BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado Del Pozo C, Prosper F, Romero JP, Wirnsberger G, Zhang H, Slutsky AS, Conder R, Montserrat N, Mirazimi A, Penninger JM. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell 2020;181:905-913.e7. [PMID: 32333836 DOI: 10.1016/j.cell.2020.04.004] [Cited by in Crossref: 981] [Cited by in F6Publishing: 894] [Article Influence: 490.5] [Reference Citation Analysis]
Number Citing Articles
1 Khosravani H. The Dysfunction is in the Details: Neurovascular Changes in COVID-19. Can J Neurol Sci 2021;48:1-2. [PMID: 32665047 DOI: 10.1017/cjn.2020.150] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 [DOI: 10.1101/2020.05.21.109157] [Cited by in Crossref: 29] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
3 Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol. 2021;17:46-64. [PMID: 33077917 DOI: 10.1038/s41581-020-00357-4] [Cited by in Crossref: 85] [Cited by in F6Publishing: 81] [Article Influence: 42.5] [Reference Citation Analysis]
4 Zhang L, Guo H. Biomarkers of COVID-19 and technologies to combat SARS-CoV-2. Adv Biomark Sci Technol 2020;2:1-23. [PMID: 33511330 DOI: 10.1016/j.abst.2020.08.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
5 Giani AM, Chen S. Human pluripotent stem cell-based organoids and cell platforms for modelling SARS-CoV-2 infection and drug discovery. Stem Cell Res 2021;53:102207. [PMID: 33677394 DOI: 10.1016/j.scr.2021.102207] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Horenstein AL, Faini AC, Malavasi F. CD38 in the age of COVID-19: a medical perspective. Physiol Rev 2021;101:1457-86. [PMID: 33787351 DOI: 10.1152/physrev.00046.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Han S, Zhao G, Wei Z, Chen Y, Zhao J, He Y, He YJ, Gao J, Chen S, Du C, Wang T, Sun W, Huang Y, Wang C, Wang J. An angiotensin-converting enzyme-2-derived heptapeptide GK-7 for SARS-CoV-2 spike blockade. Peptides 2021;145:170638. [PMID: 34419496 DOI: 10.1016/j.peptides.2021.170638] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M, Scott JA, Vitale F, Unal MA, Mattevi C, Bedognetti D, Merkoçi A, Tasciotti E, Yilmazer A, Gogotsi Y, Stellacci F, Delogu LG. Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano 2020;14:6383-406. [PMID: 32519842 DOI: 10.1021/acsnano.0c03697] [Cited by in Crossref: 173] [Cited by in F6Publishing: 121] [Article Influence: 86.5] [Reference Citation Analysis]
9 Knyazev E, Nersisyan S, Tonevitsky A. Endocytosis and Transcytosis of SARS-CoV-2 Across the Intestinal Epithelium and Other Tissue Barriers. Front Immunol 2021;12:636966. [PMID: 34557180 DOI: 10.3389/fimmu.2021.636966] [Reference Citation Analysis]
10 Cavalier E, Guiot J, Lechner K, Dutsch A, Eccleston M, Herzog M, Bygott T, Schomburg A, Kelly T, Holdenrieder S. Circulating Nucleosomes as Potential Markers to Monitor COVID-19 Disease Progression. Front Mol Biosci 2021;8:600881. [PMID: 33816549 DOI: 10.3389/fmolb.2021.600881] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 MacLean MA, Kamintsky L, Leck ED, Friedman A. The potential role of microvascular pathology in the neurological manifestations of coronavirus infection. Fluids Barriers CNS 2020;17:55. [PMID: 32912226 DOI: 10.1186/s12987-020-00216-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
12 Laporte E, Vennekens A, Vankelecom H. Pituitary Remodeling Throughout Life: Are Resident Stem Cells Involved? Front Endocrinol (Lausanne) 2020;11:604519. [PMID: 33584539 DOI: 10.3389/fendo.2020.604519] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Guo J, Sheng K, Wu S, Chen H, Xu W. An Update on the Relationship of SARS-CoV-2 and Male Reproduction. Front Endocrinol (Lausanne) 2021;12:788321. [PMID: 34887838 DOI: 10.3389/fendo.2021.788321] [Reference Citation Analysis]
14 Chernyak BV, Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, Zinovkin RA. COVID-19 and Oxidative Stress. Biochemistry (Mosc) 2020;85:1543-53. [PMID: 33705292 DOI: 10.1134/S0006297920120068] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
15 Stebbing J, Krishnan V, de Bono S, Ottaviani S, Casalini G, Richardson PJ, Monteil V, Lauschke VM, Mirazimi A, Youhanna S, Tan YJ, Baldanti F, Sarasini A, Terres JAR, Nickoloff BJ, Higgs RE, Rocha G, Byers NL, Schlichting DE, Nirula A, Cardoso A, Corbellino M; Sacco Baricitinib Study Group. Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients. EMBO Mol Med 2020;12:e12697. [PMID: 32473600 DOI: 10.15252/emmm.202012697] [Cited by in Crossref: 81] [Cited by in F6Publishing: 73] [Article Influence: 40.5] [Reference Citation Analysis]
16 Krumm ZA, Lloyd GM, Francis CP, Nasif LH, Mitchell DA, Golde TE, Giasson BI, Xia Y. Precision therapeutic targets for COVID-19. Virol J 2021;18:66. [PMID: 33781287 DOI: 10.1186/s12985-021-01526-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Rees A, Turner S, Thornton CA. Potential protective effects of breast milk and amniotic fluid against novel coronavirus SARS-CoV-2 through decoy receptors. Pediatr Allergy Immunol 2022;33:e13672. [PMID: 34585801 DOI: 10.1111/pai.13672] [Reference Citation Analysis]
18 Essalmani R, Jain J, Susan-Resiga D, Andréo U, Evagelidis A, Derbali RM, Huynh DN, Dallaire F, Laporte M, Delpal A, Sutto-Ortiz P, Coutard B, Mapa C, Wilcoxen K, Decroly E, Nq Pham T, Cohen ÉA, Seidah NG. Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity. J Virol 2022;:e0012822. [PMID: 35343766 DOI: 10.1128/jvi.00128-22] [Reference Citation Analysis]
19 Colarusso C, Terlizzi M, Pinto A, Sorrentino R. A lesson from a saboteur: High-MW kininogen impact in coronavirus-induced disease 2019. Br J Pharmacol 2020;177:4866-72. [PMID: 32497257 DOI: 10.1111/bph.15154] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
20 Huang KY, Lin MS, Kuo TC, Chen CL, Lin CC, Chou YC, Chao TL, Pang YH, Kao HC, Huang RS, Lin S, Chang SY, Yang PC. Humanized COVID-19 decoy antibody effectively blocks viral entry and prevents SARS-CoV-2 infection. EMBO Mol Med 2021;13:e12828. [PMID: 33159417 DOI: 10.15252/emmm.202012828] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
21 da Silva da Costa FA, Soares MR, Malagutti-Ferreira MJ, da Silva GR, Lívero FADR, Ribeiro-Paes JT. Three-Dimensional Cell Cultures as a Research Platform in Lung Diseases and COVID-19. Tissue Eng Regen Med 2021. [PMID: 34080133 DOI: 10.1007/s13770-021-00348-x] [Reference Citation Analysis]
22 Song L, Liu J, Shi T, Zhang Y, Xin Z, Cao X, Yang J. Angiotensin‐(1‐7), the product of ACE2 ameliorates NAFLD by acting through its receptor Mas to regulate hepatic mitochondrial function and glycolipid metabolism. FASEB j 2020;34:16291-306. [DOI: 10.1096/fj.202001639r] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
23 Procko E. Deep mutagenesis in the study of COVID-19: a technical overview for the proteomics community. Expert Rev Proteomics 2020;17:633-8. [PMID: 33084449 DOI: 10.1080/14789450.2020.1833721] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Vitiello A, Ferrara F. Physiopathology and prospectives for therapeutic treatment of pulmonary fibrotic state in COVID-19 patients. Curr Res Pharmacol Drug Discov 2021;2:100056. [PMID: 34870154 DOI: 10.1016/j.crphar.2021.100056] [Reference Citation Analysis]
25 Bose RJ, Ha K, McCarthy JR. Bio-inspired nanomaterials as novel options for the treatment of cardiovascular disease. Drug Discov Today 2021;26:1200-11. [PMID: 33561512 DOI: 10.1016/j.drudis.2021.01.035] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Mittal A, Elias ML, Schwartz RA, Kapila R. Recognition and treatment of devastating vasculopathic systemic disorders: Coronavirus disease 2019 and rickettsioses. Dermatol Ther 2021;34:e14984. [PMID: 34003557 DOI: 10.1111/dth.14984] [Reference Citation Analysis]
27 Saheb Sharif-Askari N, Saheb Sharif-Askari F, Mdkhana B, Al Heialy S, Ratemi E, Alghamdi M, Abusnana S, Kashour T, Hamid Q, Halwani R. Effect of common medications on the expression of SARS-CoV-2 entry receptors in liver tissue. Arch Toxicol. 2020;94:4037-4041. [PMID: 32808185 DOI: 10.1007/s00204-020-02869-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
28 Çiftçiler R, Haznedaroğlu İC. COVID-19, Renin-Angiotensin System, and Hematopoiesis. Turk J Haematol 2020;37:207-8. [PMID: 32394689 DOI: 10.4274/tjh.galenos.2020.2020.0174] [Reference Citation Analysis]
29 de Dios-Figueroa GT, Aguilera-Marquez JDR, Camacho-Villegas TA, Lugo-Fabres PH. 3D Cell Culture Models in COVID-19 Times: A Review of 3D Technologies to Understand and Accelerate Therapeutic Drug Discovery. Biomedicines 2021;9:602. [PMID: 34073231 DOI: 10.3390/biomedicines9060602] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Subrahmanian S, Borczuk A, Salvatore S, Fung KM, Merrill JT, Laurence J, Ahamed J. Tissue factor upregulation is associated with SARS-CoV-2 in the lungs of COVID-19 patients. J Thromb Haemost 2021;19:2268-74. [PMID: 34236752 DOI: 10.1111/jth.15451] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Beeckmans S, Van Driessche E. Scrutinizing Coronaviruses Using Publicly Available Bioinformatic Tools: The Viral Structural Proteins as a Case Study. Front Mol Biosci 2021;8:671923. [PMID: 34109214 DOI: 10.3389/fmolb.2021.671923] [Reference Citation Analysis]
32 Deng Y, Angelova A. Coronavirus-Induced Host Cubic Membranes and Lipid-Related Antiviral Therapies: A Focus on Bioactive Plasmalogens. Front Cell Dev Biol 2021;9:630242. [PMID: 33791293 DOI: 10.3389/fcell.2021.630242] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
33 Simabuco FM, Tamura RE, Pavan ICB, Morale MG, Ventura AM. Molecular mechanisms and pharmacological interventions in the replication cycle of human coronaviruses. Genet Mol Biol 2020;44:e20200212. [PMID: 33237152 DOI: 10.1590/1678-4685-GMB-2020-0212] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Bunders MJ, Altfeld M. Implications of Sex Differences in Immunity for SARS-CoV-2 Pathogenesis and Design of Therapeutic Interventions. Immunity 2020;53:487-95. [PMID: 32853545 DOI: 10.1016/j.immuni.2020.08.003] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 22.0] [Reference Citation Analysis]
35 Anand U, Jakhmola S, Indari O, Jha HC, Chen ZS, Tripathi V, Pérez de la Lastra JM. Potential Therapeutic Targets and Vaccine Development for SARS-CoV-2/COVID-19 Pandemic Management: A Review on the Recent Update. Front Immunol 2021;12:658519. [PMID: 34276652 DOI: 10.3389/fimmu.2021.658519] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Alavi P, Rathod AM, Jahroudi N. Age-Associated Increase in Thrombogenicity and Its Correlation with von Willebrand Factor. J Clin Med 2021;10:4190. [PMID: 34575297 DOI: 10.3390/jcm10184190] [Reference Citation Analysis]
