BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Guo Y, MacIsaac KD, Chen Y, Miller RJ, Jain R, Joyce-Shaikh B, Ferguson H, Wang IM, Cristescu R, Mudgett J, Engstrom L, Piers KJ, Baltus GA, Barr K, Zhang H, Mehmet H, Hegde LG, Hu X, Carter LL, Aicher TD, Glick G, Zaller D, Hawwari A, Correll CC, Jones DC, Cua DJ. Inhibition of RORγT Skews TCRα Gene Rearrangement and Limits T Cell Repertoire Diversity. Cell Rep 2016;17:3206-18. [PMID: 28009290 DOI: 10.1016/j.celrep.2016.11.073] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 7.7] [Reference Citation Analysis]
Number Citing Articles
1 Hall JA, Pokrovskii M, Kroehling L, Kim BR, Kim SY, Wu L, Lee JY, Littman DR. Transcription factor RORα enforces stability of the Th17 cell effector program by binding to a Rorc cis-regulatory element. Immunity 2022;55:2027-2043.e9. [PMID: 36243007 DOI: 10.1016/j.immuni.2022.09.013] [Reference Citation Analysis]
2 Ma S, Patel SA, Abe Y, Chen N, Patel PR, Cho BS, Abbasi N, Zeng S, Schnabl B, Chang JT, Huang WJM. RORγt phosphorylation protects against T cell-mediated inflammation. Cell Rep 2022;38:110520. [PMID: 35294872 DOI: 10.1016/j.celrep.2022.110520] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
3 Sun R, Lei C, Chen L, He L, Guo H, Zhang X, Feng W, Yan J, McClain CJ, Deng Z. Alcohol-driven metabolic reprogramming promotes development of RORγt-deficient thymic lymphoma. Oncogene 2022. [PMID: 35246617 DOI: 10.1038/s41388-022-02257-2] [Reference Citation Analysis]
4 Alexander M, Ang QY, Nayak RR, Bustion AE, Sandy M, Zhang B, Upadhyay V, Pollard KS, Lynch SV, Turnbaugh PJ. Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe 2022;30:17-30.e9. [PMID: 34822777 DOI: 10.1016/j.chom.2021.11.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 29.0] [Reference Citation Analysis]
5 Yang X, Wang X, Lei L, Su Y, Zou Y, Liu H, Jiao A, Zhang C, Liu J, Li W, Ding R, Zhou X, Shi L, Zhang D, Sun C, Zhang B. Arid1a promotes thymocyte development through β-selection-dependent and β-selection-independent mechanisms. Immunology 2021. [PMID: 34921692 DOI: 10.1111/imm.13440] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Saenz SA, Local A, Carr T, Shakya A, Koul S, Hu H, Chourb L, Stedman J, Malley J, D'Agostino LA, Shanmugasundaram V, Malona J, Schwartz CE, Beebe L, Clements M, Rajaraman G, Cho J, Jiang L, Dubrovskiy A, Kreilein M, Shimanovich R, Hamann LG, Escoubet L, Ellis JM. Small molecule allosteric inhibitors of RORγt block Th17-dependent inflammation and associated gene expression in vivo. PLoS One 2021;16:e0248034. [PMID: 34752458 DOI: 10.1371/journal.pone.0248034] [Reference Citation Analysis]
7 Strutzenberg TS, Zhu Y, Novick SJ, Garcia-Ordonez RD, Doebelin C, He Y, Chang MR, Kamenecka TM, Edwards DP, Griffin PR. Conformational Changes of RORγ During Response Element Recognition and Coregulator Engagement. J Mol Biol 2021;433:167258. [PMID: 34547329 DOI: 10.1016/j.jmb.2021.167258] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Stehle C, Rückert T, Fiancette R, Gajdasik DW, Willis C, Ulbricht C, Durek P, Mashreghi MF, Finke D, Hauser AE, Withers DR, Chang HD, Zimmermann J, Romagnani C. T-bet and RORα control lymph node formation by regulating embryonic innate lymphoid cell differentiation. Nat Immunol 2021;22:1231-44. [PMID: 34556887 DOI: 10.1038/s41590-021-01029-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
