BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Marabita M, Baraldo M, Solagna F, Ceelen JJM, Sartori R, Nolte H, Nemazanyy I, Pyronnet S, Kruger M, Pende M, Blaauw B. S6K1 Is Required for Increasing Skeletal Muscle Force during Hypertrophy. Cell Rep 2016;17:501-13. [PMID: 27705797 DOI: 10.1016/j.celrep.2016.09.020] [Cited by in Crossref: 55] [Cited by in F6Publishing: 50] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Nishimura Y, Chunthorng-Orn J, Lord S, Musa I, Dawson P, Holm L, Lai YC. Ubiquitin E3 ligase Atrogin-1 protein is regulated via the rapamycin-sensitive mTOR-S6K1 signaling pathway in C2C12 muscle cells. Am J Physiol Cell Physiol 2022. [PMID: 35704697 DOI: 10.1152/ajpcell.00384.2021] [Reference Citation Analysis]
2 Sarkar SR, Dubey VK, Jahagirdar A, Lakshmanan V, Haroon MM, Sowndarya S, Sowdhamini R, Palakodeti D. DDX24 is required for muscle fiber organization and the suppression of wound-induced Wnt activity necessary for pole re-establishment during planarian regeneration. Dev Biol 2022:S0012-1606(22)00080-X. [PMID: 35523320 DOI: 10.1016/j.ydbio.2022.04.011] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Yeh TS, Lei TH, Liu JF, Hsu MC. Astragalus membranaceus Enhances Myotube Hypertrophy through PI3K-Mediated Akt/mTOR Signaling Phosphorylation. Nutrients 2022;14:1670. [PMID: 35458232 DOI: 10.3390/nu14081670] [Reference Citation Analysis]
4 Baraldo M, Nogara L, Dumitras GA, Tchampda Dondjang AH, Geremia A, Scalabrin M, Türk C, Telkamp F, Zentilin L, Giacca M, Krüger M, Blaauw B. Raptor is critical for increasing the mitochondrial proteome and skeletal muscle force during hypertrophy. FASEB J 2021;35:e22031. [PMID: 34767636 DOI: 10.1096/fj.202101054RR] [Reference Citation Analysis]
5 Geremia A, Sartori R, Baraldo M, Nogara L, Balmaceda V, Dumitras GA, Ciciliot S, Scalabrin M, Nolte H, Blaauw B. Activation of Akt-mTORC1 signalling reverts cancer-dependent muscle wasting. J Cachexia Sarcopenia Muscle 2021. [PMID: 34741441 DOI: 10.1002/jcsm.12854] [Reference Citation Analysis]
6 Sahin E, Orhan C, Erten F, Er B, Acharya M, Morde AA, Padigaru M, Sahin K. Next-Generation Ultrasol Curcumin Boosts Muscle Endurance and Reduces Muscle Damage in Treadmill-Exhausted Rats. Antioxidants (Basel) 2021;10:1692. [PMID: 34829562 DOI: 10.3390/antiox10111692] [Reference Citation Analysis]
7 Kido K, Koshinaka K, Iizawa H, Honda H, Hirota A, Nakamura T, Arikawa M, Ra SG, Kawanaka K. Egg White Protein Promotes Developmental Growth in Rodent Muscle Independent of the Leucine Content. J Nutr 2021:nxab353. [PMID: 34610138 DOI: 10.1093/jn/nxab353] [Reference Citation Analysis]
8 Mori T, Ato S, Knudsen JR, Henriquez-Olguin C, Li Z, Wakabayashi K, Suginohara T, Higashida K, Tamura Y, Nakazato K, Jensen TE, Ogasawara R. c-Myc overexpression increases ribosome biogenesis and protein synthesis independent of mTORC1 activation in mouse skeletal muscle. Am J Physiol Endocrinol Metab 2021;321:E551-9. [PMID: 34423683 DOI: 10.1152/ajpendo.00164.2021] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Miyazaki M, Moriya N, Takemasa T. Transient activation of mTORC1 signaling in skeletal muscle is independent of Akt1 regulation. Physiol Rep 2020;8:e14599. [PMID: 33038070 DOI: 10.14814/phy2.14599] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Sakai H, Asami M, Naito H, Kitora S, Suzuki Y, Miyauchi Y, Tachinooka R, Yoshida S, Kon R, Ikarashi N, Chiba Y, Kamei J. Exogenous insulin-like growth factor 1 attenuates cisplatin-induced muscle atrophy in mice. J Cachexia Sarcopenia Muscle 2021. [PMID: 34268902 DOI: 10.1002/jcsm.12760] [Reference Citation Analysis]