37 Han P, Su C, Zhang Y, Bai C, Zheng A, Qiao C, Wang Q, Niu S, Chen Q, Zhang Y, Li W, Liao H, Li J, Zhang Z, Cho H, Yang M, Rong X, Hu Y, Huang N, Yan J, Wang Q, Zhao X, Gao GF, Qi J. Molecular insights into receptor binding of recent emerging SARS-CoV-2 variants. Nat Commun 2021;12:6103. [PMID: 34671049 DOI: 10.1038/s41467-021-26401-w] [Reference Citation Analysis]
38 Tada T, Fan C, Chen JS, Kaur R, Stapleford KA, Gristick H, Dcosta BM, Wilen CB, Nimigean CM, Landau NR. An ACE2 Microbody Containing a Single Immunoglobulin Fc Domain Is a Potent Inhibitor of SARS-CoV-2. Cell Rep 2020;33:108528. [PMID: 33326798 DOI: 10.1016/j.celrep.2020.108528] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
39 Ramezankhani R, Solhi R, Chai YC, Vosough M, Verfaillie C. Organoid and microfluidics-based platforms for drug screening in COVID-19. Drug Discov Today 2021:S1359-6446(21)00565-1. [PMID: 34954328 DOI: 10.1016/j.drudis.2021.12.014] [Reference Citation Analysis]
40 Sperk M, van Domselaar R, Rodriguez JE, Mikaeloff F, Sá Vinhas B, Saccon E, Sönnerborg A, Singh K, Gupta S, Végvári Á, Neogi U. Utility of Proteomics in Emerging and Re-Emerging Infectious Diseases Caused by RNA Viruses. J Proteome Res 2020;19:4259-74. [PMID: 33095583 DOI: 10.1021/acs.jproteome.0c00380] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
41 Li YP, Ma Y, Wang N, Jin ZB. Eyes on coronavirus. Stem Cell Res 2021;51:102200. [PMID: 33535156 DOI: 10.1016/j.scr.2021.102200] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
42 Kleinstreuer N, Holmes A. Harnessing the power of microphysiological systems for COVID-19 research. Drug Discov Today 2021:S1359-6446(21)00330-5. [PMID: 34332095 DOI: 10.1016/j.drudis.2021.06.020] [Reference Citation Analysis]
43 Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli RBG, Paul van Schayck J, Mykytyn AZ, Duimel HQ, van Donselaar E, Riesebosch S, Kuijpers HJH, Schipper D, van de Wetering WJ, de Graaf M, Koopmans M, Cuppen E, Peters PJ, Haagmans BL, Clevers H. SARS-CoV-2 productively infects human gut enterocytes. Science 2020;369:50-4. [PMID: 32358202 DOI: 10.1126/science.abc1669] [Cited by in Crossref: 635] [Cited by in F6Publishing: 617] [Article Influence: 317.5] [Reference Citation Analysis]
44 Hanchard J, Capó-Vélez CM, Deusch K, Lidington D, Bolz SS. Stabilizing Cellular Barriers: Raising the Shields Against COVID-19. Front Endocrinol (Lausanne) 2020;11:583006. [PMID: 33101215 DOI: 10.3389/fendo.2020.583006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Trevisan M, Riccetti S, Sinigaglia A, Barzon L. SARS-CoV-2 Infection and Disease Modelling Using Stem Cell Technology and Organoids. Int J Mol Sci 2021;22:2356. [PMID: 33652988 DOI: 10.3390/ijms22052356] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Xia X, Yuan P, Liu Y, Wang Y, Cao W, Zheng JC. Emerging roles of extracellular vesicles in COVID-19, a double-edged sword? Immunology 2021;163:416-30. [PMID: 33742451 DOI: 10.1111/imm.13329] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
47 Rufaida, Mahmood T, Kedwai I, Ahsan F, Shamim A, Shariq M, Parveen S. A dossier on COVID-19 chronicle. J Basic Clin Physiol Pharmacol 2021. [PMID: 34280963 DOI: 10.1515/jbcpp-2020-0511] [Reference Citation Analysis]
48 Devarakonda CKV, Meredith E, Ghosh M, Shapiro LH. Coronavirus Receptors as Immune Modulators. J Immunol 2021;206:923-9. [PMID: 33380494 DOI: 10.4049/jimmunol.2001062] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Ayala-ramírez P, González M, Escudero C, Quintero-arciniegas L, Giachini FR, Alves de Freitas R, Damiano AE, García-robles R. Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Pregnancy. A Non-systematic Review of Clinical Presentation, Potential Effects of Physiological Adaptations in Pregnancy, and Placental Vascular Alterations. Front Physiol 2022;13:785274. [DOI: 10.3389/fphys.2022.785274] [Reference Citation Analysis]
50 D'Marco L, Puchades MJ, Romero-Parra M, Gimenez-Civera E, Soler MJ, Ortiz A, Gorriz JL. Coronavirus disease 2019 in chronic kidney disease. Clin Kidney J 2020;13:297-306. [PMID: 32699615 DOI: 10.1093/ckj/sfaa104] [Cited by in Crossref: 8] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
51 Ye G, Gallant JP, Massey C, Shi K, Tai W, Zheng J, Odle AE, Vickers MA, Shang J, Wan Y, Drelich A, Kempaiah KR, Tat V, Perlman S, Du L, Tseng CT, Aihara H, LeBeau AM, Li F. The Development of a Novel Nanobody Therapeutic for SARS-CoV-2. bioRxiv 2020:2020. [PMID: 33236012 DOI: 10.1101/2020.11.17.386532] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
52 Moliner-Morro A, J Sheward D, Karl V, Perez Vidakovics L, Murrell B, McInerney GM, Hanke L. Picomolar SARS-CoV-2 Neutralization Using Multi-Arm PEG Nanobody Constructs. Biomolecules 2020;10:E1661. [PMID: 33322557 DOI: 10.3390/biom10121661] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
53 Felsenstein S, Reiff AO. A hitchhiker's guide through the COVID-19 galaxy. Clin Immunol 2021;232:108849. [PMID: 34563684 DOI: 10.1016/j.clim.2021.108849] [Reference Citation Analysis]
54 Gurumurthy CB, Quadros RM, Richardson GP, Poluektova LY, Mansour SL, Ohtsuka M. Genetically modified mouse models to help fight COVID-19. Nat Protoc 2020;15:3777-87. [PMID: 33106680 DOI: 10.1038/s41596-020-00403-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
55 Shen H, Zhang J, Wang C, Jain PP, Xiong M, Shi X, Lei Y, Chen S, Yin Q, Thistlethwaite PA, Wang J, Gong K, Yuan ZY, Yuan JX, Shyy JY. MDM2-Mediated Ubiquitination of Angiotensin-Converting Enzyme 2 Contributes to the Development of Pulmonary Arterial Hypertension. Circulation 2020;142:1190-204. [PMID: 32755395 DOI: 10.1161/CIRCULATIONAHA.120.048191] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
56 Sriram K, Loomba R, Insel PA. Targeting the renin-angiotensin signaling pathway in COVID-19: Unanswered questions, opportunities, and challenges. Proc Natl Acad Sci U S A 2020;117:29274-82. [PMID: 33203679 DOI: 10.1073/pnas.2009875117] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
57 Xiao L, Sakagami H, Miwa N. ACE2: The key Molecule for Understanding the Pathophysiology of Severe and Critical Conditions of COVID-19: Demon or Angel? Viruses 2020;12:E491. [PMID: 32354022 DOI: 10.3390/v12050491] [Cited by in Crossref: 64] [Cited by in F6Publishing: 55] [Article Influence: 32.0] [Reference Citation Analysis]
58 Brüssow H. The Novel Coronavirus - Latest Findings. Microb Biotechnol 2020;13:819-28. [PMID: 32363726 DOI: 10.1111/1751-7915.13592] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
59 Stewart CA, Gay CM, Ramkumar K, Cargill KR, Cardnell RJ, Nilsson MB, Heeke S, Park EM, Kundu ST, Diao L, Wang Q, Shen L, Xi Y, Zhang B, Della Corte CM, Fan Y, Kundu K, Gao B, Avila K, Pickering CR, Johnson FM, Zhang J, Kadara H, Minna JD, Gibbons DL, Wang J, Heymach JV, Byers LA. Lung Cancer Models Reveal Severe Acute Respiratory Syndrome Coronavirus 2-Induced Epithelial-to-Mesenchymal Transition Contributes to Coronavirus Disease 2019 Pathophysiology. J Thorac Oncol 2021:S1556-0864(21)02294-2. [PMID: 34274504 DOI: 10.1016/j.jtho.2021.07.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
60 Hollenberg MD, Epstein M. The innate immune response, microenvironment proteinases, and the COVID-19 pandemic: pathophysiologic mechanisms and emerging therapeutic targets. Kidney International Supplements 2022;12:48-62. [DOI: 10.1016/j.kisu.2021.12.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
61 George JA, Mayne ES. The Novel Coronavirus and Inflammation. Adv Exp Med Biol 2021;1321:127-38. [PMID: 33656719 DOI: 10.1007/978-3-030-59261-5_11] [Reference Citation Analysis]
62 Xie F, Su P, Pan T, Zhou X, Li H, Huang H, Wang A, Wang F, Huang J, Yan H, Zeng L, Zhang L, Zhou F. Engineering Extracellular Vesicles Enriched with Palmitoylated ACE2 as COVID-19 Therapy. Adv Mater 2021;:e2103471. [PMID: 34665481 DOI: 10.1002/adma.202103471] [Reference Citation Analysis]
63 Kumar V. Understanding the complexities of SARS-CoV2 infection and its immunology: A road to immune-based therapeutics. Int Immunopharmacol 2020;88:106980. [PMID: 33182073 DOI: 10.1016/j.intimp.2020.106980] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
64 Kwok S, Adam S, Ho JH, Iqbal Z, Turkington P, Razvi S, Le Roux CW, Soran H, Syed AA. Obesity: A critical risk factor in the COVID-19 pandemic. Clin Obes 2020;10:e12403. [PMID: 32857454 DOI: 10.1111/cob.12403] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 13.5] [Reference Citation Analysis]
65 Fratta Pasini AM, Stranieri C, Cominacini L, Mozzini C. Potential Role of Antioxidant and Anti-Inflammatory Therapies to Prevent Severe SARS-Cov-2 Complications. Antioxidants (Basel) 2021;10:272. [PMID: 33578849 DOI: 10.3390/antiox10020272] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
66 Gao S, Luan J, Cui H, Zhang L. ACE2 isoform diversity predicts the host susceptibility of SARS-CoV-2. Transbound Emerg Dis 2021;68:1026-32. [PMID: 32757470 DOI: 10.1111/tbed.13773] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
67 Shirbhate E, Pandey J, Patel VK, Kamal M, Jawaid T, Gorain B, Kesharwani P, Rajak H. Understanding the role of ACE-2 receptor in pathogenesis of COVID-19 disease: a potential approach for therapeutic intervention. Pharmacol Rep 2021. [PMID: 34176080 DOI: 10.1007/s43440-021-00303-6] [Reference Citation Analysis]
68 Jafarpour R, Pashangzadeh S, Dowran R. Host factors: Implications in immunopathogenesis of COVID-19. Pathol Res Pract 2021;228:153647. [PMID: 34749207 DOI: 10.1016/j.prp.2021.153647] [Reference Citation Analysis]
69 Yeung ML, Teng JLL, Jia L, Zhang C, Huang C, Cai JP, Zhou R, Chan KH, Zhao H, Zhu L, Siu KL, Fung SY, Yung S, Chan TM, To KK, Chan JF, Cai Z, Lau SKP, Chen Z, Jin DY, Woo PCY, Yuen KY. Soluble ACE2-mediated cell entry of SARS-CoV-2 via interaction with proteins related to the renin-angiotensin system. Cell 2021;184:2212-2228.e12. [PMID: 33713620 DOI: 10.1016/j.cell.2021.02.053] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 24.0] [Reference Citation Analysis]
70 Rodon J, Muñoz-Basagoiti J, Perez-Zsolt D, Noguera-Julian M, Paredes R, Mateu L, Quiñones C, Perez C, Erkizia I, Blanco I, Valencia A, Guallar V, Carrillo J, Blanco J, Segalés J, Clotet B, Vergara-Alert J, Izquierdo-Useros N. Identification of Plitidepsin as Potent Inhibitor of SARS-CoV-2-Induced Cytopathic Effect After a Drug Repurposing Screen. Front Pharmacol 2021;12:646676. [PMID: 33841165 DOI: 10.3389/fphar.2021.646676] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
