1 |
Zhang T, Zheng N, Wang Z, Xu X. Structure-based design of oligomeric receptor-binding domain (RBD) recombinant proteins as potent vaccine candidates against SARS-CoV-2. Hum Vaccin Immunother 2023;19:2174755. [PMID: 36846890 DOI: 10.1080/21645515.2023.2174755] [Reference Citation Analysis]
|
2 |
Xingjian Liu, Haozhi Song, Jianmin Jiang, Xintao Gao, Yongzhu Yi, Yuting Shang, Jialei Li, Dan Li, Zhen Zeng, Yinü Li, Zhifang Zhang. Baculovirus-expressed self-assembling SARS-CoV-2 nanoparticle vaccines targeting the S protein induce protective immunity in mice. Process Biochem 2023;129. [ DOI: 10.1016/j.procbio.2023.03.026] [Reference Citation Analysis]
|
3 |
Montgomerie I, Bird TW, Palmer OR, Mason NC, Pankhurst TE, Lawley B, Hernández LC, Harfoot R, Authier-Hall A, Anderson DE, Hilligan KL, Buick KH, Mbenza NM, Mittelstädt G, Maxwell S, Sinha S, Kuang J, Subbarao K, Parker EJ, Sher A, Hermans IF, Ussher JE, Quiñones-Mateu ME, Comoletti D, Connor LM; VAANZ Group. Incorporation of SARS-CoV-2 spike NTD to RBD protein vaccine improves immunity against viral variants. iScience 2023;26:106256. [PMID: 36845030 DOI: 10.1016/j.isci.2023.106256] [Reference Citation Analysis]
|
4 |
Gao L, Li Y, He P, Chen Z, Yang H, Li F, Zhang S, Wang D, Wang G, Yang S, Gong L, Ding F, Ling M, Wang X, Ci L, Dai L, Gao GF, Huang T, Hu Z, Ying Z, Sun J, Zuo X. Safety and immunogenicity of a protein subunit COVID-19 vaccine (ZF2001) in healthy children and adolescents aged 3-17 years in China: a randomised, double-blind, placebo-controlled, phase 1 trial and an open-label, non-randomised, non-inferiority, phase 2 trial. Lancet Child Adolesc Health 2023;7:269-79. [PMID: 36803632 DOI: 10.1016/S2352-4642(22)00376-5] [Reference Citation Analysis]
|
5 |
Li D, Duan M, Wang X, Gao P, Zhao X, Xu K, Gao GF. Neutralization of BQ.1, BQ.1.1, and XBB with RBD-Dimer Vaccines. N Engl J Med 2023;388:1142-5. [PMID: 36856580 DOI: 10.1056/NEJMc2216233] [Reference Citation Analysis]
|
6 |
Oktay E, Alem F, Hernandez K, Girgis M, Green C, Mathur D, Medintz IL, Narayanan A, Veneziano R. DNA origami presenting the receptor binding domain of SARS-CoV-2 elicit robust protective immune response. Commun Biol 2023;6:308. [PMID: 36959304 DOI: 10.1038/s42003-023-04689-2] [Reference Citation Analysis]
|
7 |
Senyu Xu, Huixin Duan, Yaling An, Xiyue Jin, Minrun Duan, Patrice M Dubois, Yan Huang, Kun Xu, Heng Du, Harry Kleanthous, Lianpan Dai, George F. Gao. Effect of adjuvanting RBD-dimer-based subunit COVID-19 vaccines with Sepivac SWETM. Vaccine 2023. [ DOI: 10.1016/j.vaccine.2023.03.035] [Reference Citation Analysis]
|
8 |
Zhao N, Song Y, Xie X, Zhu Z, Duan C, Nong C, Wang H, Bao R. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development. Signal Transduct Target Ther 2023;8:112. [PMID: 36906608 DOI: 10.1038/s41392-023-01375-x] [Reference Citation Analysis]
|
9 |
He C, Chen L, Yang J, Chen Z, Lei H, Hong W, Song X, Yang L, Li J, Wang W, Shen G, Lu G, Wei X. Trimeric protein vaccine based on Beta variant elicits robust immune response against BA.4/5-included SARS-CoV-2 Omicron variants. Mol Biomed 2023;4:9. [PMID: 36894743 DOI: 10.1186/s43556-023-00121-7] [Reference Citation Analysis]
|
10 |
Rabaan AA, Al-ahmed SH, Albayat H, Alwarthan S, Alhajri M, Najim MA, Alshehail BM, Al-adsani W, Alghadeer A, Abduljabbar WA, Alotaibi N, Alsalman J, Gorab AH, Almaghrabi RS, Zaidan AA, Aldossary S, Alissa M, Alburaiky LM, Alsalim FM, Thakur N, Verma G, Dhawan M. Variants of SARS-CoV-2: Influences on the Vaccines’ Effectiveness and Possible Strategies to Overcome Their Consequences. Medicina 2023;59:507. [DOI: 10.3390/medicina59030507] [Reference Citation Analysis]
|
11 |
Qian Chen, Pei Du, Yuxuan Han, Xuehui Ma, Rong Zhang, Xiaoyu Rong, Xu Zhao, Renyi Ma, Huiting Yang, Anqi Zheng, Qingrui Huang, Jinghua Yan, Hui Wang, Xin Zhao, Lianpan Dai, George F. Gao, Qihui Wang. Rapid evaluation of heterologous chimeric RBD-dimer mRNA vaccine for currently-epidemic Omicron sub-variants as booster shot after inactivated vaccine. Biosaf Health 2023. [ DOI: 10.1016/j.bsheal.2023.02.002] [Reference Citation Analysis]
|
12 |
Nanishi E, Borriello F, Seo HS, O'Meara TR, McGrath ME, Saito Y, Chen J, Diray-Arce J, Song K, Xu AZ, Barman S, Menon M, Dong D, Caradonna TM, Feldman J, Hauser BM, Schmidt AG, Baden LR, Ernst RK, Dillen C, Yu J, Chang A, Hilgers L, Platenburg PP, Dhe-Paganon S, Barouch DH, Ozonoff A, Zanoni I, Frieman MB, Dowling DJ, Levy O. Carbohydrate fatty acid monosulphate: oil-in-water adjuvant enhances SARS-CoV-2 RBD nanoparticle-induced immunogenicity and protection in mice. NPJ Vaccines 2023;8:18. [PMID: 36788219 DOI: 10.1038/s41541-023-00610-4] [Reference Citation Analysis]
|
13 |
Zhang T, Wang Z, Yang J, Xu X. Immunogenicity of novel DNA vaccines encoding receptor-binding domain (RBD) dimer-Fc fusing antigens derived from different SARS-CoV-2 variants of concern. J Med Virol 2023;95:e28563. [PMID: 36755368 DOI: 10.1002/jmv.28563] [Reference Citation Analysis]
|
14 |
Germanó MJ, Giai C, Cargnelutti DE, Colombo MI, Blanco S, Konigheim B, Spinsanti L, Aguilar J, Gallego S, Valdez HA, Mackern-Oberti JP, Sanchez MV. Receptor-binding domain-based SARS-CoV-2 vaccine adjuvanted with cyclic di-adenosine monophosphate enhances humoral and cellular immunity in mice. J Med Virol 2023;95:e28584. [PMID: 36794675 DOI: 10.1002/jmv.28584] [Reference Citation Analysis]
|
15 |
Lee DB, Kim H, Jeong JH, Jang US, Jang Y, Roh S, Jeon H, Kim EJ, Han SY, Maeng JY, Magez S, Radwanska M, Mun JY, Jun HS, Lee G, Song MS, Lee HR, Chung MS, Baek YH, Kim KH. Mosaic RBD nanoparticles induce intergenus cross-reactive antibodies and protect against SARS-CoV-2 challenge. Proc Natl Acad Sci U S A 2023;120:e2208425120. [PMID: 36669119 DOI: 10.1073/pnas.2208425120] [Reference Citation Analysis]
|
16 |
Zhang J, Xia Y, Liu X, Liu G. Advanced Vaccine Design Strategies against SARS-CoV-2 and Emerging Variants. Bioengineering (Basel) 2023;10. [PMID: 36829642 DOI: 10.3390/bioengineering10020148] [Reference Citation Analysis]
|
17 |
Kovalenko A, Ryabchevskaya E, Evtushenko E, Nikitin N, Karpova O. Recombinant Protein Vaccines against Human Betacoronaviruses: Strategies, Approaches and Progress. Int J Mol Sci 2023;24. [PMID: 36675218 DOI: 10.3390/ijms24021701] [Reference Citation Analysis]
|
18 |
Qin S, Huang H, Xiao W, Chen K, He X, Tang X, Huang Z, Zhang Y, Duan X, Fan N, Zheng Q, Wu M, Lu G, Wei Y, Wei X, Song X. A novel heterologous receptor-binding domain dodecamer universal mRNA vaccine against SARS-CoV-2 variants. Acta Pharm Sin B 2023. [PMID: 36647424 DOI: 10.1016/j.apsb.2023.01.010] [Reference Citation Analysis]
|
19 |
Abdurakhmonov I, Buriev Z, Shermatov S, Usmanov D, Mirzakhmedov M, Ubaydullaeva K, Kamburova V, Rakhmanov B, Ayubov M, Abdullaev A, Eshmurzaev J, Mamajonov B, Tulanov A, Ismailova A, Petrova T, Rozumbetov R, Aripova T, Muminov M, Ermatova K, Dalimova D, Turdikulova S, Abdukarimov A. The edible tomato COVID-19 vaccine, TOMAVAC, induces neutralising IgGs.. [DOI: 10.21203/rs.3.rs-2447951/v1] [Reference Citation Analysis]
|
20 |
Lai DY, Xue JB, He P, Jiang HW, Li Y, Ma ML, Hong W, Yu JP, Wei HP, Tao SC. Longitudinal neutralization activities on authentic Omicron variant provided by three doses of BBIBP-CorV vaccination during one year. Proteomics 2023;23:e2200306. [PMID: 36205637 DOI: 10.1002/pmic.202200306] [Reference Citation Analysis]
|
21 |
Ysrafil Y, Pratiwi SE, Cornillot E. Applications of genetic engineering in COVID-19. Omics Approaches and Technologies in COVID-19 2023. [DOI: 10.1016/b978-0-323-91794-0.00021-4] [Reference Citation Analysis]
|
22 |
Turdikulova S, Dalimova D, Abdullaev A, Muminov M, Ruyue W, Pengfei L, Musabaev E, Yusupaliev B, Kurbanov B, Abdurakhmonov I. COVID-19 Response in Uzbekistan: From RT-PCR Test System to the Clinical Trial of Subunit Vaccine. COVID-19 Vaccines - Current State and Perspectives [Working Title] 2022. [DOI: 10.5772/intechopen.109225] [Reference Citation Analysis]
|
23 |
Jia Y, Niu S, Hu Y, Chai Y, Zheng A, Su C, Wu L, Han P, Han P, Lu D, Liu Z, Yan X, Tian D, Chen Z, Qi J, Tian WX, Wang Q, Gao GF. Cross-reaction of current available SARS-CoV-2 MAbs against the pangolin-origin coronavirus GX/P2V/2017. Cell Rep 2022;41:111831. [PMID: 36493785 DOI: 10.1016/j.celrep.2022.111831] [Reference Citation Analysis]
|
24 |
Nechooshtan R, Ehrlich S, Vitikainen M, Makovitzki A, Dor E, Marcus H, Hefetz I, Pitel S, Wiebe M, Huuskonen A, Cherry L, Lupu E, Sapir Y, Holtzman T, Aftalion M, Gur D, Tamir H, Yahalom-Ronen Y, Ramot Y, Kronfeld N, Zarling D, Vallerga A, Tchelet R, Nyska A, Saloheimo M, Emalfarb M, Ophir Y. Thermophilic Filamentous Fungus C1-Cell-Cloned SARS-CoV-2-Spike-RBD-Subunit-Vaccine Adjuvanted with Aldydrogel(®)85 Protects K18-hACE2 Mice against Lethal Virus Challenge. Vaccines (Basel) 2022;10. [PMID: 36560529 DOI: 10.3390/vaccines10122119] [Reference Citation Analysis]
|
25 |
Ye T, Jiao Z, Li X, He Z, Li Y, Yang F, Zhao X, Wang Y, Huang W, Qin M, Feng Y, Qiu Y, Yang W, Hu L, Hu Y, Zhai Y, Wang E, Yu D, Wang S, Yue H, Wang H, Zhu L, Ma G, Wei W. Inhalable SARS-CoV-2 vaccines for single-dose dry-powder aerosol immunization and orchestrated mucosal/systemic immune responses.. [DOI: 10.21203/rs.3.rs-2301923/v1] [Reference Citation Analysis]
|
26 |
Li T, Qian C, Gu Y, Zhang J, Li S, Xia N. Current progress in the development of prophylactic and therapeutic vaccines. Sci China Life Sci 2022;:1-32. [PMID: 36469218 DOI: 10.1007/s11427-022-2230-4] [Reference Citation Analysis]
|
27 |
An Y, Li S, Jin X, Han JB, Xu K, Xu S, Han Y, Liu C, Zheng T, Liu M, Yang M, Song TZ, Huang B, Zhao L, Wang W, A R, Cheng Y, Wu C, Huang E, Yang S, Wong G, Bi Y, Ke C, Tan W, Yan J, Zheng YT, Dai L, Gao GF. A tandem-repeat dimeric RBD protein-based covid-19 vaccine zf2001 protects mice and nonhuman primates. Emerg Microbes Infect 2022;11:1058-71. [PMID: 35311493 DOI: 10.1080/22221751.2022.2056524] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
|
28 |
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022;10:1052436. [PMID: 36507266 DOI: 10.3389/fbioe.2022.1052436] [Reference Citation Analysis]
|
29 |
Chen L, Zhang H, Li M, Wu B, Zhang Z, Gong R. An intranasal vaccine targeting the receptor binding domain of SARS-CoV-2 elicits a protective immune response. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1005321] [Reference Citation Analysis]
|
30 |
Zhang J, Xu Y, Chen M, Huang Y, Song T, Yang C, Yang Y, Song Y. Elucidating the Effect of Nanoscale Receptor-Binding Domain Organization on SARS-CoV-2 Infection and Immunity Activation with DNA Origami. J Am Chem Soc 2022. [DOI: 10.1021/jacs.2c09229] [Reference Citation Analysis]
|
31 |
Liu Y, Zhao D, Wang Y, Chen Z, Yang L, Li W, Gong Y, Gan C, Tang J, Zhang T, Tang D, Dong X, Yang Q, Valencia CA, Dai L, Qi S, Dong B, Chow HY, Li Y. A vaccine based on the yeast-expressed receptor-binding domain (RBD) elicits broad immune responses against SARS-CoV-2 variants. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1011484] [Reference Citation Analysis]
|
32 |
Liao Y, Chen Y, Chen B, Liang Z, Hu X, Xing B, Yang J, Zheng Q, Hua Q, Yan C, Lv H. Safety and immunogenicity of heterologous recombinant protein subunit vaccine (ZF2001) booster against COVID-19 at 3–9-month intervals following two-dose inactivated vaccine (CoronaVac). Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1017590] [Reference Citation Analysis]
|
33 |
Qu Q, Hao P, Xu W, Li L, Jiang Y, Xu Z, Chen J, Gao Z, Pang Z, Jin N, Li C. A Vaccine of SARS-CoV-2 S Protein RBD Induces Protective Immunity. Int J Mol Sci 2022;23. [PMID: 36430190 DOI: 10.3390/ijms232213716] [Reference Citation Analysis]
|
34 |
Deng T, Li T, Chen G, Zhu Y, Xu L, Lin Y, Sun H, Zhang H, Fang Q, Hong J, Wu D, Gao S, Li S, Wang Y, Zhang T, Chen Y, Yuan Q, Zheng Q, Yu H, Zhao Q, Zhang J, Li S, Xia N, Gu Y. Characterization and immunogenicity of SARS-CoV-2 spike proteins with varied glycosylation. Vaccine 2022;40:6839-48. [PMID: 36253220 DOI: 10.1016/j.vaccine.2022.09.057] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
35 |
Hu Q, Zhao Y, Shaabani N, Lyu X, Powers C, Sun H, Cruz V, Stegman K, Xu J, Fossier A, Huang Y, Ho G, Kao Y, Wang Z, Wang Z, Hu Y, Zheng Y, Kyaw L, Zuluaga C, Wang H, Pei H, Allen R, Xie H, Ji H, Chen R. Chimeric mRNA-based COVID-19 vaccine induces protective immunity against Omicron and Delta variants. Mol Ther Nucleic Acids 2022;30:465-76. [PMID: 36345542 DOI: 10.1016/j.omtn.2022.10.021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
36 |
Han Y, An Y, Chen Q, Xu K, Liu X, Xu S, Duan H, Vogel AB, Şahin U, Wang Q, Dai L, Gao GF. mRNA vaccines expressing homo-prototype/Omicron and hetero-chimeric RBD-dimers against SARS-CoV-2. Cell Res 2022;32:1022-5. [PMID: 36104506 DOI: 10.1038/s41422-022-00720-z] [Reference Citation Analysis]
|
37 |
Yang J, Liu MQ, Liu L, Li X, Xu M, Lin H, Liu S, Hu Y, Li B, Liu B, Li M, Sun Y, Chen YQ, Shi ZL, Yan H. A triple-RBD-based mucosal vaccine provides broad protection against SARS-CoV-2 variants of concern. Cell Mol Immunol 2022;19:1279-89. [PMID: 36220993 DOI: 10.1038/s41423-022-00929-3] [Reference Citation Analysis]
|
38 |
Liu Z, Yang C, Zhang H, Cao G, Wang S, Yin S, Wang Y. SARS-CoV-2 tetrameric RBD protein blocks viral infection and induces potent neutralizing antibody response. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.960094] [Reference Citation Analysis]
|
39 |