9 Aicher TD, Van Huis CA, Hurd AR, Skalitzky DJ, Taylor CB, Beleh OM, Glick G, Toogood PL, Yang B, Zheng T, Huo C, Gao J, Qiao C, Tian X, Zhang J, Demock K, Hao LY, Lesch CA, Morgan RW, Moisan J, Wang Y, Scatina J, Paulos CM, Zou W, Carter LL, Hu X. Discovery of LYC-55716: A Potent, Selective, and Orally Bioavailable Retinoic Acid Receptor-Related Orphan Receptor-γ (RORγ) Agonist for Use in Treating Cancer. J Med Chem 2021;64:13410-28. [PMID: 34499493 DOI: 10.1021/acs.jmedchem.1c00731] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus Degeneration and Regeneration. Front Immunol 2021;12:706244. [PMID: 34539637 DOI: 10.3389/fimmu.2021.706244] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
11 Mukherjee N, Ji N, Tan X, Lin CL, Rios E, Chen CL, Huang T, Svatek RS. Bladder tumor ILC1s undergo Th17-like differentiation in human bladder cancer. Cancer Med 2021;10:7101-10. [PMID: 34496133 DOI: 10.1002/cam4.4243] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
12 Gege C. Retinoic acid-related orphan receptor gamma t (RORγt) inverse agonists/antagonists for the treatment of inflammatory diseases - where are we presently? Expert Opin Drug Discov 2021;:1-19. [PMID: 34192992 DOI: 10.1080/17460441.2021.1948833] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Xiang K, Xu Z, Hu YQ, He YS, Wu GC, Li TY, Wang XR, Ding LH, Zhang Q, Tao SS, Ye DQ, Pan HF, Wang DG. Circadian clock genes as promising therapeutic targets for autoimmune diseases. Autoimmun Rev 2021;20:102866. [PMID: 34118460 DOI: 10.1016/j.autrev.2021.102866] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
14 Strutzenberg TS, Novick SJ, Garcia-ordonez RD, Doebelin C, He Y, Chang MR, Kamenecka TM, Griffin PR. Conformational Changes of RORγ During Response Element Recognition and Coregulator Engagement.. [DOI: 10.1101/2021.05.25.445650] [Reference Citation Analysis]
15 Ma S, Patel S, Chen N, Patel PR, Cho BS, Abbasi N, Chang JT, Huang WJM. RORγt serine 182 tightly regulates T cell heterogeneity to maintain mucosal homeostasis and restrict tissue inflammation.. [DOI: 10.1101/2021.05.14.444071] [Reference Citation Analysis]
16 Saenz SA, Local A, Carr T, Shakya A, Koul S, Hu H, Chourb L, Stedman J, Malley J, D’agostino LA, Shanmugasundaram V, Malona J, Schwartz E, Beebe L, Clements M, Rajaraman G, Cho J, Jiang L, Dubrovskiy A, Kreilein M, Shimanovich R, Hamann LG, Escoubet L, Ellis JM. Small molecule allosteric inhibitors of RORγt block Th17-dependent inflammation and associated gene expression in vivo.. [DOI: 10.1101/2021.02.19.431952] [Reference Citation Analysis]
17 Lee J, Hall JA, Pokrovskii M, Kroehling L, Wu L, Littman DR. RORα enforces stability of the T-helper-17 cell effector program.. [DOI: 10.1101/2020.12.15.422921] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
18 Hajishengallis G, Chavakis T, Lambris JD. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontol 2000 2020;84:14-34. [PMID: 32844416 DOI: 10.1111/prd.12331] [Cited by in Crossref: 69] [Cited by in F6Publishing: 76] [Article Influence: 23.0] [Reference Citation Analysis]
19 Guha I, Bhuniya A, Nandi P, Dasgupta S, Sarkar A, Saha A, Das J, Ganguly N, Ghosh S, Ghosh T, Sarkar M, Ghosh S, Majumdar S, Baral R, Bose A. Neem leaf glycoprotein reverses tumor-induced and age-associated thymic involution to maintain peripheral CD8+ T cell pool. Immunotherapy 2020;12:799-818. [PMID: 32698648 DOI: 10.2217/imt-2019-0168] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
