MN, Van den Bossche J. Immunometabolism in the Single-Cell Era. Cell Metab 2020;32:710-25. [PMID: 33027638 DOI: 10.1016/j.cmet.2020.09.013] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Hu X, Zhou X. Impact of single-cell RNA sequencing on understanding immune regulation. J Cell Mol Med 2022. [PMID: 35906816 DOI: 10.1111/jcmm.17493] [Reference Citation Analysis]
2 Lisci M, Griffiths GM. Arming a killer: mitochondrial regulation of CD8+ T cell cytotoxicity. Trends Cell Biol 2022:S0962-8924(22)00138-6. [PMID: 35753961 DOI: 10.1016/j.tcb.2022.05.007] [Reference Citation Analysis]
3 Wculek SK, Dunphy G, Heras-Murillo I, Mastrangelo A, Sancho D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol 2021. [PMID: 34876704 DOI: 10.1038/s41423-021-00791-9] [Reference Citation Analysis]
4 Qin Y, Gao C, Luo J. Metabolism Characteristics of Th17 and Regulatory T Cells in Autoimmune Diseases. Front Immunol 2022;13:828191. [DOI: 10.3389/fimmu.2022.828191] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Shao Y, Zhou Y, Liu Y, Zhang W, Zhu G, Zhao Y, Zhang Q, Yao H, Zhao H, Guo G, Zhang S, Zhang X, Wang X. Intact living-cell electrolaunching ionization mass spectrometry for single-cell metabolomics. Chem Sci . [DOI: 10.1039/d2sc02569h] [Reference Citation Analysis]
6 Lee HW. Multidiscipline Immunotherapy-Based Rational Combinations for Robust and Durable Efficacy in Brain Metastases from Renal Cell Carcinoma. Int J Mol Sci 2021;22:6290. [PMID: 34208157 DOI: 10.3390/ijms22126290] [Reference Citation Analysis]
7 Aghakhani S, Zerrouk N, Niarakis A. Metabolic Reprogramming of Fibroblasts as Therapeutic Target in Rheumatoid Arthritis and Cancer: Deciphering Key Mechanisms Using Computational Systems Biology Approaches. Cancers (Basel) 2020;13:E35. [PMID: 33374292 DOI: 10.3390/cancers13010035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Ng RH, Lee JW, Baloni P, Diener C, Heath JR, Su Y. Constraint-Based Reconstruction and Analyses of Metabolic Models: Open-Source Python Tools and Applications to Cancer. Front Oncol 2022;12:914594. [DOI: 10.3389/fonc.2022.914594] [Reference Citation Analysis]
9 Wei Z, Ma H, Fang EF, Chen H. Editorial: Cellular Senescence and Cellular Communications Within Tissue Microenvironments During Aging. Front Physiol 2022;13:890577. [DOI: 10.3389/fphys.2022.890577] [Reference Citation Analysis]
10 Thibaut R, Gage MC, Pineda-Torra I, Chabrier G, Venteclef N, Alzaid F. Liver macrophages and inflammation in physiology and physiopathology of non-alcoholic fatty liver disease. FEBS J 2021. [PMID: 33860630 DOI: 10.1111/febs.15877] [Reference Citation Analysis]
11 Zhang X, Yuan T, Keijer J, de Boer VCJ. OCRbayes: A Bayesian hierarchical modeling framework for Seahorse extracellular flux oxygen consumption rate data analysis. PLoS One 2021;16:e0253926. [PMID: 34265000 DOI: 10.1371/journal.pone.0253926] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Pence BD; College of Health Sciences, University of Memphis, Memphis, TN, USA, Center for Nutraceutical and Dietary Supplement Research, University of Memphis, Memphis, TN, USA. . AIMSMOLES 2021;8:193-201. [DOI: 10.3934/molsci.2021015] [Reference Citation Analysis]
13 Tan W, Pan T, Wang S, Li P, Men Y, Tan R, Zhong Z, Wang Y. Immunometabolism modulation, a new trick of edible and medicinal plants in cancer treatment. Food Chem 2021;376:131860. [PMID: 34971892 DOI: 10.1016/j.foodchem.2021.131860] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Almeida L, Everts B. Fa(c)t checking: How fatty acids shape metabolism and function of macrophages and dendritic cells. Eur J Immunol 2021;51:1628-40. [PMID: 33788250 DOI: 10.1002/eji.202048944] [Reference Citation Analysis]
