BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E, Barker R, Gilroy S, Hassane D, Smith SM, Zwart SR, Nelman-Gonzalez M, Crucian BE, Ponomarev SA, Orlov OI, Shiba D, Muratani M, Yamamoto M, Richards SE, Vaishampayan PA, Meydan C, Foox J, Myrrhe J, Istasse E, Singh N, Venkateswaran K, Keune JA, Ray HE, Basner M, Miller J, Vitaterna MH, Taylor DM, Wallace D, Rubins K, Bailey SM, Grabham P, Costes SV, Mason CE, Beheshti A. Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell 2020;183:1162-84. [PMID: 33242416 DOI: 10.1016/j.cell.2020.10.050] [Cited by in Crossref: 21] [Cited by in F6Publishing: 51] [Article Influence: 21.0] [Reference Citation Analysis]
Number Citing Articles
1 Seoane-Viaño I, Ong JJ, Basit AW, Goyanes A. To infinity and beyond: Strategies for fabricating medicines in outer space. Int J Pharm X 2022;4:100121. [PMID: 35782363 DOI: 10.1016/j.ijpx.2022.100121] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Caswell G, Eshelby B. Skin microbiome considerations for long haul space flights. Front Cell Dev Biol 2022;10:956432. [PMID: 36158225 DOI: 10.3389/fcell.2022.956432] [Reference Citation Analysis]
3 Mhatre SD, Iyer J, Petereit J, Dolling-Boreham RM, Tyryshkina A, Paul AM, Gilbert R, Jensen M, Woolsey RJ, Anand S, Sowa MB, Quilici DR, Costes SV, Girirajan S, Bhattacharya S. Artificial gravity partially protects space-induced neurological deficits in Drosophila melanogaster. Cell Rep 2022;40:111279. [PMID: 36070701 DOI: 10.1016/j.celrep.2022.111279] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Aliberti F, Paolin E, Benedetti L, Cusella G, Ceccarelli G. 3D bioprinting and Rigenera® micrografting technology: A possible countermeasure for wound healing in spaceflight. Front Bioeng Biotechnol 2022;10:937709. [DOI: 10.3389/fbioe.2022.937709] [Reference Citation Analysis]
5 Laiakis EC, Pinheiro M, Nguyen T, Nguyen H, Beheshti A, Dutta SM, Russell WK, Emmett MR, Britten RA. Quantitative proteomic analytic approaches to identify metabolic changes in the medial prefrontal cortex of rats exposed to space radiation. Front Physiol 2022;13:971282. [DOI: 10.3389/fphys.2022.971282] [Reference Citation Analysis]
6 Madrigal P, Singh NK, Wood JM, Gaudioso E, Hernández-Del-Olmo F, Mason CE, Venkateswaran K, Beheshti A. Machine learning algorithm to characterize antimicrobial resistance associated with the International Space Station surface microbiome. Microbiome 2022;10:134. [PMID: 35999570 DOI: 10.1186/s40168-022-01332-w] [Reference Citation Analysis]
7 Mammarella N, Gatti M, Ceccato I, Di Crosta A, Di Domenico A, Palumbo R. The Protective Role of Neurogenetic Components in Reducing Stress-Related Effects during Spaceflights: Evidence from the Age-Related Positive Memory Approach. Life (Basel) 2022;12:1176. [PMID: 36013355 DOI: 10.3390/life12081176] [Reference Citation Analysis]
8 Coulombe JV, Harrisson G, Lewis BJ, El-jaby S. Evolving radiological protection guidelines for exploration-class missions. Life Sciences in Space Research 2022. [DOI: 10.1016/j.lssr.2022.08.004] [Reference Citation Analysis]
9 Sarli SL, Watts JK. Harnessing nucleic acid technologies for human health on earth and in space. Life Sciences in Space Research 2022. [DOI: 10.1016/j.lssr.2022.08.006] [Reference Citation Analysis]