71 Najafi Fard S, Petrone L, Petruccioli E, Alonzi T, Matusali G, Colavita F, Castilletti C, Capobianchi MR, Goletti D. In Vitro Models for Studying Entry, Tissue Tropism, and Therapeutic Approaches of Highly Pathogenic Coronaviruses. Biomed Res Int 2021;2021:8856018. [PMID: 34239932 DOI: 10.1155/2021/8856018] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
72 Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, Aoki K, Kellman BP, Bridger R, Barouch DH, Brindley MA, Lewis NE, Tiemeyer M, Chen B, Woods RJ, Wells L. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Cell Host Microbe 2020;28:586-601.e6. [PMID: 32841605 DOI: 10.1016/j.chom.2020.08.004] [Cited by in Crossref: 118] [Cited by in F6Publishing: 114] [Article Influence: 59.0] [Reference Citation Analysis]
73 Youhanna S, Wright SC, Lauschke VM. Organotypic human ex vivo models for coronavirus disease 2019 research and drug development. Curr Opin Pharmacol 2021;59:11-8. [PMID: 34029832 DOI: 10.1016/j.coph.2021.04.006] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
74 Sang Y, Miller LC, Nelli RK, Giménez-Lirola LG. Harness Organoid Models for Virological Studies in Animals: A Cross-Species Perspective. Front Microbiol 2021;12:725074. [PMID: 34603253 DOI: 10.3389/fmicb.2021.725074] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Marian AJ. Current state of vaccine development and targeted therapies for COVID-19: impact of basic science discoveries. Cardiovasc Pathol 2021;50:107278. [PMID: 32889088 DOI: 10.1016/j.carpath.2020.107278] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
76 Gao YL, Du Y, Zhang C, Cheng C, Yang HY, Jin YF, Duan GC, Chen SY. Role of Renin-Angiotensin System in Acute Lung Injury Caused by Viral Infection. Infect Drug Resist 2020;13:3715-25. [PMID: 33116692 DOI: 10.2147/IDR.S265718] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
77 Alfaleh MA, Zawawi A, Al-Amri SS, Hashem AM. David versus goliath: ACE2-Fc receptor traps as potential SARS-CoV-2 inhibitors. MAbs 2022;14:2057832. [PMID: 35380919 DOI: 10.1080/19420862.2022.2057832] [Reference Citation Analysis]
78 Ren W, Lan J, Ju X, Gong M, Long Q, Zhu Z, Yu Y, Wu J, Zhong J, Zhang R, Fan S, Zhong G, Huang A, Wang X, Ding Q. Mutation Y453F in the spike protein of SARS-CoV-2 enhances interaction with the mink ACE2 receptor for host adaption. PLoS Pathog 2021;17:e1010053. [PMID: 34748603 DOI: 10.1371/journal.ppat.1010053] [Reference Citation Analysis]
79 Horenstein AL, Faini AC, Malavasi F. CD38 in the age of COVID-19: a medical perspective. Physiological Reviews 2021;101:1457-86. [DOI: 10.1152/physrev.00046.2020] [78495111110.1152/physrev.00046.2020','', '1007-9327')">Reference Citation Analysis]
80 Zlacká J, Stebelová K, Zeman M, Herichová I. Interactions of renin-angiotensin system and COVID-19: the importance of daily rhythms in ACE2, ADAM17 and TMPRSS2 expression. Physiol Res 2021;70:S177-94. [PMID: 34913351 DOI: 10.33549/physiolres.934754] [Reference Citation Analysis]
81 Azad T, Singaravelu R, Brown EEF, Taha Z, Rezaei R, Arulanandam R, Boulton S, Diallo JS, Ilkow CS, Bell JC. SARS-CoV-2 S1 NanoBiT: A nanoluciferase complementation-based biosensor to rapidly probe SARS-CoV-2 receptor recognition. Biosens Bioelectron 2021;180:113122. [PMID: 33706157 DOI: 10.1016/j.bios.2021.113122] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
82 Ernzen K, Trask AJ, Peeples ME, Garg V, Zhao MT. Human Stem Cell Models of SARS-CoV-2 Infection in the Cardiovascular System. Stem Cell Rev Rep 2021. [PMID: 34365591 DOI: 10.1007/s12015-021-10229-4] [Reference Citation Analysis]
83 Khanam R. Bidirectional Relationship between COVID-19 and Diabetes: Role of Renin-Angiotensin-Aldosterone System and Drugs Modulating It. J Pharm Bioallied Sci 2021;13:149-54. [PMID: 34349473 DOI: 10.4103/jpbs.JPBS_508_20] [Reference Citation Analysis]
84 Murugan C, Ramamoorthy S, Kuppuswamy G, Murugan RK, Sivalingam Y, Sundaramurthy A. COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks. Int J Biol Macromol 2021:S0141-8130(21)02301-1. [PMID: 34710479 DOI: 10.1016/j.ijbiomac.2021.10.144] [Reference Citation Analysis]
85 Werion A, Belkhir L, Perrot M, Schmit G, Aydin S, Chen Z, Penaloza A, De Greef J, Yildiz H, Pothen L, Yombi JC, Dewulf J, Scohy A, Gérard L, Wittebole X, Laterre PF, Miller SE, Devuyst O, Jadoul M, Morelle J; Cliniques universitaires Saint-Luc (CUSL) COVID-19 Research Group. SARS-CoV-2 causes a specific dysfunction of the kidney proximal tubule. Kidney Int 2020;98:1296-307. [PMID: 32791255 DOI: 10.1016/j.kint.2020.07.019] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 29.5] [Reference Citation Analysis]
86 Dugail I, Amri EZ, Vitale N. High prevalence for obesity in severe COVID-19: Possible links and perspectives towards patient stratification. Biochimie. 2020;179:257-265. [PMID: 32649962 DOI: 10.1016/j.biochi.2020.07.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
87 Perico L, Benigni A, Remuzzi G. Angiotensin-converting enzyme 2: from a vasoactive peptide to the gatekeeper of a global pandemic. Curr Opin Nephrol Hypertens 2021;30:252-63. [PMID: 33395036 DOI: 10.1097/MNH.0000000000000692] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Hossain MS, Hami I, Sawrav MSS, Rabbi MF, Saha O, Bahadur NM, Rahaman MM. Drug Repurposing for Prevention and Treatment of COVID-19: A Clinical Landscape. Discoveries (Craiova) 2020;8:e121. [PMID: 33403227 DOI: 10.15190/d.2020.18] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
89 Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel A, Mehra MR, Scholkmann F, Schüpbach R, Ruschitzka F, Moch H. Electron microscopy of SARS-CoV-2: a challenging task - Authors' reply. Lancet 2020;395:e100. [PMID: 32442527 DOI: 10.1016/S0140-6736(20)31185-5] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 15.5] [Reference Citation Analysis]
90 Pillalamarri N, Abdullah, Ren G, Khan L, Ullah A, Jonnakuti S, Ullah M. Exploring the utility of extracellular vesicles in ameliorating viral infection-associated inflammation, cytokine storm and tissue damage. Transl Oncol. 2021;14:101095. [PMID: 33887552 DOI: 10.1016/j.tranon.2021.101095] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
91 Patel AB, Verma A. Nasal ACE2 Levels and COVID-19 in Children. JAMA 2020;323:2386-7. [PMID: 32432681 DOI: 10.1001/jama.2020.8946] [Cited by in Crossref: 59] [Cited by in F6Publishing: 51] [Article Influence: 29.5] [Reference Citation Analysis]
92 Behl T, Kaur I, Bungau S, Kumar A, Uddin MS, Kumar C, Pal G, Sahil, Shrivastava K, Zengin G, Arora S. The dual impact of ACE2 in COVID-19 and ironical actions in geriatrics and pediatrics with possible therapeutic solutions. Life Sci 2020;257:118075. [PMID: 32653522 DOI: 10.1016/j.lfs.2020.118075] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 20.5] [Reference Citation Analysis]
93 Reddy RK, Charles WN, Sklavounos A, Dutt A, Seed PT, Khajuria A. The effect of smoking on COVID-19 severity: A systematic review and meta-analysis. J Med Virol 2021;93:1045-56. [PMID: 32749705 DOI: 10.1002/jmv.26389] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 27.5] [Reference Citation Analysis]
94 Gaussen A, Hornby L, Rockl G, O'Brien S, Delage G, Sapir-Pichhadze R, Drews SJ, Weiss MJ, Lewin A. Evidence of SARS-CoV-2 Infection in Cells, Tissues, and Organs and the Risk of Transmission Through Transplantation. Transplantation 2021;105:1405-22. [PMID: 33724248 DOI: 10.1097/TP.0000000000003744] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
95 Sheikhpour M. The Current Recommended Drugs and Strategies for the Treatment of Coronavirus Disease (COVID-19). Ther Clin Risk Manag 2020;16:933-46. [PMID: 33116543 DOI: 10.2147/TCRM.S262936] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
96 Kamel NA, El Wakeel LM, Aboshanab KM. Exploring SARS-CoV-2 Spikes Glycoproteins for Designing Potential Antiviral Targets. Viral Immunol 2021. [PMID: 34018828 DOI: 10.1089/vim.2021.0023] [Reference Citation Analysis]
97 Yang X, Lian X, Fu C, Wuchty S, Yang S, Zhang Z. HVIDB: a comprehensive database for human-virus protein-protein interactions. Brief Bioinform 2021;22:832-44. [PMID: 33515030 DOI: 10.1093/bib/bbaa425] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
98 Düzgüneş N, Fernandez-Fuentes N, Konopka K. Inhibition of Viral Membrane Fusion by Peptides and Approaches to Peptide Design. Pathogens 2021;10:1599. [PMID: 34959554 DOI: 10.3390/pathogens10121599] [Reference Citation Analysis]
99 Pollard CA, Morran MP, Nestor-Kalinoski AL. The COVID-19 pandemic: a global health crisis. Physiol Genomics 2020;52:549-57. [PMID: 32991251 DOI: 10.1152/physiolgenomics.00089.2020] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 15.0] [Reference Citation Analysis]
100 Chirinos JA, Cohen JB, Zhao L, Hanff T, Sweitzer N, Fang J, Corrales-medina V, Ammar R, Morley M, Zamani P, Bhattacharya P, Brandimarto J, Jia Y, Basso MD, Wang Z, Ebert C, Ramirez-valle F, Schafer PH, Seiffert D, Gordon DA, Cappola T. Clinical and Proteomic Correlates of Plasma ACE2 (Angiotensin-Converting Enzyme 2) in Human Heart Failure. Hypertension 2020;76:1526-36. [DOI: 10.1161/hypertensionaha.120.15829] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
101 Ertas YN, Mahmoodi M, Shahabipour F, Jahed V, Diltemiz SE, Tutar R, Ashammakhi N. Role of biomaterials in the diagnosis, prevention, treatment, and study of corona virus disease 2019 (COVID-19). Emergent Mater 2021;:1-21. [PMID: 33748672 DOI: 10.1007/s42247-021-00165-x] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
102 [DOI: 10.1101/2020.11.19.20234120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
103 Rosa RB, Dantas WM, do Nascimento JCF, da Silva MV, de Oliveira RN, Pena LJ. In Vitro and In Vivo Models for Studying SARS-CoV-2, the Etiological Agent Responsible for COVID-19 Pandemic. Viruses 2021;13:379. [PMID: 33673614 DOI: 10.3390/v13030379] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
104 Al-Zaidan L, Mestiri S, Raza A, Merhi M, Inchakalody VP, Fernandes Q, Taib N, Uddin S, Dermime S. The expression of hACE2 receptor protein and its involvement in SARS-CoV-2 entry, pathogenesis, and its application as potential therapeutic target. Tumour Biol 2021;43:177-96. [PMID: 34420993 DOI: 10.3233/TUB-200084] [Reference Citation Analysis]
105 Yang R, Huang B, A R, Li W, Wang W, Deng Y, Tan W. Development and effectiveness of pseudotyped SARS-CoV-2 system as determined by neutralizing efficiency and entry inhibition test in vitro. Biosaf Health 2020;2:226-31. [PMID: 32864605 DOI: 10.1016/j.bsheal.2020.08.004] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 10.5] [Reference Citation Analysis]