11 Han MJ, Shin JE, Park SJ, Choung S. Synergetic effect of soluble whey protein hydrolysate and Panax ginseng berry extract on muscle atrophy in hindlimb-immobilized C57BL/6 mice. Journal of Ginseng Research 2021. [DOI: 10.1016/j.jgr.2021.06.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021;12:619710. [PMID: 33716768 DOI: 10.3389/fphys.2021.619710] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Schiaffino S, Reggiani C, Akimoto T, Blaauw B. Molecular Mechanisms of Skeletal Muscle Hypertrophy. JND 2021;8:169-83. [DOI: 10.3233/jnd-200568] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
14 Flees JJ, Ganguly B, Dridi S. Phytogenic feed additives improve broiler feed efficiency via modulation of intermediary lipid and protein metabolism-related signaling pathways. Poult Sci 2021;100:100963. [PMID: 33652544 DOI: 10.1016/j.psj.2020.12.060] [Reference Citation Analysis]
15 Valero-Breton M, Warnier G, Castro-Sepulveda M, Deldicque L, Zbinden-Foncea H. Acute and Chronic Effects of High Frequency Electric Pulse Stimulation on the Akt/mTOR Pathway in Human Primary Myotubes. Front Bioeng Biotechnol 2020;8:565679. [PMID: 33224929 DOI: 10.3389/fbioe.2020.565679] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Pirkmajer S, Bezjak K, Matkovič U, Dolinar K, Jiang LQ, Miš K, Gros K, Milovanova K, Pirkmajer KP, Marš T, Kapilevich L, Chibalin AV. Ouabain Suppresses IL-6/STAT3 Signaling and Promotes Cytokine Secretion in Cultured Skeletal Muscle Cells. Front Physiol 2020;11:566584. [PMID: 33101052 DOI: 10.3389/fphys.2020.566584] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
17 Tanaka M, Sugimoto K, Fujimoto T, Xie K, Takahashi T, Akasaka H, Yasunobe Y, Takeya Y, Yamamoto K, Hirabayashi T, Fujino H, Rakugi H. Differential effects of pre-exercise on cancer cachexia-induced muscle atrophy in fast- and slow-twitch muscles. FASEB J 2020;34:14389-406. [PMID: 32892438 DOI: 10.1096/fj.202001330R] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Solagna F, Nogara L, Dyar KA, Greulich F, Mir AA, Türk C, Bock T, Geremia A, Baraldo M, Sartori R, Farup J, Uhlenhaut H, Vissing K, Krüger M, Blaauw B. Exercise-dependent increases in protein synthesis are accompanied by chromatin modifications and increased MRTF-SRF signalling. Acta Physiol (Oxf) 2020;230:e13496. [PMID: 32408395 DOI: 10.1111/apha.13496] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
19 Fang Y, Liang F, Yuan R, Zhu Q, Cai S, Chen K, Zhang J, Luo X, Chen Y, Mo D. High mobility group box 2 regulates skeletal muscle development through ribosomal protein S6 kinase 1. FASEB j 2020;34:12367-78. [DOI: 10.1096/fj.202001183r] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Knudsen JR, Li Z, Persson KW, Li J, Henriquez-Olguin C, Jensen TE. Contraction-regulated mTORC1 and protein synthesis: Influence of AMPK and glycogen. J Physiol 2020;598:2637-49. [PMID: 32372406 DOI: 10.1113/JP279780] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
21 Ato S, Kido K, Sase K, Fujita S. Response of Resistance Exercise-Induced Muscle Protein Synthesis and Skeletal Muscle Hypertrophy Are Not Enhanced After Disuse Muscle Atrophy in Rat. Front Physiol 2020;11:469. [PMID: 32528306 DOI: 10.3389/fphys.2020.00469] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Chen Y, Li Q, Li Q, Xing S, Liu Y, Liu Y, Chen Y, Liu W, Feng F, Sun H. p62/SQSTM1, a Central but Unexploited Target: Advances in Its Physiological/Pathogenic Functions and Small Molecular Modulators. J Med Chem 2020;63:10135-57. [DOI: 10.1021/acs.jmedchem.9b02038] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
23 Tan KT, Ang SJ, Tsai SY. Sarcopenia: Tilting the Balance of Protein Homeostasis. Proteomics 2020;20:e1800411. [PMID: 31722440 DOI: 10.1002/pmic.201800411] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