10 Guo Z, Zhou G, Hu W. Carcinogenesis induced by space radiation: A systematic review. Neoplasia 2022;32:100828. [PMID: 35908380 DOI: 10.1016/j.neo.2022.100828] [Reference Citation Analysis]
11 Estlack Z, Kim J. Microvalve array fabrication using selective PDMS (polydimethylsiloxane) bonding through Perfluorooctyl-trichlorosilane passivation for long-term space exploration. Sci Rep 2022;12:12398. [PMID: 35858972 DOI: 10.1038/s41598-022-16574-9] [Reference Citation Analysis]
12 Averesch NJH, Shunk GK, Kern C. Cultivation of the Dematiaceous Fungus Cladosporium sphaerospermum Aboard the International Space Station and Effects of Ionizing Radiation. Front Microbiol 2022;13:877625. [DOI: 10.3389/fmicb.2022.877625] [Reference Citation Analysis]
13 Drago-ferrante R, Di Fiore R, Karouia F, Subbannayya Y, Das S, Aydogan Mathyk B, Arif S, Guevara-cerdán AP, Seylani A, Galsinh AS, Kukulska W, Borg J, Suleiman S, Porterfield DM, Camera A, Christenson LK, Ronca AE, Steller JG, Beheshti A, Calleja-agius J. Extraterrestrial Gynecology: Could Spaceflight Increase the Risk of Developing Cancer in Female Astronauts? An Updated Review. IJMS 2022;23:7465. [DOI: 10.3390/ijms23137465] [Reference Citation Analysis]
14 Acharya A, Nemade H, Papadopoulos S, Hescheler J, Neumaier F, Schneider T, Rajendra Prasad K, Khan K, Hemmersbach R, Gusmao EG, Mizi A, Papantonis A, Sachinidis A. Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes. iScience 2022;25:104577. [DOI: 10.1016/j.isci.2022.104577] [Reference Citation Analysis]
15 Manis C, Manca A, Murgia A, Uras G, Caboni P, Congiu T, Faa G, Pantaleo A, Cao G. Understanding the Behaviour of Human Cell Types under Simulated Microgravity Conditions: The Case of Erythrocytes. Int J Mol Sci 2022;23:6876. [PMID: 35743319 DOI: 10.3390/ijms23126876] [Reference Citation Analysis]
16 Kernagis DN, Balcer-kubiczek E, Bazyar S, Orschell CM, Jackson IL. Medical countermeasures for the hematopoietic-subsyndrome of acute radiation syndrome in space. Life Sciences in Space Research 2022. [DOI: 10.1016/j.lssr.2022.06.002] [Reference Citation Analysis]
17 Ponomarev SA, Sadova AA, Rykova MP, Orlova KD, Vlasova DD, Shulgina SM, Antropova EN, Kutko OV, Germanov NS, Galina VS, Shmarov VA. The impact of short-term confinement on human innate immunity. Sci Rep 2022;12:8372. [PMID: 35589846 DOI: 10.1038/s41598-022-12380-5] [Reference Citation Analysis]
18 Meyers A, Wyatt SE. Plant Space Biology in the Genomics Age. In: Roberts JA, editor. Annual Plant Reviews online. Wiley; 2018. pp. 123-50. [DOI: 10.1002/9781119312994.apr0784] [Reference Citation Analysis]
19 Marvasi M, Monici M, Pantalone D, Cavalieri D. Exploitation of Skin Microbiota in Wound Healing: Perspectives During Space Missions. Front Bioeng Biotechnol 2022;10:873384. [DOI: 10.3389/fbioe.2022.873384] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 An R, Lee JA. CAMDLES: CFD-DEM Simulation of Microbial Communities in Spaceflight and Artificial Microgravity. Life 2022;12:660. [DOI: 10.3390/life12050660] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Fais G, Manca A, Bolognesi F, Borselli M, Concas A, Busutti M, Broggi G, Sanna P, Castillo-aleman YM, Rivero-jiménez RA, Bencomo-hernandez AA, Ventura-carmenate Y, Altea M, Pantaleo A, Gabrielli G, Biglioli F, Cao G, Giannaccare G. Wide Range Applications of Spirulina: From Earth to Space Missions. Marine Drugs 2022;20:299. [DOI: 10.3390/md20050299] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Tran QD, Tran V, Toh LS, Williams PM, Tran NN, Hessel V. Space Medicines for Space Health. ACS Med Chem Lett . [DOI: 10.1021/acsmedchemlett.1c00681] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Tesei D, Jewczynko A, Lynch A, Urbaniak C. Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life 2022;12:495. [DOI: 10.3390/life12040495] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Tian L, Luo Y, Zhan A, Ren J, Qin H, Pan Y. Hypomagnetic Field Induces the Production of Reactive Oxygen Species and Cognitive Deficits in Mice Hippocampus. IJMS 2022;23:3622. [DOI: 10.3390/ijms23073622] [Reference Citation Analysis]
25 Scott JM, Stoudemire J, Dolan L, Downs M. Leveraging Spaceflight to Advance Cardiovascular Research on Earth. Circ Res 2022;130:942-57. [PMID: 35298305 DOI: 10.1161/CIRCRESAHA.121.319843] [Reference Citation Analysis]
26 Deane CS, da Silveira WA, Herranz R; Space Omics Topical Team. Space omics research in Europe: Contributions, geographical distribution and ESA member state funding schemes. iScience 2022;25:103920. [PMID: 35265808 DOI: 10.1016/j.isci.2022.103920] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Jones CW, Basner M, Mollicone DJ, Mott CM, Dinges DF. Sleep deficiency in spaceflight is associated with degraded neurobehavioral functions and elevated stress in astronauts on six-month missions aboard the International Space Station. Sleep 2022;45:zsac006. [PMID: 35023565 DOI: 10.1093/sleep/zsac006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Zhao Y, Zhong G, Du R, Zhao D, Li J, Li Y, Xing W, Jin X, Zhang W, Sun W, Liu C, Liu Z, Yuan X, Kan G, Han X, Li Q, Chang Y, Li Y, Ling S. Ckip-1 3′-UTR Attenuates Simulated Microgravity-Induced Cardiac Atrophy. Front Cell Dev Biol 2022;9:796902. [DOI: 10.3389/fcell.2021.796902] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Trudel G, Shahin N, Ramsay T, Laneuville O, Louati H. Hemolysis contributes to anemia during long-duration space flight. Nat Med 2022. [PMID: 35031790 DOI: 10.1038/s41591-021-01637-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
30 Kim H, Shin Y, Kim DH. Mechanobiological Implications of Cancer Progression in Space. Front Cell Dev Biol 2021;9:740009. [PMID: 34957091 DOI: 10.3389/fcell.2021.740009] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
31 Uruno A, Saigusa D, Suzuki T, Yumoto A, Nakamura T, Matsukawa N, Yamazaki T, Saito R, Taguchi K, Suzuki M, Suzuki N, Otsuki A, Katsuoka F, Hishinuma E, Okada R, Koshiba S, Tomioka Y, Shimizu R, Shirakawa M, Kensler TW, Shiba D, Yamamoto M. Nrf2 plays a critical role in the metabolic response during and after spaceflight. Commun Biol 2021;4:1381. [PMID: 34887485 DOI: 10.1038/s42003-021-02904-6] [Reference Citation Analysis]
32 Cubo-Mateo N, Gelinsky M. Wound and Skin Healing in Space: The 3D Bioprinting Perspective. Front Bioeng Biotechnol 2021;9:720217. [PMID: 34760878 DOI: 10.3389/fbioe.2021.720217] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