106 Shahhosseini N, Wong G, Kobinger GP, Chinikar S. SARS-CoV-2 spillover transmission due to recombination event. Gene Rep 2021;23:101045. [PMID: 33615041 DOI: 10.1016/j.genrep.2021.101045] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
107 Ramírez-Flores CJ, Knoll LJ. Breakthroughs in microbiology made possible with organoids. PLoS Pathog 2021;17:e1010080. [PMID: 34818378 DOI: 10.1371/journal.ppat.1010080] [Reference Citation Analysis]
108 Mok DZL, Chan CYY, Ooi EE, Chan KR. The effects of aging on host resistance and disease tolerance to SARS-CoV-2 infection. FEBS J 2021;288:5055-70. [PMID: 33124149 DOI: 10.1111/febs.15613] [Reference Citation Analysis]
109 Zhang L, Dutta S, Xiong S, Chan M, Chan KK, Fan TM, Bailey KL, Lindeblad M, Cooper LM, Rong L, Gugliuzza AF, Shukla D, Procko E, Rehman J, Malik AB. Engineered ACE2 decoy mitigates lung injury and death induced by SARS-CoV-2 variants. Nat Chem Biol 2022. [PMID: 35046611 DOI: 10.1038/s41589-021-00965-6] [Reference Citation Analysis]
110 Fortini F, Vieceli Dalla Sega F, Marracino L, Severi P, Rapezzi C, Rizzo P, Ferrari R. Well-Known and Novel Players in Endothelial Dysfunction: Updates on a Notch(ed) Landscape. Biomedicines 2021;9:997. [PMID: 34440201 DOI: 10.3390/biomedicines9080997] [Reference Citation Analysis]
111 Baker J, Incognito AV, Wilson RJA, Raj SR. Syncope and silent hypoxemia in COVID-19: Implications for the autonomic field. Auton Neurosci 2021;235:102842. [PMID: 34246957 DOI: 10.1016/j.autneu.2021.102842] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
112 McGonagle D, Bridgewood C, Ramanan AV, Meaney JFM, Watad A. COVID-19 vasculitis and novel vasculitis mimics. Lancet Rheumatol 2021;3:e224-33. [PMID: 33521655 DOI: 10.1016/S2665-9913(20)30420-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 22.0] [Reference Citation Analysis]
113 Chandra R, Krishna A. COVID-19 sentiment analysis via deep learning during the rise of novel cases. PLoS One 2021;16:e0255615. [PMID: 34411112 DOI: 10.1371/journal.pone.0255615] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
114 Elahi S. Hematopoietic responses to SARS-CoV-2 infection. Cell Mol Life Sci 2022;79. [DOI: 10.1007/s00018-022-04220-6] [Reference Citation Analysis]
115 Eriksen AZ, Møller R, Makovoz B, Uhl SA, tenOever BR, Blenkinsop TA. SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium. Cell Stem Cell 2021;28:1205-1220.e7. [PMID: 34022129 DOI: 10.1016/j.stem.2021.04.028] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
116 Fakhoury HMA, Kvietys PR, Shakir I, Shams H, Grant WB, Alkattan K. Lung-Centric Inflammation of COVID-19: Potential Modulation by Vitamin D. Nutrients 2021;13:2216. [PMID: 34203190 DOI: 10.3390/nu13072216] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
117 Kumar V. Emerging Human Coronavirus Infections (SARS, MERS, and COVID-19): Where They Are Leading Us. Int Rev Immunol 2021;40:5-53. [PMID: 32744465 DOI: 10.1080/08830185.2020.1800688] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
118 Iacob S, Iacob DG. SARS-CoV-2 Treatment Approaches: Numerous Options, No Certainty for a Versatile Virus. Front Pharmacol 2020;11:1224. [PMID: 32982720 DOI: 10.3389/fphar.2020.01224] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
119 Bodnar B, Patel K, Ho W, Luo JJ, Hu W. Cellular mechanisms underlying neurological/neuropsychiatric manifestations of COVID-19. J Med Virol 2021;93:1983-98. [PMID: 33300152 DOI: 10.1002/jmv.26720] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
120 Barnett BP, Wahlin K, Krawczyk M, Spencer D, Welsbie D, Afshari N, Chao D. Potential of Ocular Transmission of SARS-CoV-2: A Review. Vision (Basel) 2020;4:E40. [PMID: 32883010 DOI: 10.3390/vision4030040] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
121 Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 2021;19:141-54. [PMID: 33024307 DOI: 10.1038/s41579-020-00459-7] [Cited by in Crossref: 465] [Cited by in F6Publishing: 394] [Article Influence: 232.5] [Reference Citation Analysis]
122 Ita K. Coronavirus Disease (COVID-19): Current Status and Prospects for Drug and Vaccine Development. Arch Med Res 2021;52:15-24. [PMID: 32950264 DOI: 10.1016/j.arcmed.2020.09.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
123 Aygun H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage. Naunyn Schmiedebergs Arch Pharmacol 2020;393:1157-60. [PMID: 32451597 DOI: 10.1007/s00210-020-01911-4] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 23.5] [Reference Citation Analysis]
124 Wang J, Zhao H, An Y. ACE2 Shedding and the Role in COVID-19. Front Cell Infect Microbiol 2022;11:789180. [DOI: 10.3389/fcimb.2021.789180] [Reference Citation Analysis]
125 Drucker DJ. Coronavirus Infections and Type 2 Diabetes-Shared Pathways with Therapeutic Implications. Endocr Rev 2020;41:bnaa011. [PMID: 32294179 DOI: 10.1210/endrev/bnaa011] [Cited by in Crossref: 183] [Cited by in F6Publishing: 159] [Article Influence: 91.5] [Reference Citation Analysis]
126 Bonny V, Maillard A, Mousseaux C, Plaçais L, Richier Q. [COVID-19: Pathogenesis of a multi-faceted disease]. Rev Med Interne 2020;41:375-89. [PMID: 32507520 DOI: 10.1016/j.revmed.2020.05.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
127 Wang W, Chen J, Hu D, Pan P, Liang L, Wu W, Tang Y, Huang XR, Yu X, Wu J, Lan HY. SARS-CoV-2 N Protein Induces Acute Kidney Injury via Smad3-Dependent G1 Cell Cycle Arrest Mechanism. Adv Sci (Weinh) 2021;:e2103248. [PMID: 34813685 DOI: 10.1002/advs.202103248] [Reference Citation Analysis]
128 Ma Z, Yang KY, Huang Y, Lui KO. Endothelial contribution to COVID-19: an update on mechanisms and therapeutic implications. J Mol Cell Cardiol 2021;164:69-82. [PMID: 34838588 DOI: 10.1016/j.yjmcc.2021.11.010] [Reference Citation Analysis]
129 Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2.Cytokine Growth Factor Rev. 2020;53:13-24. [PMID: 32475759 DOI: 10.1016/j.cytogfr.2020.05.009] [Cited by in Crossref: 89] [Cited by in F6Publishing: 80] [Article Influence: 44.5] [Reference Citation Analysis]
130 Triposkiadis F, Starling RC, Xanthopoulos A, Butler J, Boudoulas H. The Counter Regulatory Axis of the Lung Renin-Angiotensin System in Severe COVID-19: Pathophysiology and Clinical Implications. Heart Lung Circ 2021;30:786-94. [PMID: 33454213 DOI: 10.1016/j.hlc.2020.11.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
131 Boari GEM, Chiarini G, Bonetti S, Malerba P, Bianco G, Faustini C, Braglia-Orlandini F, Turini D, Guarinoni V, Saottini M, Viola S, Ferrari-Toninelli G, Pasini G, Mascadri C, Bonzi B, Desenzani P, Tusi C, Zanotti E, Nardin M, Rizzoni D. Prognostic factors and predictors of outcome in patients with COVID-19 and related pneumonia: a retrospective cohort study. Biosci Rep 2020;40:BSR20203455. [PMID: 33201172 DOI: 10.1042/BSR20203455] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
132 Riggioni C, Comberiati P, Giovannini M, Agache I, Akdis M, Alves-Correia M, Antó JM, Arcolaci A, Azkur AK, Azkur D, Beken B, Boccabella C, Bousquet J, Breiteneder H, Carvalho D, De Las Vecillas L, Diamant Z, Eguiluz-Gracia I, Eiwegger T, Eyerich S, Fokkens W, Gao YD, Hannachi F, Johnston SL, Jutel M, Karavelia A, Klimek L, Moya B, Nadeau KC, O'Hehir R, O'Mahony L, Pfaar O, Sanak M, Schwarze J, Sokolowska M, Torres MJ, van de Veen W, van Zelm MC, Wang Y, Zhang L, Jiménez-Saiz R, Akdis CA. A compendium answering 150 questions on COVID-19 and SARS-CoV-2. Allergy 2020;75:2503-41. [PMID: 32535955 DOI: 10.1111/all.14449] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 20.5] [Reference Citation Analysis]
133 Sepe S, Rossiello F, Cancila V, Iannelli F, Matti V, Cicio G, Cabrini M, Marinelli E, Alabi BR, di Lillo A, Di Napoli A, Shay JW, Tripodo C, d'Adda di Fagagna F. DNA damage response at telomeres boosts the transcription of SARS-CoV-2 receptor ACE2 during aging. EMBO Rep 2021;:e53658. [PMID: 34854526 DOI: 10.15252/embr.202153658] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
134 Amraei R, Yin W, Napoleon MA, Suder EL, Berrigan J, Zhao Q, Olejnik J, Chandler KB, Xia C, Feldman J, Hauser BM, Caradonna TM, Schmidt AG, Gummuluru S, Muhlberger E, Chitalia V, Costello CE, Rahimi N. CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2. bioRxiv 2021:2020. [PMID: 32607506 DOI: 10.1101/2020.06.22.165803] [Cited by in Crossref: 53] [Cited by in F6Publishing: 11] [Article Influence: 53.0] [Reference Citation Analysis]
135 Chan KK, Tan TJC, Narayanan KK, Procko E. An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants. bioRxiv 2020:2020. [PMID: 33398275 DOI: 10.1101/2020.10.18.344622] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
136 Hatami F, Valizadeh N, Ansari Ramandi MM. Emerging mechanisms for the new coronavirus-related myocardial injury and ischemia: A review of the literature. Anatol J Cardiol 2020;24:7-12. [PMID: 32628143 DOI: 10.14744/AnatolJCardiol.2020.68166] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
137 Sitthiyotha T, Chunsrivirot S. Computational Design of 25-mer Peptide Binders of SARS-CoV-2. J Phys Chem B 2020;124:10930-42. [PMID: 33200935 DOI: 10.1021/acs.jpcb.0c07890] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
138 Manzano GS, McEntire CRS, Martinez-Lage M, Mateen FJ, Hutto SK. Acute Disseminated Encephalomyelitis and Acute Hemorrhagic Leukoencephalitis Following COVID-19: Systematic Review and Meta-synthesis. Neurol Neuroimmunol Neuroinflamm 2021;8:e1080. [PMID: 34452974 DOI: 10.1212/NXI.0000000000001080] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
139 Calistri A, Luganini A, Mognetti B, Elder E, Sibille G, Conciatori V, Del Vecchio C, Sainas S, Boschi D, Montserrat N, Mirazimi A, Lolli ML, Gribaudo G, Parolin C. The New Generation hDHODH Inhibitor MEDS433 Hinders the In Vitro Replication of SARS-CoV-2 and Other Human Coronaviruses. Microorganisms 2021;9:1731. [PMID: 34442810 DOI: 10.3390/microorganisms9081731] [Reference Citation Analysis]
140 Pavel STI, Yetiskin H, Aydin G, Holyavkin C, Uygut MA, Dursun ZB, Celik İ, Cevik C, Ozdarendeli A. Isolation and characterization of severe acute respiratory syndrome coronavirus 2 in Turkey. PLoS One 2020;15:e0238614. [PMID: 32936826 DOI: 10.1371/journal.pone.0238614] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