20 Radens CM, Blake D, Jewell P, Barash Y, Lynch KW. Meta-analysis of transcriptomic variation in T-cell populations reveals both variable and consistent signatures of gene expression and splicing. RNA 2020;26:1320-33. [PMID: 32554554 DOI: 10.1261/rna.075929.120] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
21 Ono Y, Tsuboi H, Moriyama M, Asashima H, Kudo H, Takahashi H, Honda F, Abe S, Kondo Y, Takahashi S, Matsumoto I, Nakamura S, Sumida T. RORγt antagonist improves Sjögren's syndrome-like sialadenitis through downregulation of CD25. Oral Dis 2020;26:766-77. [PMID: 31837283 DOI: 10.1111/odi.13255] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Zhang H, Lapointe BT, Anthony N, Azevedo R, Cals J, Correll CC, Daniels M, Deshmukh S, van Eenenaam H, Ferguson H, Hegde LG, Karstens WJ, Maclean J, Miller JR, Moy LY, Simov V, Nagpal S, Oubrie A, Palte RL, Parthasarathy G, Sciammetta N, van der Stelt M, Woodhouse JD, Trotter BW, Barr K. Discovery of N-(Indazol-3-yl)piperidine-4-carboxylic Acids as RORγt Allosteric Inhibitors for Autoimmune Diseases. ACS Med Chem Lett 2020;11:114-9. [PMID: 32071676 DOI: 10.1021/acsmedchemlett.9b00431] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
23 Meijer FA, Doveston RG, de Vries RMJM, Vos GM, Vos AAA, Leysen S, Scheepstra M, Ottmann C, Milroy LG, Brunsveld L. Ligand-Based Design of Allosteric Retinoic Acid Receptor-Related Orphan Receptor γt (RORγt) Inverse Agonists. J Med Chem 2020;63:241-59. [PMID: 31821760 DOI: 10.1021/acs.jmedchem.9b01372] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
24 Yi JS, Russo MA, Raja S, Massey JM, Juel VC, Shin J, Hobson-Webb LD, Gable K, Guptill JT. Inhibition of the transcription factor ROR-γ reduces pathogenic Th17 cells in acetylcholine receptor antibody positive myasthenia gravis. Exp Neurol 2020;325:113146. [PMID: 31838097 DOI: 10.1016/j.expneurol.2019.113146] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
25 Amir M, Chaudhari S, Wang R, Campbell S, Mosure SA, Chopp LB, Lu Q, Shang J, Pelletier OB, He Y, Doebelin C, Cameron MD, Kojetin DJ, Kamenecka TM, Solt LA. REV-ERBα Regulates TH17 Cell Development and Autoimmunity. Cell Rep 2018;25:3733-3749.e8. [PMID: 30590045 DOI: 10.1016/j.celrep.2018.11.101] [Cited by in Crossref: 43] [Cited by in F6Publishing: 52] [Article Influence: 10.8] [Reference Citation Analysis]
26 Dutzan N, Kajikawa T, Abusleme L, Greenwell-Wild T, Zuazo CE, Ikeuchi T, Brenchley L, Abe T, Hurabielle C, Martin D, Morell RJ, Freeman AF, Lazarevic V, Trinchieri G, Diaz PI, Holland SM, Belkaid Y, Hajishengallis G, Moutsopoulos NM. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans. Sci Transl Med 2018;10:eaat0797. [PMID: 30333238 DOI: 10.1126/scitranslmed.aat0797] [Cited by in Crossref: 191] [Cited by in F6Publishing: 189] [Article Influence: 47.8] [Reference Citation Analysis]
27 Cibrian D, Castillo-González R, Fernández-Gallego N, de la Fuente H, Jorge I, Saiz ML, Punzón C, Ramírez-Huesca M, Vicente-Manzanares M, Fresno M, Daudén E, Fraga-Fernandez J, Vazquez J, Aragonés J, Sánchez-Madrid F. Targeting L-type amino acid transporter 1 in innate and adaptive T cells efficiently controls skin inflammation. J Allergy Clin Immunol 2020;145:199-214.e11. [PMID: 31605740 DOI: 10.1016/j.jaci.2019.09.025] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]