Li D, Martinez DR, Schäfer A, Chen H, Barr M, Sutherland LL, Lee E, Parks R, Mielke D, Edwards W, Newman A, Bock KW, Minai M, Nagata BM, Gagne M, Douek DC, DeMarco CT, Denny TN, Oguin TH 3rd, Brown A, Rountree W, Wang Y, Mansouri K, Edwards RJ, Ferrari G, Sempowski GD, Eaton A, Tang J, Cain DW, Santra S, Pardi N, Weissman D, Tomai MA, Fox CB, Moore IN, Andersen H, Lewis MG, Golding H, Seder R, Khurana S, Baric RS, Montefiori DC, Saunders KO, Haynes BF. Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine. Nat Commun 2022;13:6309. [PMID: 36274085 DOI: 10.1038/s41467-022-33985-4] [Reference Citation Analysis]
|
40 |
Li YQ, Yan C, Wang XF, Xian MY, Zou GQ, Gao XF, Luo R, Liu Z. A New iNKT-Cell Agonist-Adjuvanted SARS-CoV-2 Subunit Vaccine Elicits Robust Neutralizing Antibody Responses. ACS Infect Dis 2022;8:2161-70. [PMID: 36043698 DOI: 10.1021/acsinfecdis.2c00296] [Reference Citation Analysis]
|
41 |
Rong Y, Wang X, Mao W, Yuan F, Chen M, Wang S, Wang PG, Wu Z, He Y, Kong Y. Chemoenzymatic Synthesis of SARS-CoV-2 Homogeneous O-Linked Glycopeptides for Exploring Their Inhibition Functions. ACS Infect Dis 2022;8:2198-206. [PMID: 36095241 DOI: 10.1021/acsinfecdis.2c00383] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
42 |
Zhou J, Liu Z, Zhang G, Xu W, Xing L, Lu L, Wang Q, Jiang S. Development of variant-proof severe acute respiratory syndrome coronavirus 2, pan-sarbecovirus, and pan-β-coronavirus vaccines. J Med Virol 2023;95:e28172. [PMID: 36161303 DOI: 10.1002/jmv.28172] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
43 |
Shi R, Zeng J, Xu L, Wang F, Duan X, Wang Y, Wu Z, Yu D, Huang Q, Yao YG, Yan J. A combination vaccine against SARS-CoV-2 and H1N1 influenza based on receptor binding domain trimerized by six-helix bundle fusion core. EBioMedicine 2022;85:104297. [PMID: 36206623 DOI: 10.1016/j.ebiom.2022.104297] [Reference Citation Analysis]
|
44 |
Kumar S, Basu M, Ghosh P, Ansari A, Ghosh MK. COVID-19: Clinical status of vaccine development to date. Br J Clin Pharmacol 2023;89:114-49. [PMID: 36184710 DOI: 10.1111/bcp.15552] [Reference Citation Analysis]
|
45 |
Park T, Hwang H, Moon S, Kang SG, Song S, Kim YH, Kim H, Ko EJ, Yoon SD, Kang SM, Hwang HS. Vaccines against SARS-CoV-2 variants and future pandemics. Expert Rev Vaccines 2022;21:1363-76. [PMID: 35924678 DOI: 10.1080/14760584.2022.2110075] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
46 |
Kieber-emmons T. Broad Based Immunity? Monoclonal Antibodies in Immunodiagnosis and Immunotherapy 2022;41:229-230. [DOI: 10.1089/mab.2022.29010.editorial] [Reference Citation Analysis]
|
47 |
Jahangir ZS, Marnik AH. A study protocol to prepare an RBD protein for vaccine against COVID-19. F1000Res 2021;10:943. [DOI: 10.12688/f1000research.54738.3] [Reference Citation Analysis]
|
48 |
Hu X, Lin C, Xu Q, Zhou X, Zeng P, McCormick PJ, Jiang H, Li J, Zhang J. Structural Basis for the Inhibition of Coronaviral Main Proteases by a Benzothiazole-Based Inhibitor. Viruses 2022;14:2075. [PMID: 36146880 DOI: 10.3390/v14092075] [Reference Citation Analysis]
|
49 |
He C, Yang J, Hong W, Chen Z, Peng D, Lei H, Alu A, He X, Bi Z, Jiang X, Jia G, Yang Y, Zhou Y, Yu W, Tang C, Huang Q, Yang M, Li B, Li J, Wang J, Que H, Chen L, Ren W, Wan D, Li J, Wang W, Shen G, Zhao Z, Yang L, Yang J, Wang Z, Su Z, Wei Y, Cen X, Tanaka Y, Song X, Lu S, Peng X, Lu G, Wei X. A self-assembled trimeric protein vaccine induces protective immunity against Omicron variant. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-33209-9] [Reference Citation Analysis]
|
50 |
Dickey TH, Tang WK, Butler B, Ouahes T, Orr-gonzalez S, Salinas ND, Lambert LE, Tolia NH. Design of the SARS-CoV-2 RBD vaccine antigen improves neutralizing antibody response. Sci Adv 2022;8:eabq8276. [DOI: 10.1126/sciadv.abq8276] [Reference Citation Analysis]
|
51 |
Wei X, Rong N, Liu J. Prospects of animal models and their application in studies on adaptive immunity to SARS-CoV-2. Front Immunol 2022;13:993754. [DOI: 10.3389/fimmu.2022.993754] [Reference Citation Analysis]
|
52 |
Ke H, Chang MR, Marasco WA. Immune Evasion of SARS-CoV-2 Omicron Subvariants. Vaccines (Basel) 2022;10:1545. [PMID: 36146623 DOI: 10.3390/vaccines10091545] [Reference Citation Analysis]
|
53 |
Huang Q, Han X, Yan J. Structure-based neutralizing mechanisms for SARS-CoV-2 antibodies. Emerging Microbes & Infections. [DOI: 10.1080/22221751.2022.2125348] [Reference Citation Analysis]
|
54 |
Chen L, Qi X, Liang D, Li G, Peng X, Li X, Ke B, Zheng H, Liu Z, Ke C, Liao G, Liu L, Feng Q. Human Fc-Conjugated Receptor Binding Domain-Based Recombinant Subunit Vaccines with Short Linker Induce Potent Neutralizing Antibodies against Multiple SARS-CoV-2 Variants. Vaccines 2022;10:1502. [DOI: 10.3390/vaccines10091502] [Reference Citation Analysis]
|
55 |
Garg S, Raj N, Lukose A, Jamwal D, Parray HA, Kumar S, Dhyani S, Jakhar K, Sonar S, Tiwari M, Reema, Mani S, Bhattacharyya S, Sharma C, Shrivastava T, Kumar R. Characterization of a broadly cross reactive tetravalent human monoclonal antibody, recognizing conformational epitopes in receptor binding domain of SARS-CoV-2. 3 Biotech 2022;12:202. [PMID: 35928502 DOI: 10.1007/s13205-022-03272-6] [Reference Citation Analysis]
|
56 |
Nishikawa T, Chang CY, Tai JA, Hayashi H, Sun J, Torii S, Ono C, Matsuura Y, Ide R, Mineno J, Sasai M, Yamamoto M, Nakagami H, Yamashita K. Immune response induced in rodents by anti-CoVid19 plasmid DNA vaccine via pyro-drive jet injector inoculation. Immunol Med 2022;:1-14. [PMID: 36001011 DOI: 10.1080/25785826.2022.2111905] [Reference Citation Analysis]
|
57 |
Liu D, An C, Bai Y, Li K, Liu J, Wang Q, He Q, Song Z, Zhang J, Song L, Cui B, Mao Q, Jiang W, Liang Z. A Novel Single-Stranded RNA-Based Adjuvant Improves the Immunogenicity of the SARS-CoV-2 Recombinant Protein Vaccine. Viruses 2022;14:1854. [DOI: 10.3390/v14091854] [Reference Citation Analysis]
|
58 |
Biselli R, Nisini R, Lista F, Autore A, Lastilla M, De Lorenzo G, Peragallo MS, Stroffolini T, D’amelio R. A Historical Review of Military Medical Strategies for Fighting Infectious Diseases: From Battlefields to Global Health. Biomedicines 2022;10:2050. [DOI: 10.3390/biomedicines10082050] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
59 |
Yang J, Gong Y, Zhang C, Sun J, Wong G, Shi W, Liu W, Gao GF, Bi Y. Co-existence and co-infection of influenza A viruses and coronaviruses: Public health challenges. Innovation (Camb) 2022;3:100306. [PMID: 35992368 DOI: 10.1016/j.xinn.2022.100306] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
60 |
Xing H, Zhu L, Wang P, Zhao G, Zhou Z, Yang Y, Zou H, Yan X. Display of receptor-binding domain of SARS-CoV-2 Spike protein variants on the Saccharomyces cerevisiae cell surface. Front Immunol 2022;13:935573. [DOI: 10.3389/fimmu.2022.935573] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
61 |
Leal L, Pich J, Ferrer L, Nava J, Martí-lluch R, Esteban I, Pradenas E, Raïch-regué D, Prenafeta A, Escobar K, Pastor C, Ribas-aulinas M, Trinitè B, Muñoz-basagoiti J, Domenech G, Clotet B, Corominas J, Corpes-comes A, Garriga C, Barreiro A, Izquierdo-useros N, Arnaiz JA, Soriano A, Ríos J, Nadal M, Plana M, Blanco J, Prat T, Torroella E, Ramos R, the HIPRA-HH-1 study group. Safety and Immunogenicity of a Recombinant Protein RBD Fusion Heterodimer Vaccine against SARS-CoV-2: preliminary results of a phase 1-2a dose-escalating, randomized, double-blind clinical trial.. [DOI: 10.1101/2022.08.09.22278560] [Reference Citation Analysis]
|
62 |
Deliyannis G, Gherardin NA, Wong CY, Grimley SL, Cooney JP, Redmond S, Ellenberg P, Davidson K, Mordant FL, Smith T, Gillard M, Lopez E, Mcauley J, Tan CW, Wang J, Zeng W, Littlejohn M, Zhou R, Chan JF, Chen Z, Hartwig AE, Bowen R, Mackenzie JM, Vincan E, Torresi J, Kedzierska K, Pouton CW, Gordon T, Wang L, Kent SJ, Wheatley AK, Lewin SR, Subbarao K, Chung A, Pellegrini M, Munro T, Nolan T, Rockman S, Jackson DC, Purcell DF, Godfrey DI. Broad immunity to SARS-CoV-2 variants of concern mediated by a SARS-CoV-2 receptor-binding domain protein vaccine.. [DOI: 10.1101/2022.08.05.22278425] [Reference Citation Analysis]
|
63 |
Jahangir ZS, Marnik AH. A study protocol to prepare an RBD protein for vaccine against COVID-19. F1000Res 2021;10:943. [DOI: 10.12688/f1000research.54738.2] [Reference Citation Analysis]
|
64 |
Hauser BM, Sangesland M, Lam EC, Feldman J, Balazs AB, Lingwood D, Schmidt AG. Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization. Front Immunol 2022;13:902260. [PMID: 35990628 DOI: 10.3389/fimmu.2022.902260] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
65 |
Oktay E, Alem F, Hernandez K, Narayanan A, Veneziano R. DNA Origami Presenting the Receptor Binding Domain of SARS-CoV-2 Elicit Robust Protective Immune Response.. [DOI: 10.1101/2022.08.02.502186] [Reference Citation Analysis]
|
66 |
Yang J, Han M, Wang L, Wang L, Xu T, Wu L, Ma J, Wong G, Liu W, Gao GF, Bi Y. Relatively rapid evolution rates of SARS-CoV-2 spike gene at the primary stage of massive vaccination. Biosaf Health 2022;4:228-33. [PMID: 35856045 DOI: 10.1016/j.bsheal.2022.07.001] [Reference Citation Analysis]
|
67 |
Kumar A, Ladha A, Choudhury A, Ikbal AMA, Bhattacharjee B, Das T, Gupta G, Sharma C, Sarbajna A, Mandal SC, Choudhury MD, Ali N, Slama P, Rezaei N, Palit P, Tiwari ON. The chimera of S1 and N proteins of SARS-CoV-2: can it be a potential vaccine candidate for COVID-19? Expert Rev Vaccines 2022;21:1071-86. [PMID: 35604776 DOI: 10.1080/14760584.2022.2081156] [Reference Citation Analysis]
|
68 |
Li M, Weng S, Wang Q, Yang Z, Wang X, Yin Y, Zhou Q, Zhang L, Tao F, Li Y, Jia M, Yang L, Xin X, Li H, Kang L, Wang Y, Wang T, Li S, Kong L. Reduced binding activity of vaccine serum to omicron receptor-binding domain. Front Immunol 2022;13:960195. [DOI: 10.3389/fimmu.2022.960195] [Reference Citation Analysis]
|
69 |
Li T, Luo KQ. Recipients of COVID-19 vaccines face challenges of SARS-CoV-2 variants. Int J Biol Sci 2022;18:4642-7. [PMID: 35874950 DOI: 10.7150/ijbs.72424] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
70 |
Hartwell BL, Melo MB, Xiao P, Lemnios AA, Li N, Chang JYH, Yu J, Gebre MS, Chang A, Maiorino L, Carter C, Moyer TJ, Dalvie NC, Rodriguez-Aponte SA, Rodrigues KA, Silva M, Suh H, Adams J, Fontenot J, Love JC, Barouch DH, Villinger F, Ruprecht RM, Irvine DJ. Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity. Sci Transl Med 2022;14:eabn1413. [PMID: 35857825 DOI: 10.1126/scitranslmed.abn1413] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
|
71 |
Heidary M, Kaviar VH, Shirani M, Ghanavati R, Motahar M, Sholeh M, Ghahramanpour H, Khoshnood S. A Comprehensive Review of the Protein Subunit Vaccines Against COVID-19. Front Microbiol 2022;13:927306. [DOI: 10.3389/fmicb.2022.927306] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
72 |
Wu F, Luo S, Zhang Y, Hairui Wang Zhaofei Guo Chunting He Shuting Bai Penghui He Min Jiang Xiaoyan Chen Guangsheng Du Xun Sun YO. Single-shot AAV-vectored vaccine against SARS-CoV-2 with fast and long-lasting immunity. Acta Pharm Sin B 2022. [PMID: 35846427 DOI: 10.1016/j.apsb.2022.07.004] [Reference Citation Analysis]
|
73 |
Azali MA, Mohamed S, Harun A, Hussain FA, Shamsuddin S, Johan MF. Application of Baculovirus Expression Vector system (BEV) for COVID-19 diagnostics and therapeutics: a review. J Genet Eng Biotechnol 2022;20:98. [PMID: 35792966 DOI: 10.1186/s43141-022-00368-7] [Reference Citation Analysis]
|
74 |
Zang J, Yin Y, Xu S, Qiao W, Liu Q, Lavillette D, Zhang C, Wang H, Huang Z. Neutralizing Potency of Prototype and Omicron RBD mRNA Vaccines Against Omicron Variant. Front Immunol 2022;13:908478. [DOI: 10.3389/fimmu.2022.908478] [Reference Citation Analysis]
|
75 |
Zhang RY, Zhou SH, He CB, Wang J, Wen Y, Feng RR, Yin XG, Yang GF, Guo J. Adjuvant-Protein Conjugate Vaccine with Built-In TLR7 Agonist on S1 Induces Potent Immunity against SARS-CoV-2 and Variants of Concern. ACS Infect Dis 2022. [PMID: 35748575 DOI: 10.1021/acsinfecdis.2c00259] [Reference Citation Analysis]
|
76 |
Xu K, Gao P, Liu S, Lu S, Lei W, Zheng T, Liu X, Xie Y, Zhao Z, Guo S, Tang C, Yang Y, Yu W, Wang J, Zhou Y, Huang Q, Liu C, An Y, Zhang R, Han Y, Duan M, Wang S, Yang C, Wu C, Liu X, She G, Liu Y, Zhao X, Xu K, Qi J, Wu G, Peng X, Dai L, Wang P, Gao GF. Protective prototype-Beta and Delta-Omicron chimeric RBD-dimer vaccines against SARS-CoV-2. Cell 2022;185:2265-2278.e14. [PMID: 35568034 DOI: 10.1016/j.cell.2022.04.029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
|
77 |
Garib V, Katsamaki S, Turdikulova S, Levitskaya Y, Zahidova N, Bus G, Karamova K, Rakhmedova M, Magbulova N, Bruhov A, Garib FY, Abdurakhmonov IY. Milk of Cow and Goat, Immunized by Recombinant Protein Vaccine ZF-UZ-VAC2001(Zifivax), Contains Neutralizing Antibodies Against SARS-CoV-2 and Remains Active After Standard Milk Pasteurization. Front Nutr 2022;9:901871. [DOI: 10.3389/fnut.2022.901871] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
78 |
Yang Z, Hua L, Yang M, Li W, Ren Z, Zheng X, Chen H, Long Q, Bai H, Huang W, Ma Y. Polymerized porin as a novel delivery platform for coronavirus vaccine. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01469-8] [Reference Citation Analysis]
|
79 |
Huffman A, Ong E, Hur J, D'Mello A, Tettelin H, He Y. COVID-19 vaccine design using reverse and structural vaccinology, ontology-based literature mining and machine learning. Brief Bioinform 2022:bbac190. [PMID: 35649389 DOI: 10.1093/bib/bbac190] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