24 Ferreira DMS, Cheng AJ, Agudelo LZ, Cervenka I, Chaillou T, Correia JC, Porsmyr-Palmertz M, Izadi M, Hansson A, Martínez-Redondo V, Valente-Silva P, Pettersson-Klein AT, Estall JL, Robinson MM, Nair KS, Lanner JT, Ruas JL. LIM and cysteine-rich domains 1 (LMCD1) regulates skeletal muscle hypertrophy, calcium handling, and force. Skelet Muscle 2019;9:26. [PMID: 31666122 DOI: 10.1186/s13395-019-0214-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
25 Adegoke OAJ, Beatty BE, Kimball SR, Wing SS. Interactions of the super complexes: When mTORC1 meets the proteasome. Int J Biochem Cell Biol 2019;117:105638. [PMID: 31678320 DOI: 10.1016/j.biocel.2019.105638] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
26 Baraldo M, Geremia A, Pirazzini M, Nogara L, Solagna F, Türk C, Nolte H, Romanello V, Megighian A, Boncompagni S, Kruger M, Sandri M, Blaauw B. Skeletal muscle mTORC1 regulates neuromuscular junction stability. J Cachexia Sarcopenia Muscle 2020;11:208-25. [PMID: 31651100 DOI: 10.1002/jcsm.12496] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
27 Barclay RD, Burd NA, Tyler C, Tillin NA, Mackenzie RW. The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. Front Nutr 2019;6:146. [PMID: 31552262 DOI: 10.3389/fnut.2019.00146] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 9.7] [Reference Citation Analysis]
28 Hodson N, West DWD, Philp A, Burd NA, Moore DR. Molecular regulation of human skeletal muscle protein synthesis in response to exercise and nutrients: a compass for overcoming age-related anabolic resistance. Am J Physiol Cell Physiol 2019;317:C1061-78. [PMID: 31461340 DOI: 10.1152/ajpcell.00209.2019] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
29 Kirby TJ. Mechanosensitive pathways controlling translation regulatory processes in skeletal muscle and implications for adaptation. J Appl Physiol (1985) 2019;127:608-18. [PMID: 31295035 DOI: 10.1152/japplphysiol.01031.2018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
30 Bensaid S, Fabre C, Fourneau J, Cieniewski-Bernard C. Impact of different methods of induction of cellular hypoxia: focus on protein homeostasis signaling pathways and morphology of C2C12 skeletal muscle cells differentiated into myotubes. J Physiol Biochem 2019;75:367-77. [PMID: 31267382 DOI: 10.1007/s13105-019-00687-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
31 Rivas DA, Rice NP, Ezzyat Y, McDonald DJ, Cooper BE, Fielding RA. Sphingosine-1-phosphate analog FTY720 reverses obesity but not age-induced anabolic resistance to muscle contraction. Am J Physiol Cell Physiol 2019;317:C502-12. [PMID: 31241988 DOI: 10.1152/ajpcell.00455.2018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
32 Aguilar-Agon KW, Capel AJ, Martin NRW, Player DJ, Lewis MP. Mechanical loading stimulates hypertrophy in tissue-engineered skeletal muscle: Molecular and phenotypic responses. J Cell Physiol 2019;234:23547-58. [PMID: 31180593 DOI: 10.1002/jcp.28923] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
33 Blaauw B. Platelet-Derived Growth Factor signaling and the role of cellular crosstalk in functional muscle growth. FEBS Lett 2017;591:690-2. [PMID: 28297119 DOI: 10.1002/1873-3468.12602] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
34 Docquier A, Pavlin L, Raibon A, Bertrand‐gaday C, Sar C, Leibovitch S, Candau R, Bernardi H. eIF3f depletion impedes mouse embryonic development, reduces adult skeletal muscle mass and amplifies muscle loss during disuse. J Physiol 2019;597:3107-31. [DOI: 10.1113/jp277841] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
35 Wu Q, Hong J, Wang Z, Hu J, Chen R, Hu Z, Li B, Hu X, Zhang Z, Ruan Y. Abnormal Ribosome Biogenesis Partly Induced p53-Dependent Aortic Medial Smooth Muscle Cell Apoptosis and Oxidative Stress. Oxid Med Cell Longev 2019;2019:7064319. [PMID: 31210846 DOI: 10.1155/2019/7064319] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