28 Alexander M, Ang QY, Nayak RR, Bustion AE, Upadhyay V, Pollard KS, Turnbaugh PJ. A diet-dependent enzyme from the human gut microbiome promotes Th17 cell accumulation and colitis.. [DOI: 10.1101/766899] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
29 Chang C, Loo CS, Zhao X, Solt LA, Liang Y, Bapat SP, Cho H, Kamenecka TM, Leblanc M, Atkins AR, Yu RT, Downes M, Burris TP, Evans RM, Zheng Y. The nuclear receptor REV-ERBα modulates Th17 cell-mediated autoimmune disease. Proc Natl Acad Sci U S A 2019;116:18528-36. [PMID: 31455731 DOI: 10.1073/pnas.1907563116] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 7.3] [Reference Citation Analysis]
30 Sun N, Guo H, Wang Y. Retinoic acid receptor-related orphan receptor gamma-t (RORγt) inhibitors in clinical development for the treatment of autoimmune diseases: a patent review (2016-present). Expert Opinion on Therapeutic Patents 2019;29:663-74. [DOI: 10.1080/13543776.2019.1655541] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 11.5] [Reference Citation Analysis]
31 Radens CM, Blake D, Jewell P, Barash Y, Lynch KW. Meta-Analysis of Transcriptomic Variation in T cell Populations Reveals Novel Signatures of Gene Expression and Splicing.. [DOI: 10.1101/727362] [Reference Citation Analysis]
32 Gauld SB, Jacquet S, Gauvin D, Wallace C, Wang Y, Mccarthy R, Goess C, Leys L, Huang S, Su Z, Edelmayer R, Wetter J, Salte K, Mcgaraughty SP, Argiriadi MA, Honore P, Luccarini J, Bressac D, Desino K, Breinlinger E, Cusack K, Potin D, Kort ME, Masson PJ. Inhibition of Interleukin-23–Mediated Inflammation with a Novel Small Molecule Inverse Agonist of ROR γ t. J Pharmacol Exp Ther 2019;371:208-18. [DOI: 10.1124/jpet.119.258046] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
33 Chann AS, Russell SM. An integrated transcriptional switch at the β-selection checkpoint determines T cell survival, development and leukaemogenesis. Biochemical Society Transactions 2019;47:1077-89. [DOI: 10.1042/bst20180414] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
34 Dai H, Kyttaris VC. Interleukin-23 deficiency alters thymic selection in lupus-prone mice. Lupus 2019;28:1007-12. [PMID: 31166866 DOI: 10.1177/0961203319854804] [Reference Citation Analysis]
35 Bianchi E, Rogge L. The IL-23/IL-17 pathway in human chronic inflammatory diseases – new insight from genetics and targeted therapies. Microbes and Infection 2019;21:246-53. [DOI: 10.1016/j.micinf.2019.06.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
36 Leys L, Wang Y, Paulsboe S, Edelmayer R, Salte K, Wetter J, Namovic M, Phillips L, Dunstan R, Gauvin D, Donnelly-Roberts D, Su Z, Honore P, McGaraughty S. Characterization of psoriasiform dermatitis induced by systemic injection of interleukin-23 minicircles in mice. J Dermatol 2019;46:482-97. [PMID: 31062408 DOI: 10.1111/1346-8138.14899] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
37 Zhang R, Fang H, Chen R, Ochando JC, Ding Y, Xu J. IL-17A Is Critical for CD8+ T Effector Response in Airway Epithelial Injury After Transplantation. Transplantation 2018;102:e483-93. [PMID: 30211827 DOI: 10.1097/TP.0000000000002452] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
38 Bianchi E, Rogge L. The IL-23/IL-17 pathway in human chronic inflammatory diseases-new insight from genetics and targeted therapies. Genes Immun 2019;20:415-25. [PMID: 31000797 DOI: 10.1038/s41435-019-0067-y] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