15 Ni D, Tang T, Lu Y, Xu K, Shao Y, Saaoud F, Saredy J, Liu L, Drummer C 4th, Sun Y, Hu W, Lopez-Pastrana J, Luo JJ, Jiang X, Choi ET, Wang H, Yang X. Canonical Secretomes, Innate Immune Caspase-1-, 4/11-Gasdermin D Non-Canonical Secretomes and Exosomes May Contribute to Maintain Treg-Ness for Treg Immunosuppression, Tissue Repair and Modulate Anti-Tumor Immunity via ROS Pathways. Front Immunol 2021;12:678201. [PMID: 34084175 DOI: 10.3389/fimmu.2021.678201] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Forteza MJ, Ketelhuth DFJ. Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clin Sci (Lond) 2022;136:435-54. [PMID: 35348183 DOI: 10.1042/CS20201293] [Reference Citation Analysis]
17 Voss K, Hong HS, Bader JE, Sugiura A, Lyssiotis CA, Rathmell JC. A guide to interrogating immunometabolism. Nat Rev Immunol 2021. [PMID: 33859379 DOI: 10.1038/s41577-021-00529-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Dhawan UK, Singhal A, Subramanian M. Dead cell and debris clearance in the atherosclerotic plaque: Mechanisms and therapeutic opportunities to promote inflammation resolution. Pharmacol Res 2021;170:105699. [PMID: 34087352 DOI: 10.1016/j.phrs.2021.105699] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Zhang M, Li C, Ren J, Wang H, Yi F, Wu J, Tang Y. The Double-Faceted Role of Leucine-Rich Repeat Kinase 2 in the Immunopathogenesis of Parkinson’s Disease. Front Aging Neurosci 2022;14:909303. [DOI: 10.3389/fnagi.2022.909303] [Reference Citation Analysis]
20 Wei Y, Ding J, Li J, Cai S, Liu S, Hong L, Yin T, Zhang Y, Diao L. Metabolic Reprogramming of Immune Cells at the Maternal-Fetal Interface and the Development of Techniques for Immunometabolism. Front Immunol 2021;12:717014. [PMID: 34566973 DOI: 10.3389/fimmu.2021.717014] [Reference Citation Analysis]
21 Tans R, Dey S, Dey NS, Calder G, O'Toole P, Kaye PM, Heeren RMA. Spatially Resolved Immunometabolism to Understand Infectious Disease Progression. Front Microbiol 2021;12:709728. [PMID: 34489899 DOI: 10.3389/fmicb.2021.709728] [Reference Citation Analysis]
22 Rausser S, Trumpff C, McGill MA, Junker A, Wang W, Ho SH, Mitchell A, Karan KR, Monk C, Segerstrom SC, Reed RG, Picard M. Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures. Elife 2021;10:e70899. [PMID: 34698636 DOI: 10.7554/eLife.70899] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Hrovatin K, Fischer DS, Theis FJ. Toward modeling metabolic state from single-cell transcriptomics. Mol Metab 2021;:101396. [PMID: 34785394 DOI: 10.1016/j.molmet.2021.101396] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
24 [DOI: 10.1101/2020.10.16.342923] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Chou WC, Rampanelli E, Li X, Ting JP. Impact of intracellular innate immune receptors on immunometabolism. Cell Mol Immunol 2021. [PMID: 34697412 DOI: 10.1038/s41423-021-00780-y] [Reference Citation Analysis]
26 Wei J, Hu M, Du H. Improving Cancer Immunotherapy: Exploring and Targeting Metabolism in Hypoxia Microenvironment. Front Immunol 2022;13:845923. [PMID: 35281061 DOI: 10.3389/fimmu.2022.845923] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Horn CM, Kielian T. Crosstalk Between Staphylococcus aureus and Innate Immunity: Focus on Immunometabolism. Front Immunol 2020;11:621750. [PMID: 33613555 DOI: 10.3389/fimmu.2020.621750] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Xu Y, Su GH, Ma D, Xiao Y, Shao ZM, Jiang YZ. Technological advances in cancer immunity: from immunogenomics to single-cell analysis and artificial intelligence. Signal Transduct Target Ther 2021;6:312. [PMID: 34417437 DOI: 10.1038/s41392-021-00729-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Levine LS, Hiam-Galvez KJ, Marquez DM, Tenvooren I, Madden MZ, Contreras DC, Dahunsi DO, Irish JM, Oluwole OO, Rathmell JC, Spitzer MH. Single-cell analysis by mass cytometry reveals metabolic states of early-activated CD8+ T cells during the primary immune response. Immunity 2021;54:829-844.e5. [PMID: 33705706 DOI: 10.1016/j.immuni.2021.02.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