141 Zhang YN, Zhang Y, Su S, Zhu HY, Xu W, Wang L, Wu M, Chen K, Yu FQ, Xi TK, Zhou Q, Xie YH, Qin X, Ge H, Lu L, Qing J, Fang GM. Neutralizing SARS-CoV-2 by dimeric side chain-to-side chain cross-linked ACE2 peptide mimetics. Chem Commun (Camb) 2022. [PMID: 35040445 DOI: 10.1039/d1cc06301d] [Reference Citation Analysis]
142 Gul R, Kim UH, Alfadda AA. Renin-angiotensin system at the interface of COVID-19 infection. Eur J Pharmacol 2021;890:173656. [PMID: 33086029 DOI: 10.1016/j.ejphar.2020.173656] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
143 Alavi M, Asare-Addo K, Nokhodchi A. Lectin Protein as a Promising Component to Functionalize Micelles, Liposomes and Lipid NPs against Coronavirus. Biomedicines 2020;8:E580. [PMID: 33297444 DOI: 10.3390/biomedicines8120580] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
144 Kaur U, Acharya K, Mondal R, Singh A, Saso L, Chakrabarti S, Chakrabarti SS. Should ACE2 be given a chance in COVID-19 therapeutics: A semi-systematic review of strategies enhancing ACE2. Eur J Pharmacol 2020;887:173545. [PMID: 32926917 DOI: 10.1016/j.ejphar.2020.173545] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
145 Chen F, Zhang Y, Li X, Li W, Liu X, Xue X. The Impact of ACE2 Polymorphisms on COVID-19 Disease: Susceptibility, Severity, and Therapy. Front Cell Infect Microbiol 2021;11:753721. [PMID: 34746028 DOI: 10.3389/fcimb.2021.753721] [Reference Citation Analysis]
146 Hong J, Jhun H, Choi YO, Taitt AS, Bae S, Lee Y, Song CS, Yeom SC, Kim S. Structure of SARS-CoV-2 Spike Glycoprotein for Therapeutic and Preventive Target. Immune Netw 2021;21:e8. [PMID: 33728101 DOI: 10.4110/in.2021.21.e8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
147 Liu M, Cardilla A, Ngeow J, Gong X, Xia Y. Studying Kidney Diseases Using Organoid Models. Front Cell Dev Biol 2022;10:845401. [DOI: 10.3389/fcell.2022.845401] [Reference Citation Analysis]
148 Nikolakopoulou P, Rauti R, Voulgaris D, Shlomy I, Maoz BM, Herland A. Recent progress in translational engineered in vitro models of the central nervous system. Brain 2020;143:3181-213. [PMID: 33020798 DOI: 10.1093/brain/awaa268] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
149 Feng F, Chen J, Zhao J, Li Y, Li M, Sun C. Killing Two Birds with One Stone by Administration of Soluble ACE2: A Promising Strategy to Treat Both Cardiovascular Diseases and SARS-CoV-2 Infection. Viruses 2021;13:2243. [PMID: 34835049 DOI: 10.3390/v13112243] [Reference Citation Analysis]
150 Li Y, Wang H, Tang X, Fang S, Ma D, Du C, Wang Y, Pan H, Yao W, Zhang R, Zou X, Zheng J, Xu L, Farzan M, Zhong G. SARS-CoV-2 and Three Related Coronaviruses Utilize Multiple ACE2 Orthologs and Are Potently Blocked by an Improved ACE2-Ig. J Virol 2020;94:e01283-20. [PMID: 32847856 DOI: 10.1128/JVI.01283-20] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 15.0] [Reference Citation Analysis]
151 Bakhiet M, Taurin S. SARS-CoV-2: Targeted managements and vaccine development. Cytokine Growth Factor Rev 2021;58:16-29. [PMID: 33293238 DOI: 10.1016/j.cytogfr.2020.11.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
152 Shi W, Lv J, Lin L. Coagulopathy in COVID-19: Focus on vascular thrombotic events. J Mol Cell Cardiol 2020;146:32-40. [PMID: 32681845 DOI: 10.1016/j.yjmcc.2020.07.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
153 Watashi K. Identifying and repurposing antiviral drugs against severe acute respiratory syndrome coronavirus 2 with in silico and in vitro approaches. Biochem Biophys Res Commun 2021;538:137-44. [PMID: 33272566 DOI: 10.1016/j.bbrc.2020.10.094] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
154 Guy B, Zhang JS, Duncan LH, Johnston RJ Jr. Human neural organoids: Models for developmental neurobiology and disease. Dev Biol 2021;478:102-21. [PMID: 34181916 DOI: 10.1016/j.ydbio.2021.06.012] [Reference Citation Analysis]
155 Ma S, Li H, Yang J, Yu K. Molecular simulation studies of the interactions between the human/pangolin/cat/bat ACE2 and the receptor binding domain of the SARS-CoV-2 spike protein. Biochimie 2021;187:1-13. [PMID: 33984400 DOI: 10.1016/j.biochi.2021.05.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
156 Niu W, Wu F, Cui H, Cao W, Chao Y, Wu Z, Fan M, Liang C. Network Pharmacology Analysis to Identify Phytochemicals in Traditional Chinese Medicines That May Regulate ACE2 for the Treatment of COVID-19. Evid Based Complement Alternat Med 2020;2020:7493281. [PMID: 33204291 DOI: 10.1155/2020/7493281] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
157 Castilho A, Schwestka J, Kienzl NF, Vavra U, Grünwald-Gruber C, Izadi S, Hiremath C, Niederhöfer J, Laurent E, Monteil V, Mirazimi A, Wirnsberger G, Stadlmann J, Stöger E, Mach L, Strasser R. Generation of enzymatically competent SARS-CoV-2 decoy receptor ACE2-Fc in glycoengineered Nicotiana benthamiana. Biotechnol J 2021;16:e2000566. [PMID: 33481336 DOI: 10.1002/biot.202000566] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
158 Miao X, Luo Y, Huang X, Lee SMY, Yuan Z, Tang Y, Chen L, Wang C, Wu F, Xu Y, Jiang W, Gao W, Song X, Yan Y, Pang T, Chen C, Zou Y, Fu W, Wan L, Gilbert-Jaramillo J, Knight M, Tan TK, Rijal P, Townsend A, Sun J, Liu X, James W, Tsun A, Xu Y. A novel biparatopic hybrid antibody-ACE2 fusion that blocks SARS-CoV-2 infection: implications for therapy. MAbs 2020;12:1804241. [PMID: 32804015 DOI: 10.1080/19420862.2020.1804241] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
159 Naveja JJ, Madariaga-Mazón A, Flores-Murrieta F, Granados-Montiel J, Maradiaga-Ceceña M, Alaniz VD, Maldonado-Rodriguez M, García-Morales J, Senosiain-Peláez JP, Martinez-Mayorga K. Union is strength: antiviral and anti-inflammatory drugs for COVID-19. Drug Discov Today 2021;26:229-39. [PMID: 33127568 DOI: 10.1016/j.drudis.2020.10.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
160 Azad T, Singaravelu R, Taha Z, Jamieson TR, Boulton S, Crupi MJF, Martin NT, Brown EEF, Poutou J, Ghahremani M, Pelin A, Nouri K, Rezaei R, Marshall CB, Enomoto M, Arulanandam R, Alluqmani N, Samson R, Gingras AC, Cameron DW, Greer PA, Ilkow CS, Diallo JS, Bell JC. Nanoluciferase complementation-based bioreporter reveals the importance of N-linked glycosylation of SARS-CoV-2 S for viral entry. Mol Ther 2021;29:1984-2000. [PMID: 33578036 DOI: 10.1016/j.ymthe.2021.02.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
161 Mitra P. Inhibiting fusion with cellular membrane system: therapeutic options to prevent severe acute respiratory syndrome coronavirus-2 infection. Am J Physiol Cell Physiol 2020;319:C500-9. [PMID: 32687406 DOI: 10.1152/ajpcell.00260.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
162 Hoffmann D, Mereiter S, Jin Oh Y, Monteil V, Elder E, Zhu R, Canena D, Hain L, Laurent E, Grünwald-Gruber C, Klausberger M, Jonsson G, Kellner MJ, Novatchkova M, Ticevic M, Chabloz A, Wirnsberger G, Hagelkruys A, Altmann F, Mach L, Stadlmann J, Oostenbrink C, Mirazimi A, Hinterdorfer P, Penninger JM. Identification of lectin receptors for conserved SARS-CoV-2 glycosylation sites. EMBO J 2021;:e108375. [PMID: 34375000 DOI: 10.15252/embj.2021108375] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
163 Tzou PL, Tao K, Nouhin J, Rhee SY, Hu BD, Pai S, Parkin N, Shafer RW. Coronavirus Antiviral Research Database (CoV-RDB): An Online Database Designed to Facilitate Comparisons between Candidate Anti-Coronavirus Compounds. Viruses 2020;12:E1006. [PMID: 32916958 DOI: 10.3390/v12091006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
164 Glasgow J, Glasgow A, Kortemme T, Wells JA. Reply to Liu et al.: Specific mutations matter in specificity and catalysis in ACE2. Proc Natl Acad Sci U S A 2021;118:e2024450118. [PMID: 33833059 DOI: 10.1073/pnas.2024450118] [Reference Citation Analysis]
165 Gustine JN, Jones D. Immunopathology of Hyperinflammation in COVID-19. Am J Pathol 2021;191:4-17. [PMID: 32919977 DOI: 10.1016/j.ajpath.2020.08.009] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 27.0] [Reference Citation Analysis]
166 Senapati S, Dash J, Sethi M, Chakraborty S. Bioengineered probiotics to control SARS-CoV-2 infection. RIO 2020;6:e54802. [DOI: 10.3897/rio.6.e54802] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
167 Mansour E, Palma AC, Ulaf RG, Ribeiro LC, Bernardes AF, Nunes TA, Agrela MV, Bombassaro B, Monfort-Pires M, Camargo RL, Araujo EP, Brunetti NS, Farias AS, Falcão ALE, Santos TM, Trabasso P, Dertkigil RP, Dertkigil SS, Moretti ML, Velloso LA. Safety and Outcomes Associated with the Pharmacological Inhibition of the Kinin-Kallikrein System in Severe COVID-19. Viruses 2021;13:309. [PMID: 33669276 DOI: 10.3390/v13020309] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
168 Bordoloi D, Xu Z, Ho M, Purwar M, Bhojnagarwala P, Cassel J, Giron LB, Walker S, Kulkarni AJ, Ruiz ET, Choi J, Zaidi FI, Wu Y, Wang S, Patel A, Ramos S, Smith T, Kulp D, Ugen KE, Srinivasan A, Abdel-Mohsen M, Humeau L, Weiner DB, Muthumani K. Identification of Novel Neutralizing Monoclonal Antibodies against SARS-CoV-2 Spike Glycoprotein. ACS Pharmacol Transl Sci 2021;4:1349-61. [PMID: 34396059 DOI: 10.1021/acsptsci.1c00058] [Reference Citation Analysis]
169 Krishnan S, Nordqvist H, Ambikan AT, Gupta S, Sperk M, Svensson-Akusjärvi S, Mikaeloff F, Benfeitas R, Saccon E, Ponnan SM, Rodriguez JE, Nikouyan N, Odeh A, Ahlén G, Asghar M, Sällberg M, Vesterbacka J, Nowak P, Végvári Á, Sönnerborg A, Treutiger CJ, Neogi U. Metabolic Perturbation Associated With COVID-19 Disease Severity and SARS-CoV-2 Replication. Mol Cell Proteomics 2021;20:100159. [PMID: 34619366 DOI: 10.1016/j.mcpro.2021.100159] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
170 Archie SR, Cucullo L. Cerebrovascular and Neurological Dysfunction under the Threat of COVID-19: Is There a Comorbid Role for Smoking and Vaping? Int J Mol Sci 2020;21:E3916. [PMID: 32486196 DOI: 10.3390/ijms21113916] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
171 Kaur S, Tripathi DM, Yadav A. The Enigma of Endothelium in COVID-19. Front Physiol 2020;11:989. [PMID: 32848893 DOI: 10.3389/fphys.2020.00989] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 14.0] [Reference Citation Analysis]
172 Barbosa LC, Gonçalves TL, de Araujo LP, Rosario LVO, Ferrer VP. Endothelial cells and SARS-CoV-2: An intimate relationship. Vascul Pharmacol 2021;137:106829. [PMID: 33422689 DOI: 10.1016/j.vph.2021.106829] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
173 Li J, Jia H, Tian M, Wu N, Yang X, Qi J, Ren W, Li F, Bian H. SARS-CoV-2 and Emerging Variants: Unmasking Structure, Function, Infection, and Immune Escape Mechanisms. Front Cell Infect Microbiol 2022;12:869832. [DOI: 10.3389/fcimb.2022.869832] [Reference Citation Analysis]