80 |
Dai L, Gao L, Tao L, Hadinegoro SR, Erkin M, Ying Z, He P, Girsang RT, Vergara H, Akram J, Satari HI, Khaliq T, Sughra U, Celi AP, Li F, Li Y, Jiang Z, Dalimova D, Tuychiev J, Turdikulova S, Ikram A, Flores Lastra N, Ding F, Suhardono M, Fadlyana E, Yan J, Hu Z, Li C, Abdurakhmonov IY, Gao GF; ZF2001 Global Trial Group. Efficacy and Safety of the RBD-Dimer-Based Covid-19 Vaccine ZF2001 in Adults. N Engl J Med 2022;386:2097-111. [PMID: 35507481 DOI: 10.1056/NEJMoa2202261] [Cited by in Crossref: 66] [Cited by in F6Publishing: 29] [Article Influence: 66.0] [Reference Citation Analysis]
|
81 |
Hsieh CL, McLellan JS. Protein engineering responses to the COVID-19 pandemic. Curr Opin Struct Biol 2022;74:102385. [PMID: 35533563 DOI: 10.1016/j.sbi.2022.102385] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
82 |
Chen C, Wei H, Zhang K, Li Z, Wei T, Tang C, Yang Y, Wang Z. A flexible, efficient, and scalable platform to produce circular RNAs as new therapeutics.. [DOI: 10.1101/2022.05.31.494115] [Reference Citation Analysis]
|
83 |
Liu L, Chen T, Zhou L, Sun J, Li Y, Nie M, Xiong H, Zhu Y, Xue W, Wu Y, Li T, Zhang T, Kong Z, Yu H, Zhang J, Gu Y, Zheng Q, Zhao Q, Xia N, Li S. A Bacterially Expressed SARS-CoV-2 Receptor Binding Domain Fused With Cross-Reacting Material 197 A-Domain Elicits High Level of Neutralizing Antibodies in Mice. Front Microbiol 2022;13:854630. [PMID: 35558112 DOI: 10.3389/fmicb.2022.854630] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
84 |
Qu L, Yi Z, Shen Y, Lin L, Chen F, Xu Y, Wu Z, Tang H, Zhang X, Tian F, Wang C, Xiao X, Dong X, Guo L, Lu S, Yang C, Tang C, Yang Y, Yu W, Wang J, Zhou Y, Huang Q, Yisimayi A, Liu S, Huang W, Cao Y, Wang Y, Zhou Z, Peng X, Wang J, Xie XS, Wei W. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 2022;185:1728-1744.e16. [PMID: 35460644 DOI: 10.1016/j.cell.2022.03.044] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 69.0] [Reference Citation Analysis]
|
85 |
Gaikwad H, Li Y, Wang G, Li R, Dai S, Rester C, Kedl R, Saba L, Banda NK, Scheinman RI, Patrick C, Mallela KMG, Moghimi SM, Simberg D. Antibody-Dependent Complement Responses toward SARS-CoV-2 Receptor-Binding Domain Immobilized on "Pseudovirus-like" Nanoparticles. ACS Nano 2022. [PMID: 35507641 DOI: 10.1021/acsnano.2c02794] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
86 |
Deng Y, Li J, Sun C, Chi H, Luo D, Wang R, Qiu H, Zhang Y, Wu M, Zhang X, Huang X, Xie L, Qin C. Rational Development of a Polysaccharide-Protein-Conjugated Nanoparticle Vaccine Against SARS-CoV-2 Variants and Streptococcus pneumoniae. Adv Mater 2022;34:e2200443. [PMID: 35332581 DOI: 10.1002/adma.202200443] [Reference Citation Analysis]
|
87 |
Zhang Q, Tiwari SK, Wang S, Wang L, Li W, Zhang L, Rawlings SA, Cheng Y, Jokerst JV, Rana TM. Induction of neutralizing antibodies against SARS-CoV-2 variants by a multivalent mRNA-lipid nanoparticle vaccine encoding SARS-CoV-2/SARS-CoV Spike protein receptor-binding domains.. [DOI: 10.1101/2022.04.28.489834] [Reference Citation Analysis]
|
88 |
Lin X, Sheng Y, Zhang X, Li Z, Yang Y, Wu J, Su Z, Ma G, Zhang S. Oil-in-ionic liquid nanoemulsion-based intranasal delivery system for influenza split-virus vaccine. J Control Release 2022:S0168-3659(22)00232-2. [PMID: 35483639 DOI: 10.1016/j.jconrel.2022.04.036] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
89 |
Ilinykh PA, Periasamy S, Huang K, Kuzmina NA, Ramanathan P, Meyer MN, Mire CE, Kuzmin IV, Bharaj P, Endsley JR, Chikina M, Sealfon SC, Widen SG, Endsley MA, Bukreyev A. A single intranasal dose of human parainfluenza virus type 3-vectored vaccine induces effective antibody and memory T cell response in the lungs and protects hamsters against SARS-CoV-2. NPJ Vaccines 2022;7:47. [PMID: 35468973 DOI: 10.1038/s41541-022-00471-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
90 |
Fragoso-Saavedra M, Ramírez-Estudillo C, Peláez-González DL, Ramos-Flores JO, Torres-Franco G, Núñez-Muñoz L, Marcelino-Pérez G, Segura-Covarrubias MG, González-González R, Ruiz-Medrano R, Xoconostle-Cázares B, Gayosso-Vázquez A, Reyes-Maya S, Ramírez-Andoney V, Alonso-Morales RA, Vega-López MA. Combined Subcutaneous-Intranasal Immunization With Epitope-Based Antigens Elicits Binding and Neutralizing Antibody Responses in Serum and Mucosae Against PRRSV-2 and SARS-CoV-2. Front Immunol 2022;13:848054. [PMID: 35432364 DOI: 10.3389/fimmu.2022.848054] [Reference Citation Analysis]
|
91 |
Winkelmann A, Loebermann M, Barnett M, Hartung HP, Zettl UK. Vaccination and immunotherapies in neuroimmunological diseases. Nat Rev Neurol 2022. [PMID: 35388213 DOI: 10.1038/s41582-022-00646-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
|
92 |
Wambani J, Okoth P. Scope of SARS-CoV-2 variants, mutations, and vaccine technologies. Egypt J Intern Med 2022;34:34. [PMID: 35368846 DOI: 10.1186/s43162-022-00121-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
93 |
Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022;7:94. [PMID: 35322018 DOI: 10.1038/s41392-022-00950-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 18.0] [Reference Citation Analysis]
|
94 |
Zhang RY, Yin XG, Zhou SH, Zhang HW, Lu J, He CB, Wang J, Wen Y, Li YT, Liu YL, Feng RR, Ding D, Wei HW, Gong R, Yang GF, Guo J. A protein vaccine with Alum/c-GAMP/poly(I:C) rapidly boosts robust immunity against SARS-CoV-2 and variants of concern. Chem Commun (Camb) 2022;58:3925-8. [PMID: 35244125 DOI: 10.1039/d2cc00271j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
95 |
Dalvie NC, Tostanoski LH, Rodriguez-Aponte SA, Kaur K, Bajoria S, Kumru OS, Martinot AJ, Chandrashekar A, McMahan K, Mercado NB, Yu J, Chang A, Giffin VM, Nampanya F, Patel S, Bowman L, Naranjo CA, Yun D, Flinchbaugh Z, Pessaint L, Brown R, Velasco J, Teow E, Cook A, Andersen H, Lewis MG, Camp DL, Silverman JM, Nagar GS, Rao HD, Lothe RR, Chandrasekharan R, Rajurkar MP, Shaligram US, Kleanthous H, Joshi SB, Volkin DB, Biswas S, Love JC, Barouch DH. SARS-CoV-2 receptor binding domain displayed on HBsAg virus-like particles elicits protective immunity in macaques. Sci Adv 2022;8:eabl6015. [PMID: 35294244 DOI: 10.1126/sciadv.abl6015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
96 |
Hu Q, Zhao Y, Shaabani N, Lyu X, Sun H, Cruz V, Kao Y, Xu J, Fossier A, Stegman K, Wang Z, Wang Z, Hu Y, Zheng Y, Kyaw L, Zuluaga C, Wang H, Pei H, Powers C, Allen R, Xie H, Ji H, Chen R. Chimeric mRNA based COVID-19 vaccine induces protective immunity against Omicron and Delta.. [DOI: 10.1101/2022.03.04.483032] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
97 |
Coria LM, Saposnik LM, Pueblas Castro C, Castro EF, Bruno LA, Stone WB, Pérez PS, Darriba ML, Chemes LB, Alcain J, Mazzitelli I, Varese A, Salvatori M, Auguste AJ, Álvarez DE, Pasquevich KA, Cassataro J. A Novel Bacterial Protease Inhibitor Adjuvant in RBD-Based COVID-19 Vaccine Formulations Containing Alum Increases Neutralizing Antibodies, Specific Germinal Center B Cells and Confers Protection Against SARS-CoV-2 Infection in Mice. Front Immunol 2022;13:844837. [DOI: 10.3389/fimmu.2022.844837] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
98 |
Li Z, Li S, Zhang G, Peng W, Chang Z, Zhang X, Fan Z, Chai Y, Wang F, Zhao X, Li D, Zhang R, He Z, Zou W, Xu K, Lei W, Liu P, Hao J, Zhang J, Sun L, Wu G, Tan S, Gao GF, Gao F, Wu Y. An engineered bispecific human monoclonal antibody against SARS-CoV-2. Nat Immunol 2022. [PMID: 35228696 DOI: 10.1038/s41590-022-01138-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
|
99 |
Liu F, Feng C, Xu S, Wu Q, Tang J, Chen Y, Xu R, Chen F, Gao N, Xu Z, Gu S, Lan Y, Zhou H, Hu X, Wang X. An AAV vaccine targeting the RBD of the SARS-CoV-2 S protein induces effective neutralizing antibody titers in mice and canines. Vaccine 2022;40:1208-12. [PMID: 35094871 DOI: 10.1016/j.vaccine.2022.01.030] [Reference Citation Analysis]
|
100 |
Lee DB, Kim H, Jeong JH, soon Jang U, Chang YY, Roh S, Jeon H, Kim EJ, Han SY, Maeng JY, Magez S, Radwanska M, Mun JY, Jun HS, Lee G, Song M, Lee H, Chung MS, Baek YH, Kim KH. Mosaic receptor-binding domain nanoparticles induce protective immunity against SARS-CoV-2 challenges.. [DOI: 10.1101/2022.02.18.480994] [Reference Citation Analysis]
|
101 |
Kebria MM, Milan PB, Peyravian N, Kiani J, Khatibi S, Mozafari M. Stem cell therapy for COVID-19 pneumonia. Mol Biomed 2022;3:6. [PMID: 35174448 DOI: 10.1186/s43556-021-00067-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
102 |
Liang Y, Zhang J, Yuan RY, Wang MY, He P, Su JG, Han ZB, Jin YQ, Hou JW, Zhang H, Zhang XF, Shao S, Hou YN, Liu ZM, Du LF, Shen FJ, Zhou WM, Xu K, Gao RQ, Tang F, Lei ZH, Liu S, Zhen W, Wu JJ, Zheng X, Liu N, Chen S, Ma ZJ, Zheng F, Ren SY, Hu ZY, Huang WJ, Wu GZ, Ke CW, Li QM. Design of a mutation-integrated trimeric RBD with broad protection against SARS-CoV-2. Cell Discov 2022;8:17. [PMID: 35169113 DOI: 10.1038/s41421-022-00383-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
|
103 |
Garib V, Katsamaki S, Turdikulova S, Levitskaya Y, Zahidova N, Bus G, Karamova K, Rakhmedova M, Magbulova N, Bruhov A, Garib FY, Abdurakhmonov IY. Milk of cow and goat, immunized by recombinant protein vaccine ZF-UZ-VAC2001(Zifivax), contains neutralizing antibodies against SARS-CoV-2 and remains active after standard milk pasteurization.. [DOI: 10.1101/2022.02.14.480298] [Reference Citation Analysis]
|
104 |
Li D, Martinez DR, Schäfer A, Chen H, Barr M, Sutherland LL, Lee E, Parks R, Mielke D, Edwards W, Newman A, Bock KW, Minai M, Nagata BM, Gagne M, Douek DC, DeMarco CT, Denny TN, Oguin TH 3rd, Brown A, Rountree W, Wang Y, Mansouri K, Edwards RJ, Ferrari G, Sempowski GD, Eaton A, Tang J, Cain DW, Santra S, Pardi N, Weissman D, Tomai MA, Fox CB, Moore IN, Andersen H, Lewis MG, Golding H, Seder R, Khurana S, Baric RS, Montefiori DC, Saunders KO, Haynes BF. Breadth of SARS-CoV-2 Neutralization and Protection Induced by a Nanoparticle Vaccine. bioRxiv 2022:2022. [PMID: 35118474 DOI: 10.1101/2022.01.26.477915] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
105 |
Ma B, Zhang Z, Li Y, Lin X, Gu N. Evaluation of Interactions between SARS-CoV-2 RBD and Full-Length ACE2 with Coarse-Grained Molecular Dynamics Simulations. J Chem Inf Model 2022. [PMID: 35147419 DOI: 10.1021/acs.jcim.1c01306] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
106 |
Zhou SH, Zhang RY, Zhang HW, Liu YL, Wen Y, Wang J, Li YT, You ZW, Yin XG, Qiu H, Gong R, Yang GF, Guo J. RBD conjugate vaccine with a built-in TLR1/2 agonist is highly immunogenic against SARS-CoV-2 and variants of concern. Chem Commun (Camb) 2022;58:2120-3. [PMID: 35040862 DOI: 10.1039/d1cc06520c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
|
107 |
Wang J, Yin XG, Wen Y, Lu J, Zhang RY, Zhou SH, Liao CM, Wei HW, Guo J. MPLA-Adjuvanted Liposomes Encapsulating S-Trimer or RBD or S1, but Not S-ECD, Elicit Robust Neutralization Against SARS-CoV-2 and Variants of Concern. J Med Chem 2022. [PMID: 35108485 DOI: 10.1021/acs.jmedchem.1c02025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
|
108 |
Rahman MM, Masum MHU, Wajed S, Talukder A. A comprehensive review on COVID-19 vaccines: development, effectiveness, adverse effects, distribution and challenges. VirusDis . [DOI: 10.1007/s13337-022-00755-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
|
109 |
Huang Q, Zeng J, Lang Q, Gao F, Liu D, Tian S, Shi R, Luo L, Wang H, Hu L, Jiang L, Liu Y, Li K, Wu Y, Xu J, Jiang W, Guo N, Chen Z, Hao X, Jin R, Yan J, Sun Y. Impact of various vaccine boosters on neutralization against Omicron following prime vaccinations with inactivated or adenovirus-vectored vaccine.. [DOI: 10.1101/2022.01.25.476850] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
110 |
Nanishi E, Borriello F, O'Meara TR, McGrath ME, Saito Y, Haupt RE, Seo HS, van Haren SD, Cavazzoni CB, Brook B, Barman S, Chen J, Diray-Arce J, Doss-Gollin S, De Leon M, Prevost-Reilly A, Chew K, Menon M, Song K, Xu AZ, Caradonna TM, Feldman J, Hauser BM, Schmidt AG, Sherman AC, Baden LR, Ernst RK, Dillen C, Weston SM, Johnson RM, Hammond HL, Mayer R, Burke A, Bottazzi ME, Hotez PJ, Strych U, Chang A, Yu J, Sage PT, Barouch DH, Dhe-Paganon S, Zanoni I, Ozonoff A, Frieman MB, Levy O, Dowling DJ. An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor binding domain vaccine in aged mice. Sci Transl Med 2022;14:eabj5305. [PMID: 34783582 DOI: 10.1126/scitranslmed.abj5305] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 26.0] [Reference Citation Analysis]
|
111 |
Wang J, Wen Y, Zhou S, Zhang H, Peng X, Zhang R, Yin X, Qiu H, Gong R, Yang G, Guo J. Self-Adjuvanting Lipoprotein Conjugate αGalCer-RBD Induces Potent Immunity against SARS-CoV-2 and its Variants of Concern. J Med Chem . [DOI: 10.1021/acs.jmedchem.1c02000] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
|
112 |
Liu Z, Zhou J, Xu W, Deng W, Wang Y, Wang M, Wang Q, Hsieh M, Dong J, Wang X, Huang W, Xing L, He M, Tao C, Xie Y, Zhang Y, Wang Y, Zhao J, Yuan Z, Qin C, Jiang S, Lu L. A novel STING agonist-adjuvanted pan-sarbecovirus vaccine elicits potent and durable neutralizing antibody and T cell responses in mice, rabbits and NHPs. Cell Res. [DOI: 10.1038/s41422-022-00612-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 14.0] [Reference Citation Analysis]
|
113 |
Jiang Y, Wu Q, Song P, You C. The Variation of SARS-CoV-2 and Advanced Research on Current Vaccines. Front Med 2022;8:806641. [DOI: 10.3389/fmed.2021.806641] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