36 Figueiredo VC, McCarthy JJ. Regulation of Ribosome Biogenesis in Skeletal Muscle Hypertrophy. Physiology (Bethesda) 2019;34:30-42. [PMID: 30540235 DOI: 10.1152/physiol.00034.2018] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 13.7] [Reference Citation Analysis]
37 Gumucio JP, Qasawa AH, Ferrara PJ, Malik AN, Funai K, McDonagh B, Mendias CL. Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis. FASEB J. 2019;33:7863-7881. [PMID: 30939247 DOI: 10.1096/fj.201802457rr] [Cited by in Crossref: 31] [Cited by in F6Publishing: 12] [Article Influence: 10.3] [Reference Citation Analysis]
38 Tanaka M, Sugimoto K, Fujimoto T, Xie K, Takahashi T, Akasaka H, Kurinami H, Yasunobe Y, Matsumoto T, Fujino H, Rakugi H. Preventive effects of low-intensity exercise on cancer cachexia-induced muscle atrophy. FASEB J 2019;33:7852-62. [PMID: 30916585 DOI: 10.1096/fj.201802430R] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
39 Oost LJ, Kustermann M, Armani A, Blaauw B, Romanello V. Fibroblast growth factor 21 controls mitophagy and muscle mass. J Cachexia Sarcopenia Muscle 2019;10:630-42. [PMID: 30895728 DOI: 10.1002/jcsm.12409] [Cited by in Crossref: 62] [Cited by in F6Publishing: 56] [Article Influence: 20.7] [Reference Citation Analysis]
40 Ahmed AR, Owens RJ, Stubbs CD, Parker AW, Hitchman R, Yadav RB, Dumoux M, Hawes C, Botchway SW. Direct imaging of the recruitment and phosphorylation of S6K1 in the mTORC1 pathway in living cells. Sci Rep. 2019;9:3408. [PMID: 30833605 DOI: 10.1038/s41598-019-39410-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
41 Hentilä J, Nissinen TA, Korkmaz A, Lensu S, Silvennoinen M, Pasternack A, Ritvos O, Atalay M, Hulmi JJ. Activin Receptor Ligand Blocking and Cancer Have Distinct Effects on Protein and Redox Homeostasis in Skeletal Muscle and Liver. Front Physiol 2018;9:1917. [PMID: 30713500 DOI: 10.3389/fphys.2018.01917] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
42 Hinkle ER, Wiedner HJ, Black AJ, Giudice J. RNA processing in skeletal muscle biology and disease. Transcription 2019;10:1-20. [PMID: 30556762 DOI: 10.1080/21541264.2018.1558677] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
43 You JS, McNally RM, Jacobs BL, Privett RE, Gundermann DM, Lin KH, Steinert ND, Goodman CA, Hornberger TA. The role of raptor in the mechanical load-induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy. FASEB J 2019;33:4021-34. [PMID: 30509128 DOI: 10.1096/fj.201801653RR] [Cited by in Crossref: 55] [Cited by in F6Publishing: 30] [Article Influence: 13.8] [Reference Citation Analysis]
44 Pozzer D, Varone E, Chernorudskiy A, Schiarea S, Missiroli S, Giorgi C, Pinton P, Canato M, Germinario E, Nogara L, Blaauw B, Zito E. A maladaptive ER stress response triggers dysfunction in highly active muscles of mice with SELENON loss. Redox Biol 2019;20:354-66. [PMID: 30391828 DOI: 10.1016/j.redox.2018.10.017] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 7.3] [Reference Citation Analysis]
45 González-Sánchez J, Sánchez-Temprano A, Cid-Díaz T, Pabst-Fernández R, Mosteiro CS, Gallego R, Nogueiras R, Casabiell X, Butler-Browne GS, Mouly V, Relova JL, Pazos Y, Camiña JP. Improvement of Duchenne muscular dystrophy phenotype following obestatin treatment. J Cachexia Sarcopenia Muscle 2018;9:1063-78. [PMID: 30216693 DOI: 10.1002/jcsm.12338] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
46 Khodabukus A, Madden L, Prabhu NK, Koves TR, Jackman CP, Muoio DM, Bursac N. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials 2019;198:259-69. [PMID: 30180985 DOI: 10.1016/j.biomaterials.2018.08.058] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 12.5] [Reference Citation Analysis]