174 Tang Z, Kong N, Zhang X, Liu Y, Hu P, Mou S, Liljeström P, Shi J, Tan W, Kim JS, Cao Y, Langer R, Leong KW, Farokhzad OC, Tao W. A materials-science perspective on tackling COVID-19. Nat Rev Mater 2020;:1-14. [PMID: 33078077 DOI: 10.1038/s41578-020-00247-y] [Cited by in Crossref: 61] [Cited by in F6Publishing: 37] [Article Influence: 30.5] [Reference Citation Analysis]
175 Han Y, Yang L, Lacko LA, Chen S. Human organoid models to study SARS-CoV-2 infection. Nat Methods 2022. [PMID: 35396481 DOI: 10.1038/s41592-022-01453-y] [Reference Citation Analysis]
176 Hammel JH, Zatorski JM, Cook SR, Pompano RR, Munson JM. Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics. Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2022.114111] [Reference Citation Analysis]
177 Chen CP, Lin YC, Chen TC, Tseng TY, Wong HL, Kuo CY, Lin WP, Huang SR, Wang WY, Liao JH, Liao CS, Hung YP, Lin TH, Chang TY, Hsiao CF, Huang YW, Chung WS, Cheng CY, Cheng SH; Taiwan HCQ Study Group. A multicenter, randomized, open-label, controlled trial to evaluate the efficacy and tolerability of hydroxychloroquine and a retrospective study in adult patients with mild to moderate coronavirus disease 2019 (COVID-19). PLoS One 2020;15:e0242763. [PMID: 33264337 DOI: 10.1371/journal.pone.0242763] [Cited by in Crossref: 14] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
178 Tanaka S, Nelson G, Olson CA, Buzko O, Higashide W, Shin A, Gonzalez M, Taft J, Patel R, Buta S, Richardson A, Bogunovic D, Spilman P, Niazi K, Rabizadeh S, Soon-Shiong P. An ACE2 Triple Decoy that neutralizes SARS-CoV-2 shows enhanced affinity for virus variants. Sci Rep 2021;11:12740. [PMID: 34140558 DOI: 10.1038/s41598-021-91809-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
179 Grudlewska-Buda K, Wiktorczyk-Kapischke N, Wałecka-Zacharska E, Kwiecińska-Piróg J, Buszko K, Leis K, Juszczuk K, Gospodarek-Komkowska E, Skowron K. SARS-CoV-2-Morphology, Transmission and Diagnosis during Pandemic, Review with Element of Meta-Analysis. J Clin Med 2021;10:1962. [PMID: 34063654 DOI: 10.3390/jcm10091962] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
180 Yadav DK, Singh DD, Han I, Kumar Y, Choi EH. Current Potential Therapeutic Approaches against SARS-CoV-2: A Review. Biomedicines 2021;9:1620. [PMID: 34829850 DOI: 10.3390/biomedicines9111620] [Reference Citation Analysis]
181 Wu C, Xu Q, Wang H, Tu B, Zeng J, Zhao P, Shi M, Qiu H, Huang Y. Neutralization of SARS-CoV-2 pseudovirus using ACE2-engineered extracellular vesicles. Acta Pharm Sin B 2021. [PMID: 34522576 DOI: 10.1016/j.apsb.2021.09.004] [Reference Citation Analysis]
182 Barhoumi T, Alghanem B, Shaibah H, Mansour FA, Alamri HS, Akiel MA, Alroqi F, Boudjelal M. SARS-CoV-2 Coronavirus Spike Protein-Induced Apoptosis, Inflammatory, and Oxidative Stress Responses in THP-1-Like-Macrophages: Potential Role of Angiotensin-Converting Enzyme Inhibitor (Perindopril). Front Immunol 2021;12:728896. [PMID: 34616396 DOI: 10.3389/fimmu.2021.728896] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
183 Novaes Rocha V. Viral replication of SARS-CoV-2 could be self-limitative - The role of the renin-angiotensin system on COVID-19 pathophysiology. Med Hypotheses 2020;145:110330. [PMID: 33049594 DOI: 10.1016/j.mehy.2020.110330] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
184 Chan KK, Dorosky D, Sharma P, Abbasi SA, Dye JM, Kranz DM, Herbert AS, Procko E. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science 2020;369:1261-5. [PMID: 32753553 DOI: 10.1126/science.abc0870] [Cited by in Crossref: 180] [Cited by in F6Publishing: 156] [Article Influence: 90.0] [Reference Citation Analysis]
185 Liu Z, VanBlargan LA, Bloyet LM, Rothlauf PW, Chen RE, Stumpf S, Zhao H, Errico JM, Theel ES, Liebeskind MJ, Alford B, Buchser WJ, Ellebedy AH, Fremont DH, Diamond MS, Whelan SPJ. Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. bioRxiv 2021:2020. [PMID: 33442690 DOI: 10.1101/2020.11.06.372037] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 26.0] [Reference Citation Analysis]
186 Manivannan J, Sundaresan L. Systems level insights into the impact of airborne exposure on SARS-CoV-2 pathogenesis and COVID-19 outcome - A multi-omics big data study. Gene Rep 2021;25:101312. [PMID: 34401607 DOI: 10.1016/j.genrep.2021.101312] [Reference Citation Analysis]
187 Jansen J, Reimer KC, Nagai JS, Varghese FS, Overheul GJ, de Beer M, Roverts R, Daviran D, Fermin LA, Willemsen B, Beukenboom M, Djudjaj S, von Stillfried S, van Eijk LE, Mastik M, Bulthuis M, Dunnen WD, van Goor H, Hillebrands J, Triana SH, Alexandrov T, Timm M, van den Berge BT, van den Broek M, Nlandu Q, Heijnert J, Bindels EM, Hoogenboezem RM, Mooren F, Kuppe C, Miesen P, Grünberg K, Ijzermans T, Steenbergen EJ, Czogalla J, Schreuder MF, Sommerdijk N, Akiva A, Boor P, Puelles VG, Floege J, Huber TB, van Rij RP, Costa IG, Schneider RK, Smeets B, Kramann R, Achdout H, Aimon A, Bar-david E, Barr H, Ben-shmuel A, Bennett J, Boby ML, Borden B, Bowman GR, Brun J, Bvnbs S, Calmiano M, Carbery A, Cattermole E, Chernychenko E, Choder JD, Clyde A, Coffland JE, Cohen G, Cole J, Contini A, Cox L, Cvitkovic M, Dias A, Donckers K, Dotson DL, Douangamath A, Duberstein S, Dudgeon T, Dunnett L, Eastman PK, Erez N, Eyermann CJ, Fairhead M, Fate G, Fearon D, Federov O, Ferla M, Fernandes RS, Ferrins L, Foster R, Foster H, Gabizon R, Garcia-sastre A, Gawriljuk VO, Gehrtz P, Gileadi C, Giroud C, Glass WG, Glen R, Itai glinert, Godoy AS, Gorichko M, Gorrie-stone T, Griffen EJ, Hart SH, Heer J, Henry M, Hill M, Horrell S, Hurley MF, Israely T, Jajack A, Jnoff E, Jochmans D, John T, De Jonghe S, Kantsadi AL, Kenny PW, Kiappes J, Koekemoer L, Kovar B, Krojer T, Lee AA, Lefker BA, Levy H, London N, Lukacik P, Macdonald HB, Maclean B, Malla TR, Matviiuk T, Mccorkindale W, Mcgovern BL, Melamed S, Michurin O, Mikolajek H, Milne BF, Morris A, Morris GM, Morwitzer MJ, Moustakas D, Nakamura AM, Neto JB, Neyts J, Nguyen L, Noske GD, Oleinikovas V, Oliva G, Overheul GJ, Owen D, Psenak V, Pai R, Pan J, Paran N, Perry B, Pingle M, Pinjari J, Politi B, Powell A, Puni R, Rangel VL, Reddi RN, Reid SP, Resnick E, Ripka EG, Robinson MC, Robinson RP, Rodriguez-guerra J, Rosales R, Rufa D, Schofield C, Shafeev M, Shaikh A, Shi J, Shurrush K, Sing S, Sittner A, Skyner R, Smalley A, Smilova MD, Solmesky LJ, Spencer J, Strain-damarell C, Swamy V, Tamir H, Tennant R, Thompson W, Thompson A, Thompson W, Tomasia S, Tumber A, Vakonakis I, van Rij RP, van Geel L, Varghese FS, Vaschetto M, Vitner EB, Voelz V, Volkamer A, von Delft F, von Delft A, Walsh M, Ward W, Weatherall C, Weiss S, White KM, Wild CF, Wittmann M, Wright N, Yahalom-ronen Y, Zaidmann D, Zidane H, Zitzmann N. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell 2021. [DOI: 10.1016/j.stem.2021.12.010] [Reference Citation Analysis]
188 [DOI: 10.1101/2020.04.29.20084327] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
189 Sethi A, Bach H. Evaluation of Current Therapies for COVID-19 Treatment. Microorganisms 2020;8:E1097. [PMID: 32707942 DOI: 10.3390/microorganisms8081097] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
190 Zhu Z, Cai T, Fan L, Lou K, Hua X, Huang Z, Gao G. The potential role of serum angiotensin-converting enzyme in coronavirus disease 2019. BMC Infect Dis 2020;20:883. [PMID: 33238910 DOI: 10.1186/s12879-020-05619-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
191 Rauth S, Karmakar S, Batra SK, Ponnusamy MP. Recent advances in organoid development and applications in disease modeling. Biochim Biophys Acta Rev Cancer 2021;1875:188527. [PMID: 33640383 DOI: 10.1016/j.bbcan.2021.188527] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
192 Pouladi N, Abdolahi S. Investigating the ACE2 polymorphisms in COVID-19 susceptibility: An in silico analysis. Mol Genet Genomic Med 2021;9:e1672. [PMID: 33818000 DOI: 10.1002/mgg3.1672] [Reference Citation Analysis]
193 Tao K, Tzou PL, Nouhin J, Bonilla H, Jagannathan P, Shafer RW. SARS-CoV-2 Antiviral Therapy. Clin Microbiol Rev 2021;:e0010921. [PMID: 34319150 DOI: 10.1128/CMR.00109-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
194 Kgatle MM, Lawal IO, Mashabela G, Boshomane TMG, Koatale PC, Mahasha PW, Ndlovu H, Vorster M, Rodrigues HG, Zeevaart JR, Gordon S, Moura-Alves P, Sathekge MM. COVID-19 Is a Multi-Organ Aggressor: Epigenetic and Clinical Marks. Front Immunol 2021;12:752380. [PMID: 34691068 DOI: 10.3389/fimmu.2021.752380] [Reference Citation Analysis]
195 Qu L, Li J, Ren H. COVID-19: the epidemiology and treatment.Br J Hosp Med (Lond). 2020;81:1-9. [PMID: 33135928 DOI: 10.12968/hmed.2020.0580] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
196 Norouzi M, Miar P, Norouzi S, Nikpour P. Nervous System Involvement in COVID-19: a Review of the Current Knowledge. Mol Neurobiol 2021;58:3561-74. [PMID: 33765290 DOI: 10.1007/s12035-021-02347-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
197 Willows S, Alam SB, Sandhu JK, Kulka M. A Canadian perspective on severe acute respiratory syndrome coronavirus 2 infection and treatment: how prevalent underlying inflammatory disease contributes to pathogenesis. Biochem Cell Biol 2021;99:173-94. [PMID: 33027600 DOI: 10.1139/bcb-2020-0341] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
198 Mackman N, Antoniak S, Wolberg AS, Kasthuri R, Key NS. Coagulation Abnormalities and Thrombosis in Patients Infected With SARS-CoV-2 and Other Pandemic Viruses. Arterioscler Thromb Vasc Biol 2020;40:2033-44. [PMID: 32657623 DOI: 10.1161/ATVBAHA.120.314514] [Cited by in Crossref: 47] [Cited by in F6Publishing: 34] [Article Influence: 23.5] [Reference Citation Analysis]
199 Monteil V, Dyczynski M, Lauschke VM, Kwon H, Wirnsberger G, Youhanna S, Zhang H, Slutsky AS, Hurtado Del Pozo C, Horn M, Montserrat N, Penninger JM, Mirazimi A. Human soluble ACE2 improves the effect of remdesivir in SARS-CoV-2 infection. EMBO Mol Med 2021;13:e13426. [PMID: 33179852 DOI: 10.15252/emmm.202013426] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
200 Medzikovic L, Cunningham CM, Li M, Amjedi M, Hong J, Ruffenach G, Eghbali M. Sex differences underlying preexisting cardiovascular disease and cardiovascular injury in COVID-19. J Mol Cell Cardiol 2020;148:25-33. [PMID: 32835666 DOI: 10.1016/j.yjmcc.2020.08.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
201 Chandra R, He Y. Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic. PLoS One 2021;16:e0253217. [PMID: 34197473 DOI: 10.1371/journal.pone.0253217] [Reference Citation Analysis]