|
114 |
Zhang Y, Wang R, He C, Zhang YF, Luo Z, Luo J, Chen S, Jin Y, Xie B, Liu Y. Amantadine-assembled nanostimulator enhances dimeric RBD antigen-elicited cross-neutralization against SARS-CoV-2 strains. Nano Today 2022;43:101393. [PMID: 35035515 DOI: 10.1016/j.nantod.2022.101393] [Reference Citation Analysis]
|
115 |
Ortega-berlanga B, Pniewski T. Plant-Based Vaccines in Combat against Coronavirus Diseases. Vaccines 2022;10:138. [DOI: 10.3390/vaccines10020138] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
|
116 |
Wang P, Ding P, Wei Q, Liu H, Liu Y, Li Q, Xing Y, Li G, Zhou E, Zhang G. Precise location of two novel linear epitopes on the receptor-binding domain surface of MERS-CoV spike protein recognized by two different monoclonal antibodies. Int J Biol Macromol 2022;195:609-19. [PMID: 34871658 DOI: 10.1016/j.ijbiomac.2021.11.192] [Reference Citation Analysis]
|
117 |
Song S, Zhou B, Cheng L, Liu W, Fan Q, Ge X, Peng H, Fu YX, Ju B, Zhang Z. Sequential immunization with SARS-CoV-2 RBD vaccine induces potent and broad neutralization against variants in mice. Virol J 2022;19:2. [PMID: 34983583 DOI: 10.1186/s12985-021-01737-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
|
118 |
Vaish A, Mcswiggen J. Bioinformatic Analysis of SARS-CoV-2 Genomes to Develop a Universal Coronavirus Vaccine. JBM 2022;10:84-97. [DOI: 10.4236/jbm.2022.1010006] [Reference Citation Analysis]
|
119 |
Das S, Kar SS, Samanta S, Banerjee J, Giri B, Dash SK. Immunogenic and reactogenic efficacy of Covaxin and Covishield: a comparative review. Immunol Res 2022;70:289-315. [PMID: 35192185 DOI: 10.1007/s12026-022-09265-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
|
120 |
Santana-mederos D, Perez-nicado R, Climent Y, Rodriguez L, Ramirez BS, Perez-rodriguez S, Rodriguez M, Labrada C, Hernandez T, Diaz M, Orosa I, Ramirez U, Oliva R, Garrido R, Cardoso F, Landys M, Martinez R, Gonzalez H, Hernandez T, Ochoa-azze R, Perez JL, Enriquez J, Gonzalez N, Infante Y, Espinosa LA, Ramos Y, González LJ, Valenzuela C, Casadesus AV, Fernandez B, Rojas G, Pérez-massón B, Tundidor Y, Bermudez E, Plasencia CA, Boggiano T, Ojito E, Chiodo F, Fernandez S, Paquet F, Fang C, Chen G, Rivera DG, Valdes-balbin Y, Garcia-rivera D, Verez Bencomo V. A COVID-19 vaccine candidate composed of the SARS-CoV-2 RBD dimer and Neisseria meningitidis outer membrane vesicles. RSC Chem Biol . [DOI: 10.1039/d1cb00200g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
|
121 |
Mosqueda J, Hernández-silva DJ, Romero-maldonado A, Mejia-lópez S, Mercado-uriostegui MA. Innovative recombinant protein-based vaccines against SARS-CoV-2. Biomedical Innovations to Combat COVID-19 2022. [DOI: 10.1016/b978-0-323-90248-9.00016-4] [Reference Citation Analysis]
|
122 |
Amir Rezaei, Shahram Nazarian, Hossein Samiei Abianeh, Emad Kordbacheh, Zahra Alizadeh, Seyed Latif Mousavi Gargari. Antibodies Produced Toward Recombinant RBD and Nucleocapsid Neutralize SARS-COV-2. Avicenna J Med Biotechnol 2022;14. [PMID: 36504571] [Reference Citation Analysis]
|
123 |
Thomas S, Abraham A. Progress in the Development of Structure-Based Vaccines. Vaccine Design 2022. [DOI: 10.1007/978-1-0716-1892-9_2] [Reference Citation Analysis]
|
124 |
Li L, Long J, Sang Y, Wang X, Zhou X, Pan Y, Cao Y, Huang H, Yang Z, Yang J, Wang S. Rational preparation and application of a mRNA delivery system with cytidinyl/cationic lipid. J Control Release 2021;340:114-24. [PMID: 34699870 DOI: 10.1016/j.jconrel.2021.10.023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
125 |
Rodrigues KA, Rodriguez-Aponte SA, Dalvie NC, Lee JH, Abraham W, Carnathan DG, Jimenez LE, Ngo JT, Chang JYH, Zhang Z, Yu J, Chang A, Nakao C, Goodwin B, Naranjo CA, Zhang L, Silva M, Barouch DH, Silvestri G, Crotty S, Love JC, Irvine DJ. Phosphate-mediated coanchoring of RBD immunogens and molecular adjuvants to alum potentiates humoral immunity against SARS-CoV-2. Sci Adv 2021;7:eabj6538. [PMID: 34878851 DOI: 10.1126/sciadv.abj6538] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
126 |
Hajnik RL, Plante JA, Liang Y, Alameh M, Tang J, Zhong C, Adam A, Scharton D, Rafael GH, Liu Y, Hazell NC, Sun J, Soong L, Shi P, Wang T, Sun J, Weissman D, Weaver SC, Plante KS, Hu H. Combinatorial mRNA vaccination enhances protection against SARS-CoV-2 delta variant.. [DOI: 10.1101/2021.12.08.471664] [Reference Citation Analysis]
|
127 |
Coria LM, Saposnik LM, Castro CP, Castro EF, Bruno LA, Stone WB, Pérez PS, Darriba ML, Chemes LB, Alcain J, Mazzitelli I, Varese A, Salvatori M, Auguste AJ, Álvarez DE, Pasquevich KA, Cassataro J. A novel bacterial protease inhibitor adjuvant in RBD-based COVID-19 vaccine formulations increases neutralizing antibodies, specific germinal center B cells and confers protection against SARS-CoV-2 infection.. [DOI: 10.1101/2021.12.07.471590] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
128 |
Prates-Syed WA, Chaves LCS, Crema KP, Vuitika L, Lira A, Côrtes N, Kersten V, Guimarães FEG, Sadraeian M, Barroso da Silva FL, Cabral-Marques O, Barbuto JAM, Russo M, Câmara NOS, Cabral-Miranda G. VLP-Based COVID-19 Vaccines: An Adaptable Technology against the Threat of New Variants. Vaccines (Basel) 2021;9:1409. [PMID: 34960155 DOI: 10.3390/vaccines9121409] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
|
129 |
Laha S, Chatterjee R. Temporal variations of country-specific mutational profile of SARS-CoV-2: effect on vaccine efficacy. Future Virol 2021;0. [PMID: 34824595 DOI: 10.2217/fvl-2021-0062] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
130 |
Liu H, Zhou C, An J, Song Y, Yu P, Li J, Gu C, Hu D, Jiang Y, Zhang L, Huang C, Zhang C, Yang Y, Zhu Q, Wang D, Liu Y, Miao C, Cao X, Ding L, Zhu Y, Zhu H, Bao L, Zhou L, Yan H, Fan J, Xu J, Hu Z, Xie Y, Liu J, Liu G. Development of recombinant COVID-19 vaccine based on CHO-produced, prefusion spike trimer and alum/CpG adjuvants. Vaccine 2021;39:7001-11. [PMID: 34750014 DOI: 10.1016/j.vaccine.2021.10.066] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
131 |
Guo C, Peng Y, Lin L, Pan X, Fang M, Zhao Y, Bao K, Li R, Han J, Chen J, Song TZ, Feng XL, Zhou Y, Zhao G, Zhang L, Zheng Y, Zhu P, Hang H, Zhang L, Hua Z, Deng H, Hou B. A pathogen-like antigen-based vaccine confers immune protection against SARS-CoV-2 in non-human primates. Cell Rep Med 2021;2:100448. [PMID: 34723223 DOI: 10.1016/j.xcrm.2021.100448] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
132 |
Dalvie NC, Biedermann AM, Rodriguez-Aponte SA, Naranjo CA, Rao HD, Rajurkar MP, Lothe RR, Shaligram US, Johnston RS, Crowell LE, Castelino S, Tracey MK, Whittaker CA, Love JC. Scalable, methanol-free manufacturing of the SARS-CoV-2 receptor-binding domain in engineered Komagataella phaffii. Biotechnol Bioeng 2021. [PMID: 34780057 DOI: 10.1002/bit.27979] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
133 |
Liu Y, Dai L, Feng X, Gao R, Zhang N, Wang B, Han J, Zou Q, Guo X, Zhu H, Liu J, Qin C, Zhang Y, Bao L, Li M. Fast and long-lasting immune response to S-trimer COVID-19 vaccine adjuvanted by PIKA. Mol Biomed 2021;2:29. [PMID: 34766005 DOI: 10.1186/s43556-021-00054-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
134 |
Ortega-Rivera OA, Shukla S, Shin MD, Chen A, Beiss V, Moreno-Gonzalez MA, Zheng Y, Clark AE, Carlin AF, Pokorski JK, Steinmetz NF. Cowpea Mosaic Virus Nanoparticle Vaccine Candidates Displaying Peptide Epitopes Can Neutralize the Severe Acute Respiratory Syndrome Coronavirus. ACS Infect Dis 2021;7:3096-110. [PMID: 34672530 DOI: 10.1021/acsinfecdis.1c00410] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
135 |
Li H, Zhang Y, Li D, Deng YQ, Xu H, Zhao C, Liu J, Wen D, Zhao J, Li Y, Wu Y, Liu S, Liu J, Hao J, Yuan F, Duo S, Qin CF, Zheng A. Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein. Signal Transduct Target Ther 2021;6:389. [PMID: 34759261 DOI: 10.1038/s41392-021-00797-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
136 |
Zhou C, Zai X, Zhou Z, Li R, Zhang Y, Li Y, Yin Y, Zhang J, Xu J, Chen W. RBD206-sc-dimer induced robust cross-neutralization against SARS-CoV-2 and variants of concern. Signal Transduct Target Ther 2021;6:390. [PMID: 34759271 DOI: 10.1038/s41392-021-00798-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
137 |
Espinosa LA, Ramos Y, Andújar I, Torres EO, Cabrera G, Martín A, Roche D, Chinea G, Becquet M, González I, Canaán-Haden C, Nelson E, Rojas G, Pérez-Massón B, Pérez-Martínez D, Boggiano T, Palacio J, Lozada Chang SL, Hernández L, de la Luz Hernández KR, Markku S, Vitikainen M, Valdés-Balbín Y, Santana-Medero D, Rivera DG, Vérez-Bencomo V, Emalfarb M, Tchelet R, Guillén G, Limonta M, Pimentel E, Ayala M, Besada V, González LJ. In-solution buffer-free digestion allows full-sequence coverage and complete characterization of post-translational modifications of the receptor-binding domain of SARS-CoV-2 in a single ESI-MS spectrum. Anal Bioanal Chem 2021;413:7559-85. [PMID: 34739558 DOI: 10.1007/s00216-021-03721-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
138 |
Yu J, Yao W, Hu Y, Wu S, Li J, Zhou H, Hong K, Chen J, Liu L, Lan K, Zhu F, Liu Y. A trimeric NTD and RBD SARS-CoV-2 subunit vaccine induced protective immunity in CAG-hACE2 transgenic mice and rhesus macaques.. [DOI: 10.1101/2021.11.03.467182] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
139 |
Liu H, Gao X, Wang G, Zhang J, Zhou J, Wei T, Zhang Y, Liu Y, Piao J, Zhang Q, Wang Y, Ma X, Zhu X, Rao Y, Xia W, Xie H, Zhang W. A Potential Novel COVID-19 Vaccine With RBD-HR1/HR2 Hexamer Structure.. [DOI: 10.1101/2021.10.28.465226] [Reference Citation Analysis]
|
140 |
Kleanthous H, Silverman JM, Makar KW, Yoon IK, Jackson N, Vaughn DW. Scientific rationale for developing potent RBD-based vaccines targeting COVID-19. NPJ Vaccines 2021;6:128. [PMID: 34711846 DOI: 10.1038/s41541-021-00393-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 17.5] [Reference Citation Analysis]
|
141 |
Shin HJ, Ku KB, Kim HS, Moon HW, Jeong GU, Hwang I, Yoon GY, Lee S, Lee S, Ahn DG, Kim KD, Kwon YC, Kim BT, Kim SJ, Kim C. Receptor-binding domain of SARS-CoV-2 spike protein efficiently inhibits SARS-CoV-2 infection and attachment to mouse lung. Int J Biol Sci 2021;17:3786-94. [PMID: 34671199 DOI: 10.7150/ijbs.61320] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
142 |
Li T, Cai H, Zhao Y, Li Y, Lai Y, Yao H, Liu LD, Sun Z, van Vlissingen MF, Kuiken T, GeurtsvanKessel CH, Zhang N, Zhou B, Lu L, Gong Y, Qin W, Mondal M, Duan B, Xu S, Richard AS, Raoul H, Chen J, Xu C, Wu L, Zhou H, Huang Z, Zhang X, Li J, Wang Y, Bi Y, Rockx B, Chen J, Meng FL, Lavillette D, Li D. Uncovering a conserved vulnerability site in SARS-CoV-2 by a human antibody. EMBO Mol Med 2021;:e14544. [PMID: 34672091 DOI: 10.15252/emmm.202114544] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
143 |
de la Fuente J, Contreras M. Vaccinomics: a future avenue for vaccine development against emerging pathogens. Expert Rev Vaccines 2021;:1-9. [PMID: 34582295 DOI: 10.1080/14760584.2021.1987222] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
144 |
Zou J, Jing H, Zhang X, Liu Y, Zhao Z, Duan L, Yuan Y, Chen Z, Gou Q, Xiong Q, Li S, Yang F, Zeng H, Zou Q, Zhang J. α-Hemolysin-Aided Oligomerization of the Spike Protein RBD Resulted in Improved Immunogenicity and Neutralization Against SARS-CoV-2 Variants. Front Immunol 2021;12:757691. [PMID: 34630436 DOI: 10.3389/fimmu.2021.757691] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
145 |
Targovnik AM, Simonin JA, Mc Callum GJ, Smith I, Cuccovia Warlet FU, Nugnes MV, Miranda MV, Belaich MN. Solutions against emerging infectious and noninfectious human diseases through the application of baculovirus technologies. Appl Microbiol Biotechnol 2021;105:8195-226. [PMID: 34618205 DOI: 10.1007/s00253-021-11615-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
146 |
Tian S, Ji K, Wang M, Wang F, Wang H, Huang W, Huang Q, Yan J. Distinct BCR repertoires elicited by SARS-CoV-2 RBD and S vaccinations in mice. Cell Discov 2021;7:91. [PMID: 34620836 DOI: 10.1038/s41421-021-00331-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
147 |
Wang WB, Liang Y, Jin YQ, Zhang J, Su JG, Li QM. E484K mutation in SARS-CoV-2 RBD enhances binding affinity with hACE2 but reduces interactions with neutralizing antibodies and nanobodies: Binding free energy calculation studies. J Mol Graph Model 2021;109:108035. [PMID: 34562851 DOI: 10.1016/j.jmgm.2021.108035] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
|
148 |
Wang S, Li L, Yan F, Gao Y, Yang S, Xia X. COVID-19 Animal Models and Vaccines: Current Landscape and Future Prospects. Vaccines (Basel) 2021;9:1082. [PMID: 34696190 DOI: 10.3390/vaccines9101082] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
149 |
Ghasemiyeh P, Mohammadi-Samani S, Firouzabadi N, Dehshahri A, Vazin A. A focused review on technologies, mechanisms, safety, and efficacy of available COVID-19 vaccines. Int Immunopharmacol 2021;100:108162. [PMID: 34562844 DOI: 10.1016/j.intimp.2021.108162] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
|
150 |
Sun YS, Zhou JJ, Zhu HP, Xu F, Zhao WB, Lu HJ, Wang Z, Chen SQ, Yao PP, Jiang JM, Zhou Z. Development of a Recombinant RBD Subunit Vaccine for SARS-CoV-2. Viruses 2021;13:1936. [PMID: 34696367 DOI: 10.3390/v13101936] [Reference Citation Analysis]
|
151 |