33 Suzuki N, Iwamura Y, Nakai T, Kato K, Otsuki A, Uruno A, Saigusa D, Taguchi K, Suzuki M, Shimizu R, Yumoto A, Okada R, Shirakawa M, Shiba D, Takahashi S, Suzuki T, Yamamoto M. Gene expression changes related to bone mineralization, blood pressure and lipid metabolism in mouse kidneys after space travel. Kidney Int 2021:S0085-2538(21)01030-9. [PMID: 34767829 DOI: 10.1016/j.kint.2021.09.031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Kurosawa R, Sugimoto R, Imai H, Atsuji K, Yamada K, Kawano Y, Ohtsu I, Suzuki K. Impact of spaceflight and artificial gravity on sulfur metabolism in mouse liver: sulfur metabolomic and transcriptomic analysis. Sci Rep 2021;11:21786. [PMID: 34750416 DOI: 10.1038/s41598-021-01129-1] [Reference Citation Analysis]
35 McNulty MJ, Berliner AJ, Negulescu PG, McKee L, Hart O, Yates K, Arkin AP, Nandi S, McDonald KA. Evaluating the Cost of Pharmaceutical Purification for a Long-Duration Space Exploration Medical Foundry. Front Microbiol 2021;12:700863. [PMID: 34707576 DOI: 10.3389/fmicb.2021.700863] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
36 Kozyrovska N, Reva O, Podolich O, Kukharenko O, Orlovska I, Terzova V, Zubova G, Trovatti Uetanabaro AP, Góes-neto A, Azevedo V, Barh D, Verseux C, Billi D, Kołodziejczyk AM, Foing B, Demets R, Vera JD. To Other Planets With Upgraded Millennial Kombucha in Rhythms of Sustainability and Health Support. Front Astron Space Sci 2021;8:701158. [DOI: 10.3389/fspas.2021.701158] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
37 Beheshti A, McDonald JT, Hada M, Takahashi A, Mason CE, Mognato M. Genomic Changes Driven by Radiation-Induced DNA Damage and Microgravity in Human Cells. Int J Mol Sci 2021;22:10507. [PMID: 34638848 DOI: 10.3390/ijms221910507] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
38 Mortimer JC, Gilliham M. SpaceHort: redesigning plants to support space exploration and on-earth sustainability. Curr Opin Biotechnol 2021;73:246-52. [PMID: 34563931 DOI: 10.1016/j.copbio.2021.08.018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
39 Moroni L, Tabury K, Stenuit H, Grimm D, Baatout S, Mironov V. What can biofabrication do for space and what can space do for biofabrication? Trends Biotechnol 2021:S0167-7799(21)00195-5. [PMID: 34544616 DOI: 10.1016/j.tibtech.2021.08.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
40 Cahill T, Cope H, Bass JJ, Overbey EG, Gilbert R, da Silveira WA, Paul AM, Mishra T, Herranz R, Reinsch SS, Costes SV, Hardiman G, Szewczyk NJ, Tahimic CGT. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight. Int J Mol Sci 2021;22:9470. [PMID: 34502375 DOI: 10.3390/ijms22179470] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
41 Vahlensieck C, Thiel CS, Adelmann J, Lauber BA, Polzer J, Ullrich O. Rapid Transient Transcriptional Adaptation to Hypergravity in Jurkat T Cells Revealed by Comparative Analysis of Microarray and RNA-Seq Data. Int J Mol Sci 2021;22:8451. [PMID: 34445156 DOI: 10.3390/ijms22168451] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
42 Zarubin M, Gangapshev A, Gavriljuk Y, Kazalov V, Kravchenko E. First transcriptome profiling of D. melanogaster after development in a deep underground low radiation background laboratory. PLoS One 2021;16:e0255066. [PMID: 34351964 DOI: 10.1371/journal.pone.0255066] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
