BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Spratt PWE, Alexander RPD, Ben-Shalom R, Sahagun A, Kyoung H, Keeshen CM, Sanders SJ, Bender KJ. Paradoxical hyperexcitability from NaV1.2 sodium channel loss in neocortical pyramidal cells. Cell Rep 2021;36:109483. [PMID: 34348157 DOI: 10.1016/j.celrep.2021.109483] [Cited by in Crossref: 3] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Thouta S, Waldbrook MG, Lin S, Mahadevan A, Mezeyova J, Soriano M, Versi P, Goodchild SJ, Parrish RR. Pharmacological determination of the fractional block of Nav channels required to impair neuronal excitability and ex vivo seizures. Front Cell Neurosci 2022;16:964691. [DOI: 10.3389/fncel.2022.964691] [Reference Citation Analysis]
2 Rahdar M, Hajisoltani R, Davoudi S, Karimi SA, Borjkhani M, Khatibi VA, Hosseinmardi N, Behzadi G, Janahmadi M. Alterations in the intrinsic discharge activity of CA1 pyramidal neurons associated with possible changes in the NADPH diaphorase activity in a rat model of autism induced by prenatal exposure to valproic acid. Brain Res 2022;1792:148013. [PMID: 35841982 DOI: 10.1016/j.brainres.2022.148013] [Reference Citation Analysis]
3 Ladd A, Kim KG, Balewski J, Bouchard K, Ben-shalom R. Scaling and Benchmarking an Evolutionary Algorithm for Constructing Biophysical Neuronal Models. Front Neuroinform 2022;16:882552. [DOI: 10.3389/fninf.2022.882552] [Reference Citation Analysis]
4 Berecki G, Howell KB, Heighway J, Olivier N, Rodda J, Overmars I, Vlaskamp DRM, Ware TL, Ardern-Holmes S, Lesca G, Alber M, Veggiotti P, Scheffer IE, Berkovic SF, Wolff M, Petrou S. Functional correlates of clinical phenotype and severity in recurrent SCN2A variants. Commun Biol 2022;5:515. [PMID: 35637276 DOI: 10.1038/s42003-022-03454-1] [Reference Citation Analysis]
5 Antoine MW. Paradoxical Hyperexcitability in Disorders of Neurodevelopment. Front Mol Neurosci 2022;15:826679. [DOI: 10.3389/fnmol.2022.826679] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Marosi M, Arman P, Aceto G, D'Ascenzo M, Laezza F. Glycogen Synthase Kinase 3: Ion Channels, Plasticity, and Diseases. Int J Mol Sci 2022;23:4413. [PMID: 35457230 DOI: 10.3390/ijms23084413] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Almog Y, Mavashov A, Brusel M, Rubinstein M. Functional Investigation of a Neuronal Microcircuit in the CA1 Area of the Hippocampus Reveals Synaptic Dysfunction in Dravet Syndrome Mice. Front Mol Neurosci 2022;15:823640. [DOI: 10.3389/fnmol.2022.823640] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ma Z, Eaton M, Liu Y, Zhang J, Chen X, Tu X, Shi Y, Que Z, Wettschurack K, Zhang Z, Shi R, Chen Y, Kimbrough A, Lanman NA, Schust L, Huang Z, Yang Y. Deficiency of autism-related Scn2a gene in mice disrupts sleep patterns and circadian rhythms. Neurobiol Dis 2022;:105690. [PMID: 35301122 DOI: 10.1016/j.nbd.2022.105690] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Dvorak NM, Tapia CM, Singh AK, Baumgartner TJ, Wang P, Chen H, Wadsworth PA, Zhou J, Laezza F. Pharmacologically Targeting the Fibroblast Growth Factor 14 Interaction Site on the Voltage-Gated Na+ Channel 1.6 Enables Isoform-Selective Modulation. Int J Mol Sci 2021;22:13541. [PMID: 34948337 DOI: 10.3390/ijms222413541] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Goldberg EM. All our knowledge begins with the antisenses. J Clin Invest 2021;131:e155233. [PMID: 34850739 DOI: 10.1172/JCI155233] [Reference Citation Analysis]
11 Miralles RM, Patel MK. It Takes Two to Tango: Channel Interplay Leads to Paradoxical Hyperexcitability in a Loss-of-Function Epilepsy Variant. Epilepsy Curr. [DOI: 10.1177/15357597211057966] [Reference Citation Analysis]
12 Panagiotakos G, Pasca SP. A matter of space and time: Emerging roles of disease-associated proteins in neural development. Neuron 2021:S0896-6273(21)00865-5. [PMID: 34847355 DOI: 10.1016/j.neuron.2021.10.035] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Dvorak NM, Tapia CM, Baumgartner TJ, Singh J, Laezza F, Singh AK. Pharmacological Inhibition of Wee1 Kinase Selectively Modulates the Voltage-Gated Na+ Channel 1.2 Macromolecular Complex. Cells 2021;10:3103. [PMID: 34831326 DOI: 10.3390/cells10113103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Liang L, Fazel Darbandi S, Pochareddy S, Gulden FO, Gilson MC, Sheppard BK, Sahagun A, An JY, Werling DM, Rubenstein JLR, Sestan N, Bender KJ, Sanders SJ. Developmental dynamics of voltage-gated sodium channel isoform expression in the human and mouse brain. Genome Med 2021;13:135. [PMID: 34425903 DOI: 10.1186/s13073-021-00949-0] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
15 Kaczmarek LK. The NaVy paradox: reducing sodium currents increases excitability. Trends Neurosci 2021:S0166-2236(21)00145-4. [PMID: 34373125 DOI: 10.1016/j.tins.2021.07.008] [Reference Citation Analysis]
16 Zhang J, Chen X, Eaton M, Wu J, Ma Z, Lai S, Park A, Ahmad TS, Que Z, Lee JH, Xiao T, Li Y, Wang Y, Olivero-Acosta MI, Schaber JA, Jayant K, Yuan C, Huang Z, Lanman NA, Skarnes WC, Yang Y. Severe deficiency of the voltage-gated sodium channel NaV1.2 elevates neuronal excitability in adult mice. Cell Rep 2021;36:109495. [PMID: 34348148 DOI: 10.1016/j.celrep.2021.109495] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]