Xu K, Dai L, Gao GF. Humoral and cellular immunity and the safety of COVID-19 vaccines: a summary of data published by 21 May 2021. Int Immunol 2021;33:529-40. [PMID: 34491327 DOI: 10.1093/intimm/dxab061] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
|
152 |
Jahangir ZS, Marnik AH. A study protocol to prepare an RBD protein for vaccine against COVID-19. F1000Res 2021;10:943. [DOI: 10.12688/f1000research.54738.1] [Reference Citation Analysis]
|
153 |
Borriello F, Nanishi E, Seo H, O’meara TR, Mcgrath ME, Saito Y, Haupt RE, Chen J, Diray-arce J, Song K, Xu AZ, Caradonna TM, Feldman J, Hauser BM, Schmidt AG, Baden LR, Ernst RK, Dillen C, Weston SM, Johnson RM, Hammond HL, Yu J, Chang A, Hilgers L, Platenburg PP, Dhe-paganon S, Barouch DH, Ozonoff A, Zanoni I, Frieman MB, Dowling DJ, Levy O. An adjuvanted SARS-CoV-2 RBD nanoparticle elicits neutralizing antibodies and fully protective immunity in aged mice.. [DOI: 10.1101/2021.09.09.459664] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
154 |
Pan X, Shi J, Hu X, Wu Y, Zeng L, Yao Y, Shang W, Liu K, Gao G, Guo W, Peng Y, Chen S, Gao X, Peng C, Rao J, Zhao J, Gong C, Zhou H, Lu Y, Wang Z, Hu X, Cong W, Fang L, Yan Y, Zhang J, Xiong H, Yi J, Yuan Z, Zhou P, Shan C, Xiao G. RBD-homodimer, a COVID-19 subunit vaccine candidate, elicits immunogenicity and protection in rodents and nonhuman primates. Cell Discov 2021;7:82. [PMID: 34493710 DOI: 10.1038/s41421-021-00320-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
155 |
Zhao X, Zheng A, Li D, Zhang R, Sun H, Wang Q, Gao GF, Han P, Dai L. Neutralisation of ZF2001-elicited antisera to SARS-CoV-2 variants. Lancet Microbe 2021;2:e494. [PMID: 34458880 DOI: 10.1016/S2666-5247(21)00217-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
|
156 |
Martinez DR, Schäfer A, Leist SR, De la Cruz G, West A, Atochina-Vasserman EN, Lindesmith LC, Pardi N, Parks R, Barr M, Li D, Yount B, Saunders KO, Weissman D, Haynes BF, Montgomery SA, Baric RS. Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. Science 2021;373:991-8. [PMID: 34214046 DOI: 10.1126/science.abi4506] [Cited by in Crossref: 97] [Cited by in F6Publishing: 81] [Article Influence: 48.5] [Reference Citation Analysis]
|
157 |
Zhang J, Hu Z, He J, Liao Y, Li Y, Pei R, Fang X, Zeng P, Fan R, Ou Z, Deng J, Zhou J, Guan W, Min Y, Deng F, Peng H, Zhang Z, Feng C, Xin B. Safety and immunogenicity of a recombinant interferon-armed RBD dimer vaccine (V-01) for COVID-19 in healthy adults: a randomized, double-blind, placebo-controlled, Phase I trial. Emerg Microbes Infect 2021;10:1589-97. [PMID: 34197281 DOI: 10.1080/22221751.2021.1951126] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
|
158 |
Xu K, An Y, Li Q, Huang W, Han Y, Zheng T, Fang F, Liu H, Liu C, Gao P, Xu S, Liu X, Zhang R, Zhao X, Liu WJ, Bi Y, Wang Y, Zhou D, Wang Q, Hou W, Xia Q, Gao GF, Dai L. Recombinant chimpanzee adenovirus AdC7 expressing dimeric tandem-repeat spike protein RBD protects mice against COVID-19. Emerg Microbes Infect 2021;10:1574-88. [PMID: 34289779 DOI: 10.1080/22221751.2021.1959270] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
159 |
Zang J, Zhu Y, Zhou Y, Gu C, Yi Y, Wang S, Xu S, Hu G, Du S, Yin Y, Wang Y, Yang Y, Zhang X, Wang H, Yin F, Zhang C, Deng Q, Xie Y, Huang Z. Yeast-produced RBD-based recombinant protein vaccines elicit broadly neutralizing antibodies and durable protective immunity against SARS-CoV-2 infection. Cell Discov 2021;7:71. [PMID: 34408130 DOI: 10.1038/s41421-021-00315-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
|
160 |
Ma ML, Shi DW, Li Y, Hong W, Lai DY, Xue JB, Jiang HW, Zhang HN, Qi H, Meng QF, Guo SJ, Xia DJ, Hu JJ, Liu S, Li HY, Zhou J, Wang W, Yang X, Fan XL, Lei Q, Chen WJ, Li CS, Yang XM, Xu SH, Wei HP, Tao SC. Systematic profiling of SARS-CoV-2-specific IgG responses elicited by an inactivated virus vaccine identifies peptides and proteins for predicting vaccination efficacy. Cell Discov 2021;7:67. [PMID: 34400612 DOI: 10.1038/s41421-021-00309-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
|
161 |
Malladi SK, Patel UR, Rajmani RS, Singh R, Pandey S, Kumar S, Khaleeq S, van Vuren PJ, Riddell S, Goldie S, Gayathri S, Chakraborty D, Kalita P, Pramanick I, Agarwal N, Reddy P, Girish N, Upadhyaya A, Khan MS, Kanjo K, Bhat M, Mani S, Bhattacharyya S, Siddiqui S, Tyagi A, Jha S, Pandey R, Tripathi S, Dutta S, McAuley AJ, Singanallur NB, Vasan SS, Ringe RP, Varadarajan R. Immunogenicity and Protective Efficacy of a Highly Thermotolerant, Trimeric SARS-CoV-2 Receptor Binding Domain Derivative. ACS Infect Dis 2021;7:2546-64. [PMID: 34260218 DOI: 10.1021/acsinfecdis.1c00276] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
|
162 |
Mamedov T, Yuksel D, Ilgın M, Gurbuzaslan I, Gulec B, Yetiskin H, Uygut MA, Islam Pavel ST, Ozdarendeli A, Mammadova G, Say D, Hasanova G. Plant-Produced Glycosylated and In Vivo Deglycosylated Receptor Binding Domain Proteins of SARS-CoV-2 Induce Potent Neutralizing Responses in Mice. Viruses 2021;13:1595. [PMID: 34452461 DOI: 10.3390/v13081595] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
163 |
Zhao S, Zhang H, Yang X, Zhang H, Chen Y, Zhan Y, Zhang X, Jiang R, Liu M, Liu L, Chen L, Tang W, Peng C, Gao X, Zhang Z, Shi Z, Gong R. Identification of potent human neutralizing antibodies against SARS-CoV-2 implications for development of therapeutics and prophylactics. Nat Commun 2021;12:4887. [PMID: 34373446 DOI: 10.1038/s41467-021-25153-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
|
164 |
Cheng ZJ, Xue M, Zheng P, Lyu J, Zhan Z, Hu H, Zhang Y, Zhang XD, Sun B. Factors Affecting the Antibody Immunogenicity of Vaccines against SARS-CoV-2: A Focused Review. Vaccines (Basel) 2021;9:869. [PMID: 34451994 DOI: 10.3390/vaccines9080869] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
165 |
González LJ, Encinosa Guzmán PE, Machado W, Pousa S, Leyva A, Arguelles ALC, Cabrera G, Espinosa LA, Parra R, Hernández R, Soto YB, Ledesma FL, Joglar M, Guirola O, Kurt LU, Carvalho PC, Cabrales A, Garay H, Besada V, Durán R, Takao T, Estrada MP, Rodríguez-Mallon A. Synthesis, LC-MS/MS analysis, and biological evaluation of two vaccine candidates against ticks based on the antigenic P0 peptide from R. sanguineus linked to the p64K carrier protein from Neisseria meningitidis. Anal Bioanal Chem 2021. [PMID: 34341841 DOI: 10.1007/s00216-021-03569-0] [Reference Citation Analysis]
|
166 |
Zheng W, Yan L, Gou C, Zhang Z, Zhang JJ, Hu M, Wang F. Learning to learn by yourself: Unsupervised meta‐learning with self‐knowledge distillation for COVID‐19 diagnosis from pneumonia cases. Int J Intell Syst 2021;36:4033-64. [DOI: 10.1002/int.22449] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
167 |
Yang Y, Zang J, Xu S, Zhang X, Yuan S, Wang H, Lavillette D, Zhang C, Huang Z. Elicitation of Broadly Neutralizing Antibodies against B.1.1.7, B.1.351, and B.1.617.1 SARS-CoV-2 Variants by Three Prototype Strain-Derived Recombinant Protein Vaccines. Viruses 2021;13:1421. [PMID: 34452287 DOI: 10.3390/v13081421] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
168 |
Wu Y, Huang X, Yuan L, Wang S, Zhang Y, Xiong H, Chen R, Ma J, Qi R, Nie M, Xu J, Zhang Z, Chen L, Wei M, Zhou M, Cai M, Shi Y, Zhang L, Yu H, Hong J, Wang Z, Hong Y, Yue M, Li Z, Chen D, Zheng Q, Li S, Chen Y, Cheng T, Zhang J, Zhang T, Zhu H, Zhao Q, Yuan Q, Guan Y, Xia N. A recombinant spike protein subunit vaccine confers protective immunity against SARS-CoV-2 infection and transmission in hamsters. Sci Transl Med 2021;13. [PMID: 34285130 DOI: 10.1126/scitranslmed.abg1143] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 16.0] [Reference Citation Analysis]
|
169 |
Yang Z, Hua L, Yang M, Liu SQ, Shen J, Li W, Long Q, Bai H, Yang X, Ren Z, Zheng X, Sun W, Ye C, Li D, Zheng P, He J, Chen Y, Huang W, Peng X, Ma Y. RBD-Modified Bacterial Vesicles Elicited Potential Protective Immunity against SARS-CoV-2. Nano Lett 2021;21:5920-30. [PMID: 34279108 DOI: 10.1021/acs.nanolett.1c00680] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
170 |
Wang XF, Zhang MJ, He N, Wang YC, Yan C, Chen XZ, Gao XF, Guo J, Luo R, Liu Z. Potent Neutralizing Antibodies Elicited by RBD-Fc-Based COVID-19 Vaccine Candidate Adjuvanted by the Th2-Skewing iNKT Cell Agonist. J Med Chem 2021;64:11554-69. [PMID: 34279930 DOI: 10.1021/acs.jmedchem.1c00881] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
171 |
Copley HC, Gragert L, Leach AR, Kosmoliaptsis V. Influence of HLA Class II Polymorphism on Predicted Cellular Immunity Against SARS-CoV-2 at the Population and Individual Level. Front Immunol 2021;12:669357. [PMID: 34349756 DOI: 10.3389/fimmu.2021.669357] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
172 |
Zhao X, Zheng A, Li D, Zhang R, Sun H, Wang Q, Gao GF, Han P, Dai L. Neutralization of recombinant RBD-subunit vaccine ZF2001-elicited antisera to SARS-CoV-2 variants including Delta.. [DOI: 10.1101/2021.07.15.452504] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
173 |
S N N, B N R, C P, K S S, Ramakrishnappa T, B T K, S M J, M M, N A, Yallappa, D DP, T V R, E G, Bagoji M, Chandaragi SS. SARS-CoV 2 spike protein S1 subunit as an ideal target for stable vaccines: A bioinformatic study. Mater Today Proc 2021. [PMID: 34307057 DOI: 10.1016/j.matpr.2021.07.163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
|
174 |
Dalvie NC, Tostanoski LH, Rodriguez-Aponte SA, Kaur K, Bajoria S, Kumru OS, Martinot AJ, Chandrashekar A, McMahan K, Mercado NB, Yu J, Chang A, Giffin VM, Nampanya F, Patel S, Bowman L, Naranjo CA, Yun D, Flinchbaugh Z, Pessaint L, Brown R, Velasco J, Teow E, Cook A, Andersen H, Lewis MG, Camp DL, Silverman JM, Kleanthous H, Joshi SB, Volkin DB, Biswas S, Love JC, Barouch DH. A modular protein subunit vaccine candidate produced in yeast confers protection against SARS-CoV-2 in non-human primates. bioRxiv 2021:2021. [PMID: 34282417 DOI: 10.1101/2021.07.13.452251] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
175 |
Liu B, Yin Y, Liu Y, Wang T, Sun P, Ou Y, Gong X, Hou X, Zhang J, Ren H, Luo S, Ke Q, Yao Y, Xu J, Wu J. A vaccine based on the receptor-binding domain of the spike protein expressed in glycoengineered Pichia pastoris targeting SARS-CoV-2 stimulates neutralizing and protective antibody responses. Engineering (Beijing) 2021. [PMID: 34457370 DOI: 10.1016/j.eng.2021.06.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
|
176 |
Martínez-Flores D, Zepeda-Cervantes J, Cruz-Reséndiz A, Aguirre-Sampieri S, Sampieri A, Vaca L. SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants. Front Immunol 2021;12:701501. [PMID: 34322129 DOI: 10.3389/fimmu.2021.701501] [Cited by in Crossref: 61] [Cited by in F6Publishing: 71] [Article Influence: 30.5] [Reference Citation Analysis]
|
177 |
Wang Q, Liu Z. Recent progress of surface plasmon resonance in the development of coronavirus disease-2019 drug candidates. Eur J Med Chem Rep 2021;1:100003. [PMID: 36304139 DOI: 10.1016/j.ejmcr.2021.100003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
178 |
Huang B, Dai L, Wang H, Hu Z, Yang X, Tan W, Gao GF. Serum sample neutralisation of BBIBP-CorV and ZF2001 vaccines to SARS-CoV-2 501Y.V2. Lancet Microbe 2021;2:e285. [PMID: 33870240 DOI: 10.1016/S2666-5247(21)00082-3] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 21.0] [Reference Citation Analysis]
|
179 |
Hauser BM, Sangesland M, Lam EC, Denis KJS, Feldman J, Yousif AS, Caradonna TM, Kannegieter T, Balazs AB, Lingwood D, Schmidt AG. Engineered receptor binding domain immunogens elicit pan-sarbecovirus neutralizing antibodies outside the receptor binding motif. bioRxiv 2021:2020. [PMID: 33330872 DOI: 10.1101/2020.12.07.415216] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
180 |
Ellis D, Brunette N, Crawford KHD, Walls AC, Pham MN, Chen C, Herpoldt KL, Fiala B, Murphy M, Pettie D, Kraft JC, Malone KD, Navarro MJ, Ogohara C, Kepl E, Ravichandran R, Sydeman C, Ahlrichs M, Johnson M, Blackstone A, Carter L, Starr TN, Greaney AJ, Lee KK, Veesler D, Bloom JD, King NP. Stabilization of the SARS-CoV-2 Spike Receptor-Binding Domain Using Deep Mutational Scanning and Structure-Based Design. Front Immunol 2021;12:710263. [PMID: 34267764 DOI: 10.3389/fimmu.2021.710263] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
|
181 |
Annear M, Kidokoro T, Shimizu Y. Existential threats to the Summer Olympic and Paralympic Games? a review of emerging environmental health risks. Reviews on Environmental Health 2021;36:159-166. [DOI: 10.1515/reveh-2020-0141] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
182 |
Lv H, Tsang OT, So RTY, Wang Y, Yuan M, Liu H, Yip GK, Teo QW, Lin Y, Liang W, Wang J, Ng WW, Wilson IA, Peiris JSM, Wu NC, Mok CKP. Homologous and heterologous serological response to the N-terminal domain of SARS-CoV-2 in humans and mice. Eur J Immunol 2021;51:2296-305. [PMID: 34089541 DOI: 10.1002/eji.202149234] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
183 |
Abdulla ZA, Al-Bashir SM, Al-Salih NS, Aldamen AA, Abdulazeez MZ. A Summary of the SARS-CoV-2 Vaccines and Technologies Available or under Development. Pathogens 2021;10:788. [PMID: 34206507 DOI: 10.3390/pathogens10070788] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 14.5] [Reference Citation Analysis]
|
184 |
Yang L, Tian D, Han JB, Fan W, Zhang Y, Li Y, Sun W, Wei Y, Tian X, Yu DD, Feng XL, Cheng G, Bi Y, Zheng YT, Liu W. A recombinant receptor-binding domain in trimeric form generates protective immunity against SARS-CoV-2 infection in nonhuman primates. Innovation (N Y) 2021;2:100140. [PMID: 34179862 DOI: 10.1016/j.xinn.2021.100140] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