202 Sanghavi DK, Titus A, Caulfield TR, David Freeman W. Endotheliitis, endothelin, and endothelin receptor blockers in COVID-19. Med Hypotheses 2021;150:110564. [PMID: 33823371 DOI: 10.1016/j.mehy.2021.110564] [Reference Citation Analysis]
203 Luo S, Liang Y, Wong THT, Schooling CM, Au Yeung SL. Identifying factors contributing to increased susceptibility to COVID-19 risk: a systematic review of Mendelian randomization studies. Int J Epidemiol 2022:dyac076. [PMID: 35445260 DOI: 10.1093/ije/dyac076] [Reference Citation Analysis]
204 Chen QL, Li JQ, Xiang ZD, Lang Y, Guo GJ, Liu ZH. Localization of Cell Receptor-Related Genes of SARS-CoV-2 in the Kidney through Single-Cell Transcriptome Analysis. Kidney Dis (Basel) 2020;6:258-70. [PMID: 32903321 DOI: 10.1159/000508162] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
205 Gao C, Zeng J, Jia N, Stavenhagen K, Matsumoto Y, Zhang H, Li J, Hume AJ, Mühlberger E, van Die I, Kwan J, Tantisira K, Emili A, Cummings RD. SARS-CoV-2 Spike Protein Interacts with Multiple Innate Immune Receptors. bioRxiv 2020:2020. [PMID: 32766577 DOI: 10.1101/2020.07.29.227462] [Cited by in Crossref: 36] [Cited by in F6Publishing: 7] [Article Influence: 18.0] [Reference Citation Analysis]
206 Hersh EV, Wolff M, Moore PA, Theken KN, Daniell H. A Pair of "ACEs". J Dent Res 2021;:220345211047510. [PMID: 34689655 DOI: 10.1177/00220345211047510] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
207 Li X, Liu Y, Song J, Zhong J. Increased plasma ACE2 concentration does not mean increased risk of SARS-CoV-2 infection and increased fatality rate of COVID-19. Acta Pharm Sin B 2020;10:2010-4. [PMID: 32923317 DOI: 10.1016/j.apsb.2020.09.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
208 Robinson FA, Mihealsick RP, Wagener BM, Hanna P, Poston MD, Efimov IR, Shivkumar K, Hoover DB. Role of angiotensin-converting enzyme 2 and pericytes in cardiac complications of COVID-19 infection. Am J Physiol Heart Circ Physiol 2020;319:H1059-68. [PMID: 33036546 DOI: 10.1152/ajpheart.00681.2020] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
209 Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417-1418. [PMID: 32325026 DOI: 10.1016/s0140-6736(20)30937-5] [Cited by in Crossref: 2548] [Cited by in F6Publishing: 1608] [Article Influence: 1274.0] [Reference Citation Analysis]
210 Shpichka A, Bikmulina P, Peshkova M, Kosheleva N, Zurina I, Zahmatkesh E, Khoshdel-Rad N, Lipina M, Golubeva E, Butnaru D, Svistunov A, Vosough M, Timashev P. Engineering a Model to Study Viral Infections: Bioprinting, Microfluidics, and Organoids to Defeat Coronavirus Disease 2019 (COVID-19). Int J Bioprint 2020;6:302. [PMID: 33089000 DOI: 10.18063/ijb.v6i4.302] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
211 Nazerian Y, Vakili K, Ebrahimi A, Niknejad H. Developing Cytokine Storm-Sensitive Therapeutic Strategy in COVID-19 Using 8P9R Chimeric Peptide and Soluble ACE2. Front Cell Dev Biol 2021;9:717587. [PMID: 34540833 DOI: 10.3389/fcell.2021.717587] [Reference Citation Analysis]
212 Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: The anger of inflammation. Cytokine 2020;133:155151. [PMID: 32544563 DOI: 10.1016/j.cyto.2020.155151] [Cited by in Crossref: 138] [Cited by in F6Publishing: 122] [Article Influence: 69.0] [Reference Citation Analysis]
213 Ameratunga R, Woon ST, Steele R, Snell R, Medlicott N, Mears E, Leung E, Lehnert K, Jordan A, Das S, Abbott W, Longhurst H, Quiñones-Mateu ME. Perspective: the nose and the stomach play a critical role in the NZACE2-Pātari* (modified ACE2) drug treatment project of SARS-CoV-2 infection. Expert Rev Clin Immunol 2021;17:553-60. [PMID: 33792473 DOI: 10.1080/1744666X.2021.1912596] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
214 Taleghani N, Taghipour F. Diagnosis of COVID-19 for controlling the pandemic: A review of the state-of-the-art. Biosens Bioelectron 2021;174:112830. [PMID: 33339696 DOI: 10.1016/j.bios.2020.112830] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
215 Figliozzi S, Masci PG, Ahmadi N, Tondi L, Koutli E, Aimo A, Stamatelopoulos K, Dimopoulos MA, Caforio ALP, Georgiopoulos G. Predictors of adverse prognosis in COVID-19: A systematic review and meta-analysis. Eur J Clin Invest. 2020;50:e13362. [PMID: 32726868 DOI: 10.1111/eci.13362] [Cited by in Crossref: 68] [Cited by in F6Publishing: 64] [Article Influence: 34.0] [Reference Citation Analysis]
216 Stute NL, Stickford JL, Province VM, Augenreich MA, Ratchford SM, Stickford ASL. COVID-19 is getting on our nerves: sympathetic neural activity and haemodynamics in young adults recovering from SARS-CoV-2. J Physiol 2021. [PMID: 34174086 DOI: 10.1113/JP281888] [Reference Citation Analysis]
217 Sharma RK, Stevens BR, Obukhov AG, Grant MB, Oudit GY, Li Q, Richards EM, Pepine CJ, Raizada MK. ACE2 (Angiotensin-Converting Enzyme 2) in Cardiopulmonary Diseases: Ramifications for the Control of SARS-CoV-2. Hypertension 2020;76:651-61. [PMID: 32783758 DOI: 10.1161/HYPERTENSIONAHA.120.15595] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
218 Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding CV 3rd, Kwon DH, Singh T, Tilton JC, Tsai EJ, Tucker NR, Barnard J, Loscalzo J. COVID-19 and Cardiovascular Disease: From Bench to Bedside. Circ Res 2021;128:1214-36. [PMID: 33856918 DOI: 10.1161/CIRCRESAHA.121.317997] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
219 Norman A, Franck C, Christie M, Hawkins PME, Patel K, Ashhurst AS, Aggarwal A, Low JKK, Siddiquee R, Ashley CL, Steain M, Triccas JA, Turville S, Mackay JP, Passioura T, Payne RJ. Discovery of Cyclic Peptide Ligands to the SARS-CoV-2 Spike Protein Using mRNA Display. ACS Cent Sci 2021;7:1001-8. [PMID: 34230894 DOI: 10.1021/acscentsci.0c01708] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
220 Zhang Z, Zeng E, Zhang L, Wang W, Jin Y, Sun J, Huang S, Yin W, Dai J, Zhuang Z, Chen Z, Sun J, Zhu A, Li F, Cao W, Li X, Shi Y, Gan M, Zhang S, Wei P, Huang J, Zhong N, Zhong G, Zhao J, Wang Y, Shao W, Zhao J. Potent prophylactic and therapeutic efficacy of recombinant human ACE2-Fc against SARS-CoV-2 infection in vivo. Cell Discov 2021;7:65. [PMID: 34385423 DOI: 10.1038/s41421-021-00302-0] [Reference Citation Analysis]
221 Liu P, Xie X, Gao L, Jin J. His345 mutant of angiotensin-converting enzyme 2 (ACE2) remains enzymatically active against angiotensin II. Proc Natl Acad Sci U S A 2021;118:e2023648118. [PMID: 33833058 DOI: 10.1073/pnas.2023648118] [Reference Citation Analysis]
222 Hossein-Khannazer N, Shokoohian B, Shpichka A, Aghdaei HA, Timashev P, Vosough M. Novel therapeutic approaches for treatment of COVID-19. J Mol Med (Berl) 2020;98:789-803. [PMID: 32494931 DOI: 10.1007/s00109-020-01927-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
223 Zhu T, Xiao Y, Meng X, Tang L, Li B, Zhao Z, Tan Q, Shan H, Liu L, Huang X. Nanovesicles derived from bispecific CAR-T cells targeting the spike protein of SARS-CoV-2 for treating COVID-19. J Nanobiotechnology 2021;19:391. [PMID: 34823562 DOI: 10.1186/s12951-021-01148-0] [Reference Citation Analysis]
224 Bader M, Turner AJ, Alenina N. ACE2, a multifunctional protein - from cardiovascular regulation to COVID-19. Clin Sci (Lond) 2020;134:3229-32. [PMID: 33305790 DOI: 10.1042/CS20201493] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
225 Seyfoori A, Amereh M, Dabiri SMH, Askari E, Walsh T, Akbari M. The role of biomaterials and three dimensional (3D) in vitro tissue models in fighting against COVID-19. Biomater Sci 2021;9:1217-26. [PMID: 33355542 DOI: 10.1039/d0bm01616k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
226 Rodrigues JPGLM, Barrera-Vilarmau S, M C Teixeira J, Sorokina M, Seckel E, Kastritis PL, Levitt M. Insights on cross-species transmission of SARS-CoV-2 from structural modeling. PLoS Comput Biol 2020;16:e1008449. [PMID: 33270653 DOI: 10.1371/journal.pcbi.1008449] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
227 Huang K, Zhang P, Zhang Z, Youn JY, Wang C, Zhang H, Cai H. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms. Pharmacol Ther 2021;225:107843. [PMID: 33811957 DOI: 10.1016/j.pharmthera.2021.107843] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
228 Tian C, Li N, Bai Y, Xiao H, Li S, Ge QG, Shen N, Ma QB. Angiotensin converting enzymes inhibitors or angiotensin receptor blockers should be continued in COVID-19 patients with hypertension. World J Clin Cases 2021; 9(1): 47-60 [PMID: 33511171 DOI: 10.12998/wjcc.v9.i1.47] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
229 Ovais M, You M, Ahmad J, Djellabi R, Ali A, Akhtar MH, Abbas M, Chen C. Engineering carbon nanotubes for sensitive viral detection. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116659] [Reference Citation Analysis]
230 Liu P, Xie X, Gao L, Jin J. Designed variants of ACE2-Fc that decouple anti-SARS-CoV-2 activities from unwanted cardiovascular effects. Int J Biol Macromol 2020;165:1626-33. [PMID: 33080267 DOI: 10.1016/j.ijbiomac.2020.10.120] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
231 Kiener M, Roldan N, Machahua C, Sengupta A, Geiser T, Guenat OT, Funke-Chambour M, Hobi N, Kruithof-de Julio M. Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19. Front Med (Lausanne) 2021;8:644678. [PMID: 34026781 DOI: 10.3389/fmed.2021.644678] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
232 Zhong W, Zhang X, Zeng Y, Lin D, Wu J. Recent applications and strategies in nanotechnology for lung diseases. Nano Res 2021;:1-23. [PMID: 33456721 DOI: 10.1007/s12274-020-3180-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
233 Berretta AA, Silveira MAD, Cóndor Capcha JM, De Jong D. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease: Running title: Propolis against SARS-CoV-2 infection and COVID-19. Biomed Pharmacother 2020;131:110622. [PMID: 32890967 DOI: 10.1016/j.biopha.2020.110622] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 20.5] [Reference Citation Analysis]
234 Kaddoura M, AlIbrahim M, Hijazi G, Soudani N, Audi A, Alkalamouni H, Haddad S, Eid A, Zaraket H. COVID-19 Therapeutic Options Under Investigation. Front Pharmacol 2020;11:1196. [PMID: 32848795 DOI: 10.3389/fphar.2020.01196] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 15.0] [Reference Citation Analysis]
235 Salimi-Jeda A, Abbassi S, Mousavizadeh A, Esghaie M, Bokharaei-Salim F, Jeddi F, Shafaati M, Abdoli A. SARS-CoV-2: Current trends in emerging variants, pathogenesis, immune responses, potential therapeutic, and vaccine development strategies. Int Immunopharmacol 2021;101:108232. [PMID: 34673335 DOI: 10.1016/j.intimp.2021.108232] [Reference Citation Analysis]