39 Imura C, Ueyama A, Sasaki Y, Shimizu M, Furue Y, Tai N, Tsujii K, Katayama K, Okuno T, Shichijo M, Yasui K, Yamamoto M. A novel RORγt inhibitor is a potential therapeutic agent for the topical treatment of psoriasis with low risk of thymic aberrations. J Dermatol Sci 2019;93:176-85. [PMID: 30905492 DOI: 10.1016/j.jdermsci.2019.03.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
40 Yoshida H, Lareau CA, Ramirez RN, Rose SA, Maier B, Wroblewska A, Desland F, Chudnovskiy A, Mortha A, Dominguez C, Tellier J, Kim E, Dwyer D, Shinton S, Nabekura T, Qi Y, Yu B, Robinette M, Kim KW, Wagers A, Rhoads A, Nutt SL, Brown BD, Mostafavi S, Buenrostro JD, Benoist C; Immunological Genome Project. The cis-Regulatory Atlas of the Mouse Immune System. Cell 2019;176:897-912.e20. [PMID: 30686579 DOI: 10.1016/j.cell.2018.12.036] [Cited by in Crossref: 217] [Cited by in F6Publishing: 149] [Article Influence: 54.3] [Reference Citation Analysis]
41 Venken K, Jacques P, Mortier C, Labadia ME, Decruy T, Coudenys J, Hoyt K, Wayne AL, Hughes R, Turner M, Van Gassen S, Martens L, Smith D, Harcken C, Wahle J, Wang CT, Verheugen E, Schryvers N, Varkas G, Cypers H, Wittoek R, Piette Y, Gyselbrecht L, Van Calenbergh S, Van den Bosch F, Saeys Y, Nabozny G, Elewaut D. RORγt inhibition selectively targets IL-17 producing iNKT and γδ-T cells enriched in Spondyloarthritis patients. Nat Commun 2019;10:9. [PMID: 30602780 DOI: 10.1038/s41467-018-07911-6] [Cited by in Crossref: 155] [Cited by in F6Publishing: 161] [Article Influence: 38.8] [Reference Citation Analysis]
42 Takeda Y, Kang HS, Jetten AM. Analysis of the Transcriptional Activity of Retinoic Acid-Related Orphan Receptors (RORs) and Inhibition by Inverse Agonists. Methods Mol Biol 2019;1966:193-202. [PMID: 31041748 DOI: 10.1007/978-1-4939-9195-2_15] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
43 Pandya VB, Kumar S, Sachchidanand, Sharma R, Desai RC. Combating Autoimmune Diseases With Retinoic Acid Receptor-Related Orphan Receptor-γ (RORγ or RORc) Inhibitors: Hits and Misses. J Med Chem 2018;61:10976-95. [DOI: 10.1021/acs.jmedchem.8b00588] [Cited by in Crossref: 70] [Cited by in F6Publishing: 74] [Article Influence: 14.0] [Reference Citation Analysis]
44 Jetten AM, Takeda Y, Slominski A, Kang HS. Retinoic acid-related Orphan Receptor γ (RORγ): connecting sterol metabolism to regulation of the immune system and autoimmune disease. Curr Opin Toxicol 2018;8:66-80. [PMID: 29568812 DOI: 10.1016/j.cotox.2018.01.005] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 10.4] [Reference Citation Analysis]
45 Wanchoo A, Voigt A, Sukumaran S, Stewart CM, Bhattacharya I, Nguyen CQ. Single-cell analysis reveals sexually dimorphic repertoires of Interferon-γ and IL-17A producing T cells in salivary glands of Sjögren's syndrome mice. Sci Rep 2017;7:12512. [PMID: 28970488 DOI: 10.1038/s41598-017-12627-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
46 Fang D, Zhu J. Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets. J Exp Med 2017;214:1861-76. [PMID: 28630089 DOI: 10.1084/jem.20170494] [Cited by in Crossref: 124] [Cited by in F6Publishing: 127] [Article Influence: 20.7] [Reference Citation Analysis]
47 Zhong C, Zhu J. Small-Molecule RORγt Antagonists: One Stone Kills Two Birds. Trends Immunol 2017;38:229-31. [PMID: 28258823 DOI: 10.1016/j.it.2017.02.006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]