30 Thorp EB. Macrophage Metabolic Signaling during Ischemic Injury and Cardiac Repair. Immunometabolism 2021;3:e210018. [PMID: 33927894 DOI: 10.20900/immunometab20210018] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Schuster S, Ewald J, Kaleta C. Modeling the energy metabolism in immune cells. Curr Opin Biotechnol 2021;68:282-91. [PMID: 33770632 DOI: 10.1016/j.copbio.2021.03.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Wang Y, Li N, Zhang X, Horng T. Mitochondrial metabolism regulates macrophage biology. J Biol Chem 2021;297:100904. [PMID: 34157289 DOI: 10.1016/j.jbc.2021.100904] [Reference Citation Analysis]
33 Wang L, Liu Y, Dai Y, Tang X, Yin T, Wang C, Wang T, Dong L, Shi M, Qin J, Xue M, Cao Y, Liu J, Liu P, Huang J, Wen C, Zhang J, Xu Z, Bai F, Deng X, Peng C, Chen H, Jiang L, Chen S, Shen B. Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment. Gut 2022:gutjnl-2021-326070. [PMID: 35688610 DOI: 10.1136/gutjnl-2021-326070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Zago G, Saavedra PHV, Keshari KR, Perry JSA. Immunometabolism of Tissue-Resident Macrophages - An Appraisal of the Current Knowledge and Cutting-Edge Methods and Technologies. Front Immunol 2021;12:665782. [PMID: 34025667 DOI: 10.3389/fimmu.2021.665782] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Fabri M, Villa M, Stanczak MA, Edwards-Hicks J, Corrado M, Pearce EL. Research Techniques Made Simple: Profiling Cellular Energy Metabolism. J Invest Dermatol 2021;141:2767-2774.e2. [PMID: 34802549 DOI: 10.1016/j.jid.2021.09.004] [Reference Citation Analysis]
36 Xu Z, Han Q, Yang D, Li Y, Shang Q, Liu J, Li W, Xu H, Chen Q. Automatic Detection of Image-Based Features for Immunosuppressive Therapy Response Prediction in Oral Lichen Planus. Front Immunol 2022;13:942945. [DOI: 10.3389/fimmu.2022.942945] [Reference Citation Analysis]
37 Raynor JL, Chi H. Investigating the Dynamic Changes in iNKT Cell Metabolic Profiles During Development. Methods Mol Biol 2021;2388:181-92. [PMID: 34524673 DOI: 10.1007/978-1-0716-1775-5_17] [Reference Citation Analysis]
38 Li T, Shen K, Li J, Leung SWS, Zhu T, Shi Y. Glomerular Endothelial Cells Are the Coordinator in the Development of Diabetic Nephropathy. Front Med (Lausanne) 2021;8:655639. [PMID: 34222276 DOI: 10.3389/fmed.2021.655639] [Reference Citation Analysis]
39 Argüello RJ, Combes AJ, Char R, Gigan JP, Baaziz AI, Bousiquot E, Camosseto V, Samad B, Tsui J, Yan P, Boissonneau S, Figarella-Branger D, Gatti E, Tabouret E, Krummel MF, Pierre P. SCENITH: A Flow Cytometry-Based Method to Functionally Profile Energy Metabolism with Single-Cell Resolution. Cell Metab 2020;32:1063-1075.e7. [PMID: 33264598 DOI: 10.1016/j.cmet.2020.11.007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 11.5] [Reference Citation Analysis]
40 Qian L, Guo T. Immunometabolism the CyTOF way. Immunity 2021;54:610-3. [PMID: 33852827 DOI: 10.1016/j.immuni.2021.03.019] [Reference Citation Analysis]
41 Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol 2022. [PMID: 35879449 DOI: 10.1038/s41590-022-01267-2] [Reference Citation Analysis]
42 Zhang Q, Wang J, Yadav DK, Bai X, Liang T. Glucose Metabolism: The Metabolic Signature of Tumor Associated Macrophage. Front Immunol 2021;12:702580. [PMID: 34267763 DOI: 10.3389/fimmu.2021.702580] [Reference Citation Analysis]
43 Geeraerts X, Fernández-garcia J, Hartmann FJ, de Goede KE, Martens L, Elkrim Y, Debraekeleer A, Stijlemans B, Vandekeere A, Rinaldi G, De Rycke R, Planque M, Broekaert D, Meinster E, Clappaert E, Bardet P, Murgaski A, Gysemans C, Nana FA, Saeys Y, Bendall SC, Laoui D, Van den Bossche J, Fendt S, Van Ginderachter JA. Macrophages are metabolically heterogeneous within the tumor microenvironment. Cell Reports 2021;37:110171. [DOI: 10.1016/j.celrep.2021.110171] [Reference Citation Analysis]
44 Zang J, Ye K, Fei Y, Zhang R, Chen H, Zhuang G. Immunotherapy in the Treatment of Urothelial Bladder Cancer: Insights From Single-Cell Analysis. Front Oncol 2021;11:696716. [PMID: 34123863 DOI: 10.3389/fonc.2021.696716] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]