185 |
Liang Y, Zhang J, Yuan RY, Wang MY, He P, Su JG, Han ZB, Jin YQ, Hou JW, Zhang H, Zhang XF, Shao S, Hou YN, Liu ZM, Du LF, Shen FJ, Zhou WM, Tang F, Lei ZH, Liu S, Zhen W, Wu JJ, Zheng X, Liu N, Chen S, Ma ZJ, Zheng F, Ren SY, Hu ZY, Wu GZ, Huang WJ, Ke CW, Li QM. Structure and computation-guided design of a mutation-integrated trimeric RBD candidate vaccine with broad neutralization against SARS-CoV-2.. [DOI: 10.1101/2021.06.18.448958] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
186 |
Shang Z, Chan SY, Liu WJ, Li P, Huang W. Recent Insights into Emerging Coronavirus: SARS-CoV-2. ACS Infect Dis 2021;7:1369-88. [PMID: 33296169 DOI: 10.1021/acsinfecdis.0c00646] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
|
187 |
Routhu NK, Cheedarla N, Bollimpelli VS, Gangadhara S, Edara VV, Lai L, Sahoo A, Shiferaw A, Styles TM, Floyd K, Fischinger S, Atyeo C, Shin SA, Gumber S, Kirejczyk S, Dinnon KH 3rd, Shi PY, Menachery VD, Tomai M, Fox CB, Alter G, Vanderford TH, Gralinski L, Suthar MS, Amara RR. SARS-CoV-2 RBD trimer protein adjuvanted with Alum-3M-052 protects from SARS-CoV-2 infection and immune pathology in the lung. Nat Commun 2021;12:3587. [PMID: 34117252 DOI: 10.1038/s41467-021-23942-y] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 18.5] [Reference Citation Analysis]
|
188 |
Dong W, Wang J, Tian L, Zhang J, Mead H, Jaramillo SA, Li A, Zumwalt RE, Whelan SPJ, Settles EW, Keim PS, Barker BM, Caligiuri MA, Yu J. FXa cleaves the SARS-CoV-2 spike protein and blocks cell entry to protect against infection with inferior effects in B.1.1.7 variant. bioRxiv 2021:2021. [PMID: 34127969 DOI: 10.1101/2021.06.07.447437] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
189 |
Liu ZH, Xu HL, Han GW, Tao LN, Lu Y, Zheng SY, Fang WH, He F. A self-assembling nanoparticle: Implications for the development of thermostable vaccine candidates. Int J Biol Macromol 2021;183:2162-73. [PMID: 34102236 DOI: 10.1016/j.ijbiomac.2021.06.024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
190 |
Valdes-Balbin Y, Santana-Mederos D, Paquet F, Fernandez S, Climent Y, Chiodo F, Rodríguez L, Sanchez Ramirez B, Leon K, Hernandez T, Castellanos-Serra L, Garrido R, Chen GW, Garcia-Rivera D, Rivera DG, Verez-Bencomo V. Molecular Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines. ACS Cent Sci 2021;7:757-67. [PMID: 34075345 DOI: 10.1021/acscentsci.1c00216] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 19.0] [Reference Citation Analysis]
|
191 |
Liu K, Pan X, Li L, Yu F, Zheng A, Du P, Han P, Meng Y, Zhang Y, Wu L, Chen Q, Song C, Jia Y, Niu S, Lu D, Qiao C, Chen Z, Ma D, Ma X, Tan S, Zhao X, Qi J, Gao GF, Wang Q. Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell 2021;184:3438-3451.e10. [PMID: 34139177 DOI: 10.1016/j.cell.2021.05.031] [Cited by in Crossref: 48] [Cited by in F6Publishing: 52] [Article Influence: 24.0] [Reference Citation Analysis]
|
192 |
Nanishi E, Borriello F, O'Meara TR, McGrath ME, Saito Y, Haupt RE, Seo HS, van Haren SD, Brook B, Chen J, Diray-Arce J, Doss-Gollin S, Leon M, Chew K, Menon M, Song K, Xu AZ, Caradonna TM, Feldman J, Hauser BM, Schmidt AG, Sherman AC, Baden LR, Ernst RK, Dillen C, Weston SM, Johnson RM, Hammond HL, Mayer R, Burke A, Bottazzi ME, Hotez PJ, Strych U, Chang A, Yu J, Barouch DH, Dhe-Paganon S, Zanoni I, Ozonoff A, Frieman MB, Levy O, Dowling DJ. Alum:CpG adjuvant enables SARS-CoV-2 RBD-induced protection in aged mice and synergistic activation of human elder type 1 immunity. bioRxiv 2021:2021. [PMID: 34031655 DOI: 10.1101/2021.05.20.444848] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
|
193 |
Ellis D, Brunette N, Crawford KHD, Walls AC, Pham MN, Chen C, Herpoldt K, Fiala B, Murphy M, Pettie D, Kraft JC, Malone KD, Navarro MJ, Ogohara C, Kepl E, Ravichandran R, Sydeman C, Ahlrichs M, Johnson M, Blackstone A, Carter L, Starr TN, Greaney AJ, Lee KK, Veesler D, Bloom JD, King NP. Stabilization of the SARS-CoV-2 Spike receptor-binding domain using deep mutational scanning and structure-based design.. [DOI: 10.1101/2021.05.15.444222] [Reference Citation Analysis]
|
194 |
Sun S, Cai Y, Song T, Pu Y, Cheng L, Xu H, Meng C, Lin Y, Sun J, Zhang S, Gao Y, Han J, Feng X, Yu D, Zhu Y, Gao P, Tang H, Zhao J, Zhang Z, Yang J, Hu Z, Fu Y, Zheng Y, Peng H. Interferon-armed RBD dimer enhances the immunogenicity of RBD for sterilizing immunity against SARS-CoV-2.. [DOI: 10.1101/2021.05.12.443228] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
195 |
Martinez DR, Schäfer A, Leist SR, De la Cruz G, West A, Atochina-Vasserman EN, Lindesmith LC, Pardi N, Parks R, Barr M, Li D, Yount B, Saunders KO, Weissman D, Haynes BF, Montgomery SA, Baric RS. Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. bioRxiv 2021:2021. [PMID: 33758837 DOI: 10.1101/2021.03.11.434872] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
|
196 |
Espinosa LA, Ramos Y, Andújar I, Torres EO, Cabrera G, Martín A, González D, Chinea G, Becquet M, González I, Canaán-haden C, Nelson E, Rojas G, Pérez-massón B, Pérez-martínez D, Boggiano T, Palacio J, Lozada-chang SL, Hernández L, de la Luz Hernández KR, Markku S, Marika V, Valdés-balbín Y, Santana-medero D, Rivera DG, Vérez-bencomo V, Emalfarb M, Tchelet R, Guillén G, Limonta M, Pimentel E, Ayala M, Besada V, González LJ. In-solution buffer-free digestion for the analysis of SARS-CoV-2 RBD proteins allows a full sequence coverage and detection of post-translational modifications in a single ESI-MS spectrum.. [DOI: 10.1101/2021.05.10.443404] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
197 |
Amanatidis D, Mylona I, Kamenidou I(, Mamalis S, Stavrianea A. Mining Textual and Imagery Instagram Data during the COVID-19 Pandemic. Applied Sciences 2021;11:4281. [DOI: 10.3390/app11094281] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
|
198 |
Gao T, Ren Y, Li S, Lu X, Lei H. Immune response induced by oral administration with a Saccharomyces cerevisiae-based SARS-CoV-2 vaccine in mice. Microb Cell Fact 2021;20:95. [PMID: 33952256 DOI: 10.1186/s12934-021-01584-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
199 |
Li Y, Tenchov R, Smoot J, Liu C, Watkins S, Zhou Q. A Comprehensive Review of the Global Efforts on COVID-19 Vaccine Development. ACS Cent Sci 2021;7:512-33. [PMID: 34056083 DOI: 10.1021/acscentsci.1c00120] [Cited by in Crossref: 127] [Cited by in F6Publishing: 138] [Article Influence: 63.5] [Reference Citation Analysis]
|
200 |
Konrath KM, Liaw K, Wu Y, Zhu X, Walker SN, Xu Z, Schultheis K, Chokkalingam N, Du J, Tursi NJ, Moore A, Purwar M, Reuschel EL, Frase D, Sullivan M, Maricic I, Andrade VM, Iffland C, Broderick KE, Humeau LMPF, Smith TR, Pallesen J, Weiner DB, Kulp DW. Nucleic acid delivery of immune-focused SARS-CoV-2 nanoparticles drive rapid and potent immunogenicity capable of single-dose protection.. [DOI: 10.1101/2021.04.28.441474] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
201 |
Nel AE, Miller JF. Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. ACS Nano 2021;15:5793-818. [PMID: 33793189 DOI: 10.1021/acsnano.1c01845] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
|
202 |
Lainšček D, Fink T, Forstnerič V, Hafner-Bratkovič I, Orehek S, Strmšek Ž, Manček-Keber M, Pečan P, Esih H, Malenšek Š, Aupič J, Dekleva P, Plaper T, Vidmar S, Kadunc L, Benčina M, Omersa N, Anderluh G, Pojer F, Lau K, Hacker D, Correia BE, Peterhoff D, Wagner R, Bergant V, Herrmann A, Pichlmair A, Jerala R. A Nanoscaffolded Spike-RBD Vaccine Provides Protection against SARS-CoV-2 with Minimal Anti-Scaffold Response. Vaccines (Basel) 2021;9:431. [PMID: 33925446 DOI: 10.3390/vaccines9050431] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
203 |
Hennrich AA, Sawatsky B, Santos-Mandujano R, Banda DH, Oberhuber M, Schopf A, Pfaffinger V, Wittwer K, Riedel C, Pfaller CK, Conzelmann KK. Safe and effective two-in-one replicon-and-VLP minispike vaccine for COVID-19: Protection of mice after a single immunization. PLoS Pathog 2021;17:e1009064. [PMID: 33882114 DOI: 10.1371/journal.ppat.1009064] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
|
204 |
Park Y, Kim KH, Lee Y, Lee YT, Kang SM, Ko EJ. Natural killer cells contribute to enhanced respiratory disease after oil-in-water emulsion adjuvanted vaccination against respiratory syncytial virus and infection. Hum Vaccin Immunother 2021;:1-12. [PMID: 33877948 DOI: 10.1080/21645515.2021.1915039] [Reference Citation Analysis]
|
205 |
Dalvie NC, Biedermann AM, Rodriguez-Aponte SA, Naranjo CA, Rao HD, Rajurkar MP, Lothe RR, Shaligram US, Johnston RS, Crowell LE, Castelino S, Tracey MK, Whittaker CA, Love JC. Scalable, methanol-free manufacturing of the SARS-CoV-2 receptor binding domain in engineered Komagataella phaffii. bioRxiv 2021:2021. [PMID: 33880471 DOI: 10.1101/2021.04.15.440035] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
206 |
Waman VP, Sen N, Varadi M, Daina A, Wodak SJ, Zoete V, Velankar S, Orengo C. The impact of structural bioinformatics tools and resources on SARS-CoV-2 research and therapeutic strategies. Brief Bioinform 2021;22:742-68. [PMID: 33348379 DOI: 10.1093/bib/bbaa362] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
|
207 |
He Q, Mao Q, Zhang J, Bian L, Gao F, Wang J, Xu M, Liang Z. COVID-19 Vaccines: Current Understanding on Immunogenicity, Safety, and Further Considerations. Front Immunol 2021;12:669339. [PMID: 33912196 DOI: 10.3389/fimmu.2021.669339] [Cited by in Crossref: 43] [Cited by in F6Publishing: 48] [Article Influence: 21.5] [Reference Citation Analysis]
|
208 |
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD Jr. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021;171:164-86. [PMID: 33539853 DOI: 10.1016/j.addr.2021.01.022] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 11.5] [Reference Citation Analysis]
|
209 |
Kanno AI, Barbosa MMF, Moraes L, Leite LCC. SARS-CoV-2 vaccine development and how Brazil is contributing. Genet Mol Biol 2021;44:e20200320. [PMID: 33818582 DOI: 10.1590/1678-4685-GMB-2020-0320] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
210 |
Townsend A, Rijal P, Xiao J, Tan TK, Huang KA, Schimanski L, Huo J, Gupta N, Rahikainen R, Matthews PC, Crook D, Hoosdally S, Dunachie S, Barnes E, Street T, Conlon CP, Frater J, Arancibia-Cárcamo CV, Rudkin J, Stoesser N, Karpe F, Neville M, Ploeg R, Oliveira M, Roberts DJ, Lamikanra AA, Tsang HP, Bown A, Vipond R, Mentzer AJ, Knight JC, Kwok AJ, Screaton GR, Mongkolsapaya J, Dejnirattisai W, Supasa P, Klenerman P, Dold C, Baillie JK, Moore SC, Openshaw PJM, Semple MG, Turtle LCW, Ainsworth M, Allcock A, Beer S, Bibi S, Skelly D, Stafford L, Jeffrey K, O'Donnell D, Clutterbuck E, Espinosa A, Mendoza M, Georgiou D, Lockett T, Martinez J, Perez E, Gallardo Sanchez V, Scozzafava G, Sobrinodiaz A, Thraves H, Joly E. A haemagglutination test for rapid detection of antibodies to SARS-CoV-2. Nat Commun 2021;12:1951. [PMID: 33782398 DOI: 10.1038/s41467-021-22045-y] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 19.5] [Reference Citation Analysis]
|
211 |
Yang S, Li Y, Dai L, Wang J, He P, Li C, Fang X, Wang C, Zhao X, Huang E, Wu C, Zhong Z, Wang F, Duan X, Tian S, Wu L, Liu Y, Luo Y, Chen Z, Li F, Li J, Yu X, Ren H, Liu L, Meng S, Yan J, Hu Z, Gao L, Gao GF. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect Dis 2021;21:1107-19. [PMID: 33773111 DOI: 10.1016/S1473-3099(21)00127-4] [Cited by in Crossref: 199] [Cited by in F6Publishing: 228] [Article Influence: 99.5] [Reference Citation Analysis]
|
212 |
Tong J, Zhu C, Lai H, Feng C, Zhou D. Potent Neutralization Antibodies Induced by a Recombinant Trimeric Spike Protein Vaccine Candidate Containing PIKA Adjuvant for COVID-19. Vaccines (Basel) 2021;9:296. [PMID: 33810026 DOI: 10.3390/vaccines9030296] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
213 |
Cao J, Wang C, Zhang Y, Lei G, Xu K, Zhao N, Lu J, Meng F, Yu L, Yan J, Bai C, Zhang S, Zhang N, Gong Y, Bi Y, Shi Y, Chen Z, Dai L, Wang J, Yang P. Integrated gut virome and bacteriome dynamics in COVID-19 patients. Gut Microbes 2021;13:1-21. [PMID: 33678150 DOI: 10.1080/19490976.2021.1887722] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 22.5] [Reference Citation Analysis]
|
214 |
Kathiravan MK, Radhakrishnan S, Namasivayam V, Palaniappan S. An Overview of Spike Surface Glycoprotein in Severe Acute Respiratory Syndrome-Coronavirus. Front Mol Biosci 2021;8:637550. [PMID: 33898518 DOI: 10.3389/fmolb.2021.637550] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
215 |
Ertas YN, Mahmoodi M, Shahabipour F, Jahed V, Diltemiz SE, Tutar R, Ashammakhi N. Role of biomaterials in the diagnosis, prevention, treatment, and study of corona virus disease 2019 (COVID-19). Emergent Mater 2021;:1-21. [PMID: 33748672 DOI: 10.1007/s42247-021-00165-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
216 |
Qu L, Yi Z, Shen Y, Lin L, Chen F, Xu Y, Wu Z, Tang H, Zhang X, Tian F, Wang C, Xiao X, Dong X, Guo L, Lu S, Yang C, Tang C, Yang Y, Yu W, Wang J, Zhou Y, Huang Q, Yisimayi A, Cao Y, Wang Y, Zhou Z, Peng X, Wang J, Xie XS, Wei W. Circular RNA Vaccines against SARS-CoV-2 and Emerging Variants.. [DOI: 10.1101/2021.03.16.435594] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
217 |