47 Dyar KA, Hubert MJ, Mir AA, Ciciliot S, Lutter D, Greulich F, Quagliarini F, Kleinert M, Fischer K, Eichmann TO, Wright LE, Peña Paz MI, Casarin A, Pertegato V, Romanello V, Albiero M, Mazzucco S, Rizzuto R, Salviati L, Biolo G, Blaauw B, Schiaffino S, Uhlenhaut NH. Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biol 2018;16:e2005886. [PMID: 30096135 DOI: 10.1371/journal.pbio.2005886] [Cited by in Crossref: 58] [Cited by in F6Publishing: 44] [Article Influence: 14.5] [Reference Citation Analysis]
48 Ogasawara R, Suginohara T. Rapamycin-insensitive mechanistic target of rapamycin regulates basal and resistance exercise-induced muscle protein synthesis. FASEB J 2018;:fj201701422R. [PMID: 29757673 DOI: 10.1096/fj.201701422R] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 6.8] [Reference Citation Analysis]
49 Jeong HJ, So HK, Jo A, Kim HB, Lee SJ, Bae GU, Kang JS. Ginsenoside Rg1 augments oxidative metabolism and anabolic response of skeletal muscle in mice. J Ginseng Res 2019;43:475-81. [PMID: 31308819 DOI: 10.1016/j.jgr.2018.04.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
50 Bennett AH, O'Donohue MF, Gundry SR, Chan AT, Widrick J, Draper I, Chakraborty A, Zhou Y, Zon LI, Gleizes PE, Beggs AH, Gupta VA. RNA helicase, DDX27 regulates skeletal muscle growth and regeneration by modulation of translational processes. PLoS Genet 2018;14:e1007226. [PMID: 29518074 DOI: 10.1371/journal.pgen.1007226] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
51 Takagi R, Ogasawara R, Takegaki J, Tsutaki A, Nakazato K, Ishii N. Influence of past injurious exercise on fiber type-specific acute anabolic response to resistance exercise in skeletal muscle. J Appl Physiol (1985) 2018;124:16-22. [PMID: 28912360 DOI: 10.1152/japplphysiol.00480.2017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
52 Pereira MG, Dyar KA, Nogara L, Solagna F, Marabita M, Baraldo M, Chemello F, Germinario E, Romanello V, Nolte H, Blaauw B. Comparative Analysis of Muscle Hypertrophy Models Reveals Divergent Gene Transcription Profiles and Points to Translational Regulation of Muscle Growth through Increased mTOR Signaling. Front Physiol 2017;8:968. [PMID: 29255421 DOI: 10.3389/fphys.2017.00968] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
53 Liao CY, Anderson SS, Chicoine NH, Mayfield JR, Garrett BJ, Kwok CS, Academia EC, Hsu YM, Miller DM, Bair AM, Wilson JA, Tannady G, Stewart EM, Adamson SS, Wang J, Withers DJ, Kennedy BK. Evidence that S6K1, but not 4E-BP1, mediates skeletal muscle pathology associated with loss of A-type lamins. Cell Discov 2017;3:17039. [PMID: 29736257 DOI: 10.1038/celldisc.2017.39] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
54 Go GY, Lee SJ, Jo A, Lee J, Seo DW, Kang JS, Kim SK, Kim SN, Kim YK, Bae GU. Ginsenoside Rg1 from Panax ginseng enhances myoblast differentiation and myotube growth. J Ginseng Res 2017;41:608-14. [PMID: 29021711 DOI: 10.1016/j.jgr.2017.05.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
55 Vandoorne T, De Smet S, Ramaekers M, Van Thienen R, De Bock K, Clarke K, Hespel P. Intake of a Ketone Ester Drink during Recovery from Exercise Promotes mTORC1 Signaling but Not Glycogen Resynthesis in Human Muscle. Front Physiol 2017;8:310. [PMID: 28588499 DOI: 10.3389/fphys.2017.00310] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 8.2] [Reference Citation Analysis]
56 Martin NRW, Aguilar-Agon K, Robinson GP, Player DJ, Turner MC, Myers SD, Lewis MP. Hypoxia Impairs Muscle Function and Reduces Myotube Size in Tissue Engineered Skeletal Muscle. J Cell Biochem 2017;118:2599-605. [PMID: 28294416 DOI: 10.1002/jcb.25982] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
57 Sugg KB, Korn MA, Sarver DC, Markworth JF, Mendias CL. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy. FEBS Lett 2017;591:801-9. [PMID: 28129672 DOI: 10.1002/1873-3468.12571] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]