43 Silvani G, Basirun C, Wu H, Mehner C, Poole K, Bradbury P, Chou J. A 3D‐Bioprinted Vascularized Glioblastoma‐on‐a‐Chip for Studying the Impact of Simulated Microgravity as a Novel Pre‐Clinical Approach in Brain Tumor Therapy. Adv Therap 2021;4:2100106. [DOI: 10.1002/adtp.202100106] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Bailey SM, Luxton JJ, McKenna MJ, Taylor LE, George KA, Jhavar SG, Swanson GP. Ad Astra - telomeres in space! Int J Radiat Biol 2021;:1-9. [PMID: 34270368 DOI: 10.1080/09553002.2021.1956010] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
45 Tinganelli W, Luoni F, Durante M. What can space radiation protection learn from radiation oncology? Life Sci Space Res (Amst) 2021;30:82-95. [PMID: 34281668 DOI: 10.1016/j.lssr.2021.06.002] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
46 Sun P, Yang J, Wang B, Ma H, Zhang Y, Guo J, Chen X, Zhao J, Sun H, Yang J, Yang H, Cui Y. The effects of combined environmental factors on the intestinal flora of mice based on ground simulation experiments. Sci Rep 2021;11:11373. [PMID: 34059794 DOI: 10.1038/s41598-021-91077-7] [Reference Citation Analysis]
47 de Vries H, Khoury-Hanold W. How the Immune System Deploys Creativity: Why We Can Learn From Astronauts and Cosmonauts. Front Psychol 2021;12:582083. [PMID: 33981265 DOI: 10.3389/fpsyg.2021.582083] [Reference Citation Analysis]
48 Simões MF, Antunes A. Microbial Pathogenicity in Space. Pathogens 2021;10:450. [PMID: 33918768 DOI: 10.3390/pathogens10040450] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
49 Bonnefoy J, Ghislin S, Beyrend J, Coste F, Calcagno G, Lartaud I, Gauquelin-Koch G, Poussier S, Frippiat JP. Gravitational Experimental Platform for Animal Models, a New Platform at ESA's Terrestrial Facilities to Study the Effects of Micro- and Hypergravity on Aquatic and Rodent Animal Models. Int J Mol Sci 2021;22:2961. [PMID: 33803957 DOI: 10.3390/ijms22062961] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
50 Nelson CA, Acuna AU, Paul AM, Scott RT, Butte AJ, Cekanaviciute E, Baranzini SE, Costes SV. Knowledge Network Embedding of Transcriptomic Data from Spaceflown Mice Uncovers Signs and Symptoms Associated with Terrestrial Diseases. Life (Basel) 2021;11:42. [PMID: 33445483 DOI: 10.3390/life11010042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
51 Scott RT, Grigorev K, Mackintosh G, Gebre SG, Mason CE, Del Alto ME, Costes SV. Advancing the Integration of Biosciences Data Sharing to Further Enable Space Exploration. Cell Rep 2020;33:108441. [PMID: 33242404 DOI: 10.1016/j.celrep.2020.108441] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
52 Luxton JJ, McKenna MJ, Taylor LE, George KA, Zwart SR, Crucian BE, Drel VR, Garrett-Bakelman FE, Mackay MJ, Butler D, Foox J, Grigorev K, Bezdan D, Meydan C, Smith SM, Sharma K, Mason CE, Bailey SM. Temporal Telomere and DNA Damage Responses in the Space Radiation Environment. Cell Rep 2020;33:108435. [PMID: 33242411 DOI: 10.1016/j.celrep.2020.108435] [Cited by in Crossref: 11] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
53 Luxton JJ, McKenna MJ, Lewis A, Taylor LE, George KA, Dixit SM, Moniz M, Benegas W, Mackay MJ, Mozsary C, Butler D, Bezdan D, Meydan C, Crucian BE, Zwart SR, Smith SM, Mason CE, Bailey SM. Telomere Length Dynamics and DNA Damage Responses Associated with Long-Duration Spaceflight. Cell Rep 2020;33:108457. [PMID: 33242406 DOI: 10.1016/j.celrep.2020.108457] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]