Huang Q, Zeng J, Yan J. COVID-19 mRNA vaccines. J Genet Genomics 2021;48:107-14. [PMID: 34006471 DOI: 10.1016/j.jgg.2021.02.006] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 15.5] [Reference Citation Analysis]
|
218 |
Chen WH, Wei J, Kundu RT, Adhikari R, Liu Z, Lee J, Versteeg L, Poveda C, Keegan B, Villar MJ, de Araujo Leao AC, Rivera JA, Gillespie PM, Pollet J, Strych U, Zhan B, Hotez PJ, Bottazzi ME. Genetic modification to design a stable yeast-expressed recombinant SARS-CoV-2 receptor binding domain as a COVID-19 vaccine candidate. Biochim Biophys Acta Gen Subj 2021;1865:129893. [PMID: 33731300 DOI: 10.1016/j.bbagen.2021.129893] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 11.5] [Reference Citation Analysis]
|
219 |
Li G, Wang A, Chen Y, Sun Y, Du Y, Wang X, Ding P, Jia R, Wang Y, Zhang G. Development of a Colloidal Gold-Based Immunochromatographic Strip for Rapid Detection of Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein. Front Immunol 2021;12:635677. [PMID: 33777026 DOI: 10.3389/fimmu.2021.635677] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
220 |
Srivastava V, Niu L, Phadke KS, Bellaire BH, Cho MW. Induction of Potent and Durable Neutralizing Antibodies Against SARS-CoV-2 Using a Receptor Binding Domain-Based Immunogen. Front Immunol 2021;12:637982. [PMID: 33777030 DOI: 10.3389/fimmu.2021.637982] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
221 |
An Y, Li S, Jin X, Han J, Xu K, Xu S, Han Y, Liu C, Zheng T, Liu M, Yang M, Song T, Huang B, Zhao L, Wang W, Ruhan A, Cheng Y, Wu C, Huang E, Yang S, Wong G, Bi Y, Ke C, Tan W, Yan J, Zheng Y, Dai L, Gao GF. A tandem-repeat dimeric RBD protein-based COVID-19 vaccine ZF2001 protects mice and nonhuman primates.. [DOI: 10.1101/2021.03.11.434928] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
222 |
Tan HX, Juno JA, Lee WS, Barber-Axthelm I, Kelly HG, Wragg KM, Esterbauer R, Amarasena T, Mordant FL, Subbarao K, Kent SJ, Wheatley AK. Immunogenicity of prime-boost protein subunit vaccine strategies against SARS-CoV-2 in mice and macaques. Nat Commun 2021;12:1403. [PMID: 33658497 DOI: 10.1038/s41467-021-21665-8] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 22.5] [Reference Citation Analysis]
|
223 |
Chung JY, Thone MN, Kwon YJ. COVID-19 vaccines: The status and perspectives in delivery points of view. Adv Drug Deliv Rev 2021;170:1-25. [PMID: 33359141 DOI: 10.1016/j.addr.2020.12.011] [Cited by in Crossref: 169] [Cited by in F6Publishing: 126] [Article Influence: 84.5] [Reference Citation Analysis]
|
224 |
Li T, Zhang T, Gu Y, Li S, Xia N. Current progress and challenges in the design and development of a successful COVID-19 vaccine. Fundamental Research 2021;1:139-50. [DOI: 10.1016/j.fmre.2021.01.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
|
225 |
Pollet J, Chen WH, Strych U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev 2021;170:71-82. [PMID: 33421475 DOI: 10.1016/j.addr.2021.01.001] [Cited by in Crossref: 63] [Cited by in F6Publishing: 67] [Article Influence: 31.5] [Reference Citation Analysis]
|
226 |
Huang Q, Yan J. SARS-CoV-2 virus: Vaccines in development. Fundamental Research 2021;1:131-8. [DOI: 10.1016/j.fmre.2021.01.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
227 |
Boudjelal M, Almajed F, Salman AM, Alharbi NK, Colangelo M, Michelotti JM, Olinger G, Baker M, Hill AVS, Alaskar A. COVID-19 vaccines: Global challenges and prospects forum recommendations. Int J Infect Dis 2021;105:448-51. [PMID: 33652065 DOI: 10.1016/j.ijid.2021.02.093] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
228 |
Jeong H, Choi YM, Seo H, Kim BJ. A Novel DNA Vaccine Against SARS-CoV-2 Encoding a Chimeric Protein of Its Receptor-Binding Domain (RBD) Fused to the Amino-Terminal Region of Hepatitis B Virus preS1 With a W4P Mutation. Front Immunol 2021;12:637654. [PMID: 33732258 DOI: 10.3389/fimmu.2021.637654] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
229 |
Lee P, Kim CU, Seo SH, Kim DJ. Current Status of COVID-19 Vaccine Development: Focusing on Antigen Design and Clinical Trials on Later Stages. Immune Netw 2021;21:e4. [PMID: 33728097 DOI: 10.4110/in.2021.21.e4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
|
230 |
Kang YF, Sun C, Zhuang Z, Yuan RY, Zheng Q, Li JP, Zhou PP, Chen XC, Liu Z, Zhang X, Yu XH, Kong XW, Zhu QY, Zhong Q, Xu M, Zhong NS, Zeng YX, Feng GK, Ke C, Zhao JC, Zeng MS. Rapid Development of SARS-CoV-2 Spike Protein Receptor-Binding Domain Self-Assembled Nanoparticle Vaccine Candidates. ACS Nano 2021;15:2738-52. [PMID: 33464829 DOI: 10.1021/acsnano.0c08379] [Cited by in Crossref: 68] [Cited by in F6Publishing: 76] [Article Influence: 34.0] [Reference Citation Analysis]
|
231 |
Lv H, Tsang OT, So RTY, Wang Y, Yuan M, Liu H, Yip GK, Teo QW, Lin Y, Liang W, Wang J, Ng WW, Wilson IA, Peiris JSM, Wu NC, Mok CKP. Homologous and heterologous serological response to the N-terminal domain of SARS-CoV-2.. [DOI: 10.1101/2021.02.17.431722] [Reference Citation Analysis]
|
232 |
Ashraf MU, Kim Y, Kumar S, Seo D, Ashraf M, Bae YS. COVID-19 Vaccines (Revisited) and Oral-Mucosal Vector System as a Potential Vaccine Platform. Vaccines (Basel) 2021;9:171. [PMID: 33670630 DOI: 10.3390/vaccines9020171] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 14.0] [Reference Citation Analysis]
|
233 |
Soleimanpour S, Yaghoubi A. COVID-19 vaccine: where are we now and where should we go? Expert Rev Vaccines 2021;20:23-44. [PMID: 33435774 DOI: 10.1080/14760584.2021.1875824] [Cited by in Crossref: 58] [Cited by in F6Publishing: 43] [Article Influence: 29.0] [Reference Citation Analysis]
|
234 |
Wang WB, Liang Y, Jin YQ, Zhang J, Su JG, Li QM. E484K mutation in SARS-CoV-2 RBD enhances binding affinity with hACE2 but reduces interactions with neutralizing antibodies and nanobodies: Binding free energy calculation studies.. [DOI: 10.1101/2021.02.17.431566] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
|
235 |
Tong J, Zhu C, Lai H, Feng C, Zhou D. Potent neutralization antibodies induced by a recombinant trimeric Spike protein vaccine candidate containing PIKA adjuvant for COVID-19.. [DOI: 10.1101/2021.02.17.431647] [Reference Citation Analysis]
|
236 |
Wang W, Huang B, Zhu Y, Tan W, Zhu M. Ferritin nanoparticle-based SARS-CoV-2 RBD vaccine induces a persistent antibody response and long-term memory in mice. Cell Mol Immunol 2021;18:749-51. [PMID: 33580169 DOI: 10.1038/s41423-021-00643-6] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
|
237 |
Laha S, Chatterjee R. Country specific mutational profile of SARS-CoV-2 in pre- and post-international travel ban: Effect on vaccine efficacy.. [DOI: 10.1101/2021.02.08.21251359] [Reference Citation Analysis]
|
238 |
Ismail AA. SARS-CoV-2 (Covid-19): A short update on molecular biochemistry, pathology, diagnosis and therapeutic strategies. Ann Clin Biochem 2021;:4563221992390. [PMID: 33478237 DOI: 10.1177/0004563221992390] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
239 |
Xu K, An Y, Li Q, Huang W, Han Y, Zheng T, Fang F, Liu H, Liu C, Gao P, Xu S, Liu WJ, Bi Y, Wang Y, Zhou D, Wang Q, Hou W, Xia Q, Gao GF, Dai L. Recombinant chimpanzee adenovirus AdC7 expressing dimeric tandem-repeat RBD of SARS-CoV-2 spike protein protects mice against COVID-19.. [DOI: 10.1101/2021.02.05.429860] [Reference Citation Analysis]
|
240 |
Liu X, Song H, Jiang J, Gao X, Yi Y, Shang Y, Li J, Li D, Zeng Z, Li Y, Zhang Z. Self-assembling SARS-CoV-2 nanoparticle vaccines targeting the S protein induces protective immunity in mice.. [DOI: 10.1101/2021.02.05.428685] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
241 |
Huang Q, Ji K, Tian S, Wang F, Huang B, Tong Z, Tan S, Hao J, Wang Q, Tan W, Gao GF, Yan J. A single-dose mRNA vaccine provides a long-term protection for hACE2 transgenic mice from SARS-CoV-2. Nat Commun 2021;12:776. [PMID: 33536425 DOI: 10.1038/s41467-021-21037-2] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 19.0] [Reference Citation Analysis]
|
242 |
Sinegubova MV, Orlova NA, Kovnir SV, Dayanova LK, Vorobiev II. High-level expression of the monomeric SARS-CoV-2 S protein RBD 320-537 in stably transfected CHO cells by the EEF1A1-based plasmid vector. PLoS One 2021;16:e0242890. [PMID: 33529230 DOI: 10.1371/journal.pone.0242890] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
|
243 |
Batty CJ, Heise MT, Bachelder EM, Ainslie KM. Vaccine formulations in clinical development for the prevention of severe acute respiratory syndrome coronavirus 2 infection. Adv Drug Deliv Rev 2021;169:168-89. [PMID: 33316346 DOI: 10.1016/j.addr.2020.12.006] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 21.0] [Reference Citation Analysis]
|
244 |
Scourfield DO, Reed SG, Quastel M, Alderson J, Bart VMT, Teijeira Crespo A, Jones R, Pring E, Richter FC, Burnell SEA; Oxford-Cardiff COVID-19 Literature Consortium. The role and uses of antibodies in COVID-19 infections: a living review. Oxf Open Immunol 2021;2:iqab003. [PMID: 34192270 DOI: 10.1093/oxfimm/iqab003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
|
245 |
Ansariniya H, Seifati SM, Zaker E, Zare F. Comparison of Immune Response between SARS, MERS, and COVID-19 Infection, Perspective on Vaccine Design and Development. Biomed Res Int 2021;2021:8870425. [PMID: 33564683 DOI: 10.1155/2021/8870425] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
246 |
Su QD, Zou YN, Yi Y, Shen LP, Ye XZ, Zhang Y, Wang H, Ke H, Song JD, Hu KP, Cheng BL, Qiu F, Yu PC, Zhou WT, Zhao R, Cao L, Dong GF, Bi SL, Wu GZ, Gao GF, Zheng J. Recombinant SARS-CoV-2 RBD with a built in T helper epitope induces strong neutralization antibody response. Vaccine 2021;39:1241-7. [PMID: 33516600 DOI: 10.1016/j.vaccine.2021.01.044] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
|
247 |
Belete TM. Review on Up-to-Date Status of Candidate Vaccines for COVID-19 Disease. Infect Drug Resist 2021;14:151-61. [PMID: 33500636 DOI: 10.2147/IDR.S288877] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 17.5] [Reference Citation Analysis]
|
248 |
Malladi SK, Patel UR, Rajmani RS, Singh R, Pandey S, Kumar S, Khaleeq S, van Vuren PJ, Riddell S, Goldie S, Gayathri S, Chakraborty D, Kalita P, Pramanick I, Agarwal N, Reddy P, Girish N, Upadhyaya A, Khan MS, Kanjo K, Bhat M, Mani S, Bhattacharyya S, Siddiqui S, Tyagi A, Jha S, Pandey R, Tripathi S, Dutta S, Mcauley AJ, Singanallur NB, Vasan SS, Ringe RP, Varadarajan R. Immunogenicity and protective efficacy of a highly thermotolerant, trimeric SARS-CoV-2 receptor binding domain derivative.. [DOI: 10.1101/2021.01.13.426626] [Reference Citation Analysis]
|
249 |
Trougakos IP, Stamatelopoulos K, Terpos E, Tsitsilonis OE, Aivalioti E, Paraskevis D, Kastritis E, Pavlakis GN, Dimopoulos MA. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci 2021;28:9. [PMID: 33435929 DOI: 10.1186/s12929-020-00703-5] [Cited by in Crossref: 83] [Cited by in F6Publishing: 90] [Article Influence: 41.5] [Reference Citation Analysis]
|
250 |
Mellet J, Pepper MS. A COVID-19 Vaccine: Big Strides Come with Big Challenges. Vaccines (Basel) 2021;9:39. [PMID: 33440895 DOI: 10.3390/vaccines9010039] [Cited by in Crossref: 45] [Cited by in F6Publishing: 51] [Article Influence: 22.5] [Reference Citation Analysis]
|
251 |
Li DD, Li QH. SARS-CoV-2: vaccines in the pandemic era. Mil Med Res 2021;8:1. [PMID: 33402220 DOI: 10.1186/s40779-020-00296-y] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 13.5] [Reference Citation Analysis]
|
252 |
Tafoya QJ, Watson V, Pawloski J, Mohamed GA, Ramadan AR. Treatment Approach, Pharmacological Agents and Vaccines. Neurological Care and the COVID-19 Pandemic 2021. [DOI: 10.1016/b978-0-323-82691-4.00015-7] [Reference Citation Analysis]
|
253 |
Lynch C, Jordan L, J O’ Connell D. Redesigning Spent Media from Cell Culture Bioprocess to Feed New Bacterial Fermentations. Cell Engineering 2021. [DOI: 10.1007/978-3-030-79871-0_5] [Reference Citation Analysis]
|
254 |
Copley HC, Gragert L, Leach AR, Kosmoliaptsis V. Influence of HLA class II polymorphism on predicted cellular immunity against SARS-CoV-2 at the population and individual level.. [DOI: 10.1101/2020.12.24.424326] [Reference Citation Analysis]
|
255 |
Wang W, Huang B, Zhu Y, Tan W, Zhu M. Ferritin nanoparticle based SARS-CoV-2 RBD vaccine induces persistent antibody response and long-term memory in mice.. [DOI: 10.1101/2020.12.22.423894] [Reference Citation Analysis]
|
256 |
Wu Y, Huang X, Yuan L, Wang S, Zhang Y, Xiong H, Chen R, Ma J, Qi R, Nie M, Xu J, Zhang Z, Chen L, Wei M, Zhou M, Cai M, Shi Y, Zhang L, Yu H, Hong J, Wang Z, Hong Y, Yue M, Li Z, Chen D, Zheng Q, Li S, Chen Y, Cheng T, Zhang J, Zhang T, Zhu H, Zhao Q, Yuan Q, Guan Y, Xia N. Sterilizing immunity against SARS-CoV-2 in hamsters conferred by a novel recombinant subunit vaccine.. [DOI: 10.1101/2020.12.18.423552] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
257 |
Li YD, Chi WY, Su JH, Ferrall L, Hung CF, Wu TC. Coronavirus vaccine development: from SARS and MERS to COVID-19. J Biomed Sci 2020;27:104. [PMID: 33341119 DOI: 10.1186/s12929-020-00695-2] [Cited by in Crossref: 152] [Cited by in F6Publishing: 169] [Article Influence: 50.7] [Reference Citation Analysis]
|
258 |
Zhang Y, Wang S, Wu Y, Hou W, Yuan L, Shen C, Wang J, Ye J, Zheng Q, Ma J, Xu J, Wei M, Li Z, Nian S, Xiong H, Zhang L, Shi Y, Fu B, Cao J, Yang C, Li Z, Yang T, Liu L, Yu H, Hu J, Ge S, Chen Y, Zhang T, Zhang J, Cheng T, Yuan Q, Xia N. Virus-Free and Live-Cell Visualizing SARS-CoV-2 Cell Entry for Studies of Neutralizing Antibodies and Compound Inhibitors. Small Methods 2021;5:2001031. [PMID: 33614907 DOI: 10.1002/smtd.202001031] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
