BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mallam AL, Sae-Lee W, Schaub JM, Tu F, Battenhouse A, Jang YJ, Kim J, Wallingford JB, Finkelstein IJ, Marcotte EM, Drew K. Systematic Discovery of Endogenous Human Ribonucleoprotein Complexes. Cell Rep 2019;29:1351-1368.e5. [PMID: 31665645 DOI: 10.1016/j.celrep.2019.09.060] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 Havugimana PC, Goel RK, Phanse S, Youssef A, Padhorny D, Kotelnikov S, Kozakov D, Emili A. Scalable multiplex co-fractionation/mass spectrometry platform for accelerated protein interactome discovery. Nat Commun 2022;13:4043. [PMID: 35831314 DOI: 10.1038/s41467-022-31809-z] [Reference Citation Analysis]
2 Lerit DA. Signed, sealed, and delivered: RNA localization and translation at centrosomes. Mol Biol Cell 2022;33:pe3. [PMID: 35420887 DOI: 10.1091/mbc.E21-03-0128] [Reference Citation Analysis]
3 Sarnowski CP, Bikaki M, Leitner A. Cross-linking and mass spectrometry as a tool for studying the structural biology of ribonucleoproteins. Structure 2022:S0969-2126(22)00084-3. [PMID: 35366400 DOI: 10.1016/j.str.2022.03.003] [Reference Citation Analysis]
4 Cabrera-Orefice A, Potter A, Evers F, Hevler JF, Guerrero-Castillo S. Complexome Profiling-Exploring Mitochondrial Protein Complexes in Health and Disease. Front Cell Dev Biol 2021;9:796128. [PMID: 35096826 DOI: 10.3389/fcell.2021.796128] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
5 Schneider-Lunitz V, Ruiz-Orera J, Hubner N, van Heesch S. Multifunctional RNA-binding proteins influence mRNA abundance and translational efficiency of distinct sets of target genes. PLoS Comput Biol 2021;17:e1009658. [PMID: 34879078 DOI: 10.1371/journal.pcbi.1009658] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Schlossarek D, Luzarowski M, Sokołowska E, Górka M, Willmitzer L, Skirycz A. PROMISed: A novel web-based tool to facilitate analysis and visualization of the molecular interaction networks from co-fractionation mass spectrometry (CF-MS) experiments. Comput Struct Biotechnol J 2021;19:5117-25. [PMID: 34589187 DOI: 10.1016/j.csbj.2021.08.042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Skinnider MA, Foster LJ. Meta-analysis defines principles for the design and analysis of co-fractionation mass spectrometry experiments. Nat Methods 2021;18:806-15. [PMID: 34211188 DOI: 10.1038/s41592-021-01194-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
8 Curtis NJ, Jeffery CJ. The expanding world of metabolic enzymes moonlighting as RNA binding proteins. Biochem Soc Trans 2021;49:1099-108. [PMID: 34110361 DOI: 10.1042/BST20200664] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Low TY, Syafruddin SE, Mohtar MA, Vellaichamy A, A Rahman NS, Pung YF, Tan CSH. Recent progress in mass spectrometry-based strategies for elucidating protein-protein interactions. Cell Mol Life Sci 2021;78:5325-39. [PMID: 34046695 DOI: 10.1007/s00018-021-03856-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 16] [Article Influence: 1.0] [Reference Citation Analysis]
10 Drew K, Wallingford JB, Marcotte EM. hu.MAP 2.0: integration of over 15,000 proteomic experiments builds a global compendium of human multiprotein assemblies. Mol Syst Biol 2021;17:e10016. [PMID: 33973408 DOI: 10.15252/msb.202010016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
11 Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021;8:661448. [PMID: 33898526 DOI: 10.3389/fmolb.2021.661448] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
12 Ho JJD, Man JHS, Schatz JH, Marsden PA. Translational remodeling by RNA-binding proteins and noncoding RNAs. Wiley Interdiscip Rev RNA 2021;12:e1647. [PMID: 33694288 DOI: 10.1002/wrna.1647] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
13 McWhite CD, Papoulas O, Drew K, Dang V, Leggere JC, Sae-Lee W, Marcotte EM. Co-fractionation/mass spectrometry to identify protein complexes. STAR Protoc 2021;2:100370. [PMID: 33748783 DOI: 10.1016/j.xpro.2021.100370] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
14 Caudron-Herger M, Jansen RE, Wassmer E, Diederichs S. RBP2GO: a comprehensive pan-species database on RNA-binding proteins, their interactions and functions. Nucleic Acids Res 2021;49:D425-36. [PMID: 33196814 DOI: 10.1093/nar/gkaa1040] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
15 Floyd BM, Drew K, Marcotte EM. Systematic Identification of Protein Phosphorylation-Mediated Interactions. J Proteome Res 2021;20:1359-70. [PMID: 33476154 DOI: 10.1021/acs.jproteome.0c00750] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
16 Skinnider MA, Cai C, Stacey RG, Foster LJ. PrInCE: an R/bioconductor package for protein-protein interaction network inference from co-fractionation mass spectrometry data. Bioinformatics 2021:btab022. [PMID: 33471077 DOI: 10.1093/bioinformatics/btab022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Wippel HH, Fioramonte M, Chavez JD, Bruce JE. Deciphering the architecture and interactome of hnRNP proteins and enigmRBPs. Mol Omics 2021;17:503-16. [PMID: 34017973 DOI: 10.1039/d1mo00024a] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Drew K, Lee C, Cox RM, Dang V, Devitt CC, McWhite CD, Papoulas O, Huizar RL, Marcotte EM, Wallingford JB. A systematic, label-free method for identifying RNA-associated proteins in vivo provides insights into vertebrate ciliary beating machinery. Dev Biol 2020;467:108-17. [PMID: 32898505 DOI: 10.1016/j.ydbio.2020.08.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
19 Abildgaard MH, Brynjólfsdóttir SH, Frankel LB. The Autophagy-RNA Interplay: Degradation and Beyond. Trends Biochem Sci 2020;45:845-57. [PMID: 32828649 DOI: 10.1016/j.tibs.2020.07.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
20 Gerovac M, El Mouali Y, Kuper J, Kisker C, Barquist L, Vogel J. Global discovery of bacterial RNA-binding proteins by RNase-sensitive gradient profiles reports a new FinO domain protein. RNA 2020;26:1448-63. [PMID: 32646969 DOI: 10.1261/rna.076992.120] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 7.5] [Reference Citation Analysis]
21 Smith KN, Miller SC, Varani G, Calabrese JM, Magnuson T. Multimodal Long Noncoding RNA Interaction Networks: Control Panels for Cell Fate Specification. Genetics 2019;213:1093-110. [PMID: 31796550 DOI: 10.1534/genetics.119.302661] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
22 Holmes ZE, Hamilton DJ, Hwang T, Parsonnet NV, Rinn JL, Wuttke DS, Batey RT. The Sox2 transcription factor binds RNA. Nat Commun 2020;11:1805. [PMID: 32286318 DOI: 10.1038/s41467-020-15571-8] [Cited by in Crossref: 19] [Cited by in F6Publishing: 34] [Article Influence: 9.5] [Reference Citation Analysis]