|
259 |
Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol 2021;21:73-82. [PMID: 33340022 DOI: 10.1038/s41577-020-00480-0] [Cited by in Crossref: 533] [Cited by in F6Publishing: 549] [Article Influence: 177.7] [Reference Citation Analysis]
|
260 |
Garcia-Beltran WF, Lam EC, Astudillo MG, Yang D, Miller TE, Feldman J, Hauser BM, Caradonna TM, Clayton KL, Nitido AD, Murali MR, Alter G, Charles RC, Dighe A, Branda JA, Lennerz JK, Lingwood D, Schmidt AG, Iafrate AJ, Balazs AB. COVID-19-neutralizing antibodies predict disease severity and survival. Cell 2021;184:476-488.e11. [PMID: 33412089 DOI: 10.1016/j.cell.2020.12.015] [Cited by in Crossref: 360] [Cited by in F6Publishing: 249] [Article Influence: 120.0] [Reference Citation Analysis]
|
261 |
Vashishtha VM, Kumar P. Development of SARS-CoV-2 vaccines: challenges, risks, and the way forward. Hum Vaccin Immunother 2021;17:1635-49. [PMID: 33270478 DOI: 10.1080/21645515.2020.1845524] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
262 |
Huang WC, Zhou S, He X, Chiem K, Mabrouk MT, Nissly RH, Bird IM, Strauss M, Sambhara S, Ortega J, Wohlfert EA, Martinez-Sobrido L, Kuchipudi SV, Davidson BA, Lovell JF. SARS-CoV-2 RBD Neutralizing Antibody Induction is Enhanced by Particulate Vaccination. Adv Mater 2020;32:e2005637. [PMID: 33111375 DOI: 10.1002/adma.202005637] [Cited by in Crossref: 42] [Cited by in F6Publishing: 48] [Article Influence: 14.0] [Reference Citation Analysis]
|
263 |
Li K, Huang B, Wu M, Zhong A, Li L, Cai Y, Wang Z, Wu L, Zhu M, Li J, Wang Z, Wu W, Li W, Bosco B, Gan Z, Qiao Q, Wu J, Wang Q, Wang S, Xia X. Dynamic changes in anti-SARS-CoV-2 antibodies during SARS-CoV-2 infection and recovery from COVID-19. Nat Commun 2020;11:6044. [PMID: 33247152 DOI: 10.1038/s41467-020-19943-y] [Cited by in Crossref: 133] [Cited by in F6Publishing: 144] [Article Influence: 44.3] [Reference Citation Analysis]
|
264 |
Liu G, Carter B, Gifford DK. Predicted Cellular Immunity Population Coverage Gaps for SARS-CoV-2 Subunit Vaccines and Their Augmentation by Compact Peptide Sets. Cell Syst 2021;12:102-107.e4. [PMID: 33321075 DOI: 10.1016/j.cels.2020.11.010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
|
265 |
Liu Z, Xu W, Xia S, Gu C, Wang X, Wang Q, Zhou J, Wu Y, Cai X, Qu D, Ying T, Xie Y, Lu L, Yuan Z, Jiang S. RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response. Signal Transduct Target Ther 2020;5:282. [PMID: 33247109 DOI: 10.1038/s41392-020-00402-5] [Cited by in Crossref: 89] [Cited by in F6Publishing: 96] [Article Influence: 29.7] [Reference Citation Analysis]
|
266 |
Madhav A, Mehrotra T, Sinha P, Mutreja A. Vaccines for neglected, emerging and re-emerging diseases. Semin Immunol 2020;50:101423. [PMID: 33250352 DOI: 10.1016/j.smim.2020.101423] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
|
267 |
Ma X, Zou F, Yu F, Li R, Yuan Y, Zhang Y, Zhang X, Deng J, Chen T, Song Z, Qiao Y, Zhan Y, Liu J, Zhang J, Zhang X, Peng Z, Li Y, Lin Y, Liang L, Wang G, Chen Y, Chen Q, Pan T, He X, Zhang H. Nanoparticle Vaccines Based on the Receptor Binding Domain (RBD) and Heptad Repeat (HR) of SARS-CoV-2 Elicit Robust Protective Immune Responses. Immunity 2020;53:1315-1330.e9. [PMID: 33275896 DOI: 10.1016/j.immuni.2020.11.015] [Cited by in Crossref: 116] [Cited by in F6Publishing: 125] [Article Influence: 38.7] [Reference Citation Analysis]
|
268 |
Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front Cell Infect Microbiol. 2020;10:587269. [PMID: 33324574 DOI: 10.3389/fcimb.2020.587269] [Cited by in Crossref: 278] [Cited by in F6Publishing: 297] [Article Influence: 92.7] [Reference Citation Analysis]
|
269 |
Malladi SK, Singh R, Pandey S, Gayathri S, Kanjo K, Ahmed S, Khan MS, Kalita P, Girish N, Upadhyaya A, Reddy P, Pramanick I, Bhasin M, Mani S, Bhattacharyya S, Joseph J, Thankamani K, Raj VS, Dutta S, Singh R, Nadig G, Varadarajan R. Design of a highly thermotolerant, immunogenic SARS-CoV-2 spike fragment. J Biol Chem 2021;296:100025. [PMID: 33154165 DOI: 10.1074/jbc.RA120.016284] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
|
270 |
Wang L, Xiang Y. Spike Glycoprotein-Mediated Entry of SARS Coronaviruses. Viruses 2020;12:E1289. [PMID: 33187074 DOI: 10.3390/v12111289] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
|
271 |
Anwar MM, Badawi AM, Eltablawy NA. Can the coronavirus infection penetrates the brain resulting in sudden anosmia followed by severe neurological disorders? eNeurologicalSci 2020;21:100290. [PMID: 33200104 DOI: 10.1016/j.ensci.2020.100290] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
272 |
Chen W, Wei J, Kundu RT, Adhikari R, Liu Z, Lee J, Versteeg L, Poveda C, Keegan B, Villar MJ, de Araujo Leao AC, Rivera JA, Gillespie PM, Pollet J, Strych U, Zhan B, Hotez PJ, Bottazzi ME. Genetic Modification to Design a Stable Yeast-expressed Recombinant SARS-CoV-2 Receptor Binding Domain as a COVID-19 Vaccine Candidate.. [DOI: 10.1101/2020.11.09.373449] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
273 |
Liang Z, Zhu H, Wang X, Jing B, Li Z, Xia X, Sun H, Yang Y, Zhang W, Shi L, Zeng H, Sun B. Adjuvants for Coronavirus Vaccines. Front Immunol 2020;11:589833. [PMID: 33240278 DOI: 10.3389/fimmu.2020.589833] [Cited by in Crossref: 87] [Cited by in F6Publishing: 98] [Article Influence: 29.0] [Reference Citation Analysis]
|
274 |
Walls AC, Fiala B, Schäfer A, Wrenn S, Pham MN, Murphy M, Tse LV, Shehata L, O'Connor MA, Chen C, Navarro MJ, Miranda MC, Pettie D, Ravichandran R, Kraft JC, Ogohara C, Palser A, Chalk S, Lee EC, Guerriero K, Kepl E, Chow CM, Sydeman C, Hodge EA, Brown B, Fuller JT, Dinnon KH 3rd, Gralinski LE, Leist SR, Gully KL, Lewis TB, Guttman M, Chu HY, Lee KK, Fuller DH, Baric RS, Kellam P, Carter L, Pepper M, Sheahan TP, Veesler D, King NP. Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell 2020;183:1367-1382.e17. [PMID: 33160446 DOI: 10.1016/j.cell.2020.10.043] [Cited by in Crossref: 261] [Cited by in F6Publishing: 275] [Article Influence: 87.0] [Reference Citation Analysis]
|
275 |
Chen L, Liu B, Sun P, Wang W, Luo S, Zhang W, Yang Y, Wang Z, Lin J, Chen PR. Severe Acute Respiratory Syndrome Coronavirus-2 Spike Protein Nanogel as a Pro-Antigen Strategy with Enhanced Protective Immune Responses. Small 2020;16:e2004237. [PMID: 33107685 DOI: 10.1002/smll.202004237] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
|
276 |
Garcia-Beltran WF, Lam EC, Astudillo MG, Yang D, Miller TE, Feldman J, Hauser BM, Caradonna TM, Clayton KL, Nitido AD, Murali MR, Alter G, Charles RC, Dighe A, Branda JA, Lennerz JK, Lingwood D, Schmidt AG, Iafrate AJ, Balazs AB. COVID-19 neutralizing antibodies predict disease severity and survival. medRxiv 2020:2020. [PMID: 33106822 DOI: 10.1101/2020.10.15.20213512] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
277 |
Liu W, Guan WJ, Zhong NS. Strategies and Advances in Combating COVID-19 in China. Engineering (Beijing) 2020;6:1076-84. [PMID: 33078078 DOI: 10.1016/j.eng.2020.10.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
|
278 |
Sharma O, Sultan AA, Ding H, Triggle CR. A Review of the Progress and Challenges of Developing a Vaccine for COVID-19. Front Immunol 2020;11:585354. [PMID: 33163000 DOI: 10.3389/fimmu.2020.585354] [Cited by in Crossref: 233] [Cited by in F6Publishing: 260] [Article Influence: 77.7] [Reference Citation Analysis]
|
279 |
Wang Y, Xing M, Zhou D. Coronavirus disease-19 vaccine development utilizing promising technology. Curr Opin HIV AIDS 2020;15:351-8. [PMID: 32969973 DOI: 10.1097/COH.0000000000000648] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
280 |
Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther 2020;5:237. [PMID: 33051445 DOI: 10.1038/s41392-020-00352-y] [Cited by in Crossref: 303] [Cited by in F6Publishing: 320] [Article Influence: 101.0] [Reference Citation Analysis]
|
281 |
Duan L, Zheng Q, Zhang H, Niu Y, Lou Y, Wang H. The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications for the Design of Spike-Based Vaccine Immunogens. Front Immunol 2020;11:576622. [PMID: 33117378 DOI: 10.3389/fimmu.2020.576622] [Cited by in Crossref: 179] [Cited by in F6Publishing: 198] [Article Influence: 59.7] [Reference Citation Analysis]
|
282 |
Townsend A, Rijal P, Xiao J, Tan TK, Huang KA, Schimanski L, Huo J, Gupta N, Rahikainen R, Matthews PC, Crook D, Hoosdally S, Street T, Rudkin J, Stoesser N, Karpe F, Neville M, Ploeg R, Oliveira M, Roberts DJ, Lamikanra AA, Tsang HP, Bown A, Vipond R, Mentzer AJ, Knight JC, Kwok A, Screaton G, Mongkolsapaya J, Dejnirattisai W, Supasa P, Klenerman P, Dold C, Baillie K, Moore SC, Openshaw PJ, Semple MG, Turtle LC, Ainsworth M, Allcock A, Beer S, Bibi S, Clutterbuck E, Espinosa A, Mendoza M, Georgiou D, Lockett T, Martinez J, Perez E, Sanchez V, Scozzafava G, Sobrinodiaz A, Thraves H, Joly E. A haemagglutination test for rapid detection of antibodies to SARS-CoV-2.. [DOI: 10.1101/2020.10.02.20205831] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
283 |
Hennrich AA, Banda DH, Oberhuber M, Schopf A, Pfaffinger V, Wittwer K, Sawatsky B, Riedel C, Pfaller CK, Conzelmann K. Safe and effective two-in-one replicon-and-VLP minispike vaccine for COVID-19.. [DOI: 10.1101/2020.10.02.324046] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
284 |
Peng S, Cao F, Xia Y, Gao XD, Dai L, Yan J, Ma G. Particulate Alum via Pickering Emulsion for an Enhanced COVID-19 Vaccine Adjuvant. Adv Mater 2020;32:e2004210. [PMID: 32864794 DOI: 10.1002/adma.202004210] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
|
285 |
Malladi SK, Singh R, Pandey S, Gayathri S, Kanjo K, Ahmed S, Khan MS, Kalita P, Girish N, Upadhyaya A, Reddy P, Pramanick I, Bhasin M, Mani S, Bhattacharyya S, Joseph J, Thankamani K, Raj VS, Dutta S, Singh R, Nadig G, Varadarajan R. Design of a highly thermotolerant, immunogenic SARS-CoV-2 spike fragment immunogen.. [DOI: 10.1101/2020.08.15.252437] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
286 |
Walls AC, Fiala B, Schäfer A, Wrenn S, Pham MN, Murphy M, Tse LV, Shehata L, O'Connor MA, Chen C, Navarro MJ, Miranda MC, Pettie D, Ravichandran R, Kraft JC, Ogohara C, Palser A, Chalk S, Lee EC, Kepl E, Chow CM, Sydeman C, Hodge EA, Brown B, Fuller JT, Dinnon KH 3rd, Gralinski LE, Leist SR, Gully KL, Lewis TB, Guttman M, Chu HY, Lee KK, Fuller DH, Baric RS, Kellam P, Carter L, Pepper M, Sheahan TP, Veesler D, King NP. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. bioRxiv 2020:2020. [PMID: 32817941 DOI: 10.1101/2020.08.11.247395] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
|
287 |
Zhou Z, Liu H, Zhang Y, Wu Y, Peng M, Li A, Irwin DM, Li H, Lu J, Bao Y, Lu X, Liu D, Zhang Y. Worldwide tracing of mutations and the evolutionary dynamics of SARS-CoV-2.. [DOI: 10.1101/2020.08.07.242263] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
288 |
Liu G, Carter B, Gifford DK. Predicted Cellular Immunity Population Coverage Gaps for SARS-CoV-2 Subunit Vaccines and their Augmentation by Compact Peptide Sets.. [DOI: 10.1101/2020.08.04.200691] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
289 |
Yang J, Wang W, Chen Z, Lu S, Yang F, Bi Z, Bao L, Mo F, Li X, Huang Y, Hong W, Yang Y, Zhao Y, Ye F, Lin S, Deng W, Chen H, Lei H, Zhang Z, Luo M, Gao H, Zheng Y, Gong Y, Jiang X, Xu Y, Lv Q, Li D, Wang M, Li F, Wang S, Wang G, Yu P, Qu Y, Yang L, Deng H, Tong A, Li J, Wang Z, Yang J, Shen G, Zhao Z, Li Y, Luo J, Liu H, Yu W, Yang M, Xu J, Wang J, Li H, Wang H, Kuang D, Lin P, Hu Z, Guo W, Cheng W, He Y, Song X, Chen C, Xue Z, Yao S, Chen L, Ma X, Chen S, Gou M, Huang W, Wang Y, Fan C, Tian Z, Shi M, Wang FS, Dai L, Wu M, Li G, Wang G, Peng Y, Qian Z, Huang C, Lau JY, Yang Z, Wei Y, Cen X, Peng X, Qin C, Zhang K, Lu G, Wei X. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 2020;586:572-7. [PMID: 32726802 DOI: 10.1038/s41586-020-2599-8] [Cited by in Crossref: 495] [Cited by in F6Publishing: 481] [Article Influence: 165.0] [Reference Citation Analysis]
|
290 |
Zhang Y, Wang S, Wu Y, Hou W, Yuan L, Sheng C, Wang J, Ye J, Zheng Q, Ma J, Xu J, Wei M, Li Z, Nian S, Xiong H, Zhang L, Shi Y, Fu B, Cao J, Yang C, Li Z, Yang T, Liu L, Yu H, Hu J, Ge S, Chen Y, Zhang T, Zhang J, Cheng T, Yuan Q, Xia N. Virus-free and live-cell visualizing SARS-CoV-2 cell entry for studies of neutralizing antibodies and compound inhibitors.. [DOI: 10.1101/2020.07.22.215236] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
291 |
Li Y, Chi W, Su J, Ferrall L, Hung C, Wu T. CORONAVIRUS VACCINE DEVELOPMENT: FROM SARS AND MERS TO COVID-19 (RUSSIAN TRANSLATION). Juvenis scientia 2020;6:41-80. [DOI: 10.32415/jscientia_2020_6_6_41-80] [Reference Citation Analysis]
|
292 |
[DOI: 10.1101/2020.09.23.309294] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
|
293 |
[DOI: 10.1101/2021.03.30.437647] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
294 |
[DOI: 10.1101/2020.08.28.244269] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
|
295 |
[DOI: 10.1101/2020.11.29.402339] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
296 |
[DOI: 10.1101/2020.11.03.366138] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
297 |
[DOI: 10.1101/2021.02.01.429069] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Reference Citation Analysis]
|
298 |
[DOI: 10.1101/2020.12.20.20248602] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Reference Citation Analysis]
|