236 Hosoki K, Chakraborty A, Sur S. Molecular mechanisms and epidemiology of COVID-19 from an allergist's perspective. J Allergy Clin Immunol 2020;146:285-99. [PMID: 32624257 DOI: 10.1016/j.jaci.2020.05.033] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
237 Kavianpour M, Saleh M, Verdi J. The role of mesenchymal stromal cells in immune modulation of COVID-19: focus on cytokine storm. Stem Cell Res Ther 2020;11:404. [PMID: 32948252 DOI: 10.1186/s13287-020-01849-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
238 Xiaojie S, Yu L, Lei Y, Guang Y, Min Q. Neutralizing antibodies targeting SARS-CoV-2 spike protein. Stem Cell Res 2020;50:102125. [PMID: 33341604 DOI: 10.1016/j.scr.2020.102125] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
239 Almeida-da-Silva CLC, Matshik Dakafay H, Liu K, Ojcius DM. Cigarette Smoke Stimulates SARS-CoV-2 Internalization by Activating AhR and Increasing ACE2 Expression in Human Gingival Epithelial Cells. Int J Mol Sci 2021;22:7669. [PMID: 34299289 DOI: 10.3390/ijms22147669] [Reference Citation Analysis]
240 Appelberg S, Gupta S, Svensson Akusjärvi S, Ambikan AT, Mikaeloff F, Saccon E, Végvári Á, Benfeitas R, Sperk M, Ståhlberg M, Krishnan S, Singh K, Penninger JM, Mirazimi A, Neogi U. Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg Microbes Infect 2020;9:1748-60. [PMID: 32691695 DOI: 10.1080/22221751.2020.1799723] [Cited by in Crossref: 64] [Cited by in F6Publishing: 57] [Article Influence: 32.0] [Reference Citation Analysis]
241 Atri D, Siddiqi HK, Lang J, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the Cardiologist: A current review of the virology, clinical epidemiology, cardiac and other clinical manifestations and potential therapeutic strategies. JACC Basic Transl Sci. 2020;. [PMID: 32292848 DOI: 10.1016/j.jacbts.2020.04.002] [Cited by in Crossref: 107] [Cited by in F6Publishing: 92] [Article Influence: 53.5] [Reference Citation Analysis]
242 Chen D, Zhao Y, Li M, Shang H, Li N, Li F, Wang W, Wang Y, Jin R, Liu S, Li X, Gao S, Tian Y, Li R, Li H, Zhang Y, Du M, Cao Y, Zhang Y, Li X, Huang Y, Hu LA, Li F, Zhang H. A general Fc engineering platform for the next generation of antibody therapeutics. Theranostics 2021;11:1901-17. [PMID: 33408788 DOI: 10.7150/thno.51299] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
243 Hunt AC, Case JB, Park YJ, Cao L, Wu K, Walls AC, Liu Z, Bowen JE, Yeh HW, Saini S, Helms L, Zhao YT, Hsiang TY, Starr TN, Goreshnik I, Kozodoy L, Carter L, Ravichandran R, Green LB, Matochko WL, Thomson CA, Vögeli B, Krüger A, VanBlargan LA, Chen RE, Ying B, Bailey AL, Kafai NM, Boyken SE, Ljubetič A, Edman N, Ueda G, Chow CM, Johnson M, Addetia A, Navarro MJ, Panpradist N, Gale M Jr, Freedman BS, Bloom JD, Ruohola-Baker H, Whelan SPJ, Stewart L, Diamond MS, Veesler D, Jewett MC, Baker D. Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. Sci Transl Med 2022;:eabn1252. [PMID: 35412328 DOI: 10.1126/scitranslmed.abn1252] [Reference Citation Analysis]
244 Ky B, Mann DL. COVID-19 Clinical Trials: A Primer for the Cardiovascular and Cardio-Oncology Communities. JACC Basic Transl Sci 2020;5:501-17. [PMID: 32309679 DOI: 10.1016/j.jacbts.2020.04.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
245 Zhu G, Zhu C, Zhu Y, Sun F. Minireview of progress in the structural study of SARS-CoV-2 proteins. Curr Res Microb Sci 2020;1:53-61. [PMID: 33236001 DOI: 10.1016/j.crmicr.2020.06.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
246 Abdel Hameid R, Cormet-Boyaka E, Kuebler WM, Uddin M, Berdiev BK. SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport. Am J Physiol Lung Cell Mol Physiol 2021;320:L430-5. [PMID: 33434105 DOI: 10.1152/ajplung.00499.2020] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
247 McLachlan CS. The angiotensin-converting enzyme 2 (ACE2) receptor in the prevention and treatment of COVID-19 are distinctly different paradigms. Clin Hypertens. 2020;26:14. [PMID: 32685191 DOI: 10.1186/s40885-020-00147-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
248 Jiang X, Eales JM, Scannali D, Nazgiewicz A, Prestes P, Maier M, Denniff M, Xu X, Saluja S, Cano-Gamez E, Wystrychowski W, Szulinska M, Antczak A, Byars S, Skrypnik D, Glyda M, Król R, Zywiec J, Zukowska-Szczechowska E, Burrell LM, Woolf AS, Greenstein A, Bogdanski P, Keavney B, Morris AP, Heagerty A, Williams B, Harrap SB, Trynka G, Samani NJ, Guzik TJ, Charchar FJ, Tomaszewski M. Hypertension and renin-angiotensin system blockers are not associated with expression of angiotensin-converting enzyme 2 (ACE2) in the kidney. Eur Heart J 2020;41:4580-8. [PMID: 33206176 DOI: 10.1093/eurheartj/ehaa794] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
249 El Bairi K, Trapani D, Petrillo A, Le Page C, Zbakh H, Daniele B, Belbaraka R, Curigliano G, Afqir S. Repurposing anticancer drugs for the management of COVID-19. Eur J Cancer 2020;141:40-61. [PMID: 33125946 DOI: 10.1016/j.ejca.2020.09.014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
250 [DOI: 10.1101/2020.05.11.088500] [Cited by in Crossref: 35] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
251 Goodarzi P, Mahdavi F, Mirzaei R, Hasanvand H, Sholeh M, Zamani F, Sohrabi M, Tabibzadeh A, Jeda AS, Niya MHK, Keyvani H, Karampoor S. Coronavirus disease 2019 (COVID-19): Immunological approaches and emerging pharmacologic treatments. Int Immunopharmacol 2020;88:106885. [PMID: 32795893 DOI: 10.1016/j.intimp.2020.106885] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
252 Lazaridis C, Vlachogiannis NI, Bakogiannis C, Spyridopoulos I, Stamatelopoulos K, Kanakakis I, Vassilikos V, Stellos K. Involvement of cardiovascular system as the critical point in coronavirus disease 2019 (COVID-19) prognosis and recovery. Hellenic J Cardiol 2020;61:381-95. [PMID: 32534109 DOI: 10.1016/j.hjc.2020.05.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
253 Datta PK, Liu F, Fischer T, Rappaport J, Qin X. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics 2020;10:7448-64. [PMID: 32642005 DOI: 10.7150/thno.48076] [Cited by in Crossref: 60] [Cited by in F6Publishing: 68] [Article Influence: 30.0] [Reference Citation Analysis]
254 Fernandez-Fernandez B, D'Marco L, Górriz JL, Jacobs-Cachá C, Kanbay M, Luis-Lima S, Porrini E, Sarafidis P, Soler MJ, Ortiz A. Exploring Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors for Organ Protection in COVID-19. J Clin Med 2020;9:E2030. [PMID: 32605278 DOI: 10.3390/jcm9072030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
255 Garreta E, Nauryzgaliyeva Z, Montserrat N. Human induced pluripotent stem cell-derived kidney organoids toward clinical implementations. Current Opinion in Biomedical Engineering 2021;20:100346. [DOI: 10.1016/j.cobme.2021.100346] [Reference Citation Analysis]
256 Kaniyala Melanthota S, Banik S, Chakraborty I, Pallen S, Gopal D, Chakrabarti S, Mazumder N. Elucidating the microscopic and computational techniques to study the structure and pathology of SARS-CoVs. Microsc Res Tech 2020;83:1623-38. [PMID: 32770582 DOI: 10.1002/jemt.23551] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
257 Payandeh Z, Rahbar MR, Jahangiri A, Hashemi ZS, Zakeri A, Jafarisani M, Rasaee MJ, Khalili S. Design of an engineered ACE2 as a novel therapeutics against COVID-19. J Theor Biol 2020;505:110425. [PMID: 32735992 DOI: 10.1016/j.jtbi.2020.110425] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
258 Vinciguerra M, Romiti S, Fattouch K, De Bellis A, Greco E. Atherosclerosis as Pathogenetic Substrate for Sars-Cov2 Cytokine Storm. J Clin Med. 2020;9. [PMID: 32635302 DOI: 10.3390/jcm9072095] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
259 Popowski KD, Dinh PC, George A, Lutz H, Cheng K. Exosome therapeutics for COVID‐19 and respiratory viruses. VIEW 2021;2:20200186. [DOI: 10.1002/viw.20200186] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
260 Kelham M, Choudry FA, Hamshere S, Beirne AM, Rathod KS, Baumbach A, Ahluwalia A, Mathur A, Jones DA. Therapeutic Implications of COVID-19 for the Interventional Cardiologist. J Cardiovasc Pharmacol Ther 2021;26:203-16. [PMID: 33331160 DOI: 10.1177/1074248420982736] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
261 Anand SP, Chen Y, Prévost J, Gasser R, Beaudoin-Bussières G, Abrams CF, Pazgier M, Finzi A. Interaction of Human ACE2 to Membrane-Bound SARS-CoV-1 and SARS-CoV-2 S Glycoproteins. Viruses 2020;12:E1104. [PMID: 33003587 DOI: 10.3390/v12101104] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
262 Butler DJ, Mozsary C, Meydan C, Danko D, Foox J, Rosiene J, Shaiber A, Afshinnekoo E, MacKay M, Sedlazeck FJ, Ivanov NA, Sierra M, Pohle D, Zietz M, Gisladottir U, Ramlall V, Westover CD, Ryon K, Young B, Bhattacharya C, Ruggiero P, Langhorst BW, Tanner N, Gawrys J, Meleshko D, Xu D, Steel PAD, Shemesh AJ, Xiang J, Thierry-Mieg J, Thierry-Mieg D, Schwartz RE, Iftner A, Bezdan D, Sipley J, Cong L, Craney A, Velu P, Melnick AM, Hajirasouliha I, Horner SM, Iftner T, Salvatore M, Loda M, Westblade LF, Cushing M, Levy S, Wu S, Tatonetti N, Imielinski M, Rennert H, Mason CE. Shotgun Transcriptome and Isothermal Profiling of SARS-CoV-2 Infection Reveals Unique Host Responses, Viral Diversification, and Drug Interactions. bioRxiv 2020:2020. [PMID: 32511352 DOI: 10.1101/2020.04.20.048066] [Cited by in Crossref: 51] [Cited by in F6Publishing: 17] [Article Influence: 25.5] [Reference Citation Analysis]
263 Chan C, Foster ST, Chan KG, Cacace MJ, Ladd SL, Sandum CT, Wright PT, Volmert B, Yang W, Aguirre A, Li W, Wright NT. Repositioned Drugs for COVID-19-the Impact on Multiple Organs. SN Compr Clin Med 2021;:1-18. [PMID: 33898925 DOI: 10.1007/s42399-021-00874-8] [Reference Citation Analysis]
264 Subramaniam S, Ogoti Y, Hernandez I, Zogg M, Botros F, Burns R, DeRousse JT, Dockendorff C, Mackman N, Antoniak S, Fletcher C, Weiler H. A thrombin-PAR1/2 feedback loop amplifies thromboinflammatory endothelial responses to the viral RNA analogue poly(I:C). Blood Adv 2021;5:2760-74. [PMID: 34242391 DOI: 10.1182/bloodadvances.2021004360] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
265 Afzali B, Noris M, Lambrecht BN, Kemper C. The state of complement in COVID-19. Nat Rev Immunol 2021. [PMID: 34912108 DOI: 10.1038/s41577-021-00665-1] [Reference Citation Analysis]
266 Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY) 2020;12:9959-81. [PMID: 32470948 DOI: 10.18632/aging.103344] [Cited by in Crossref: 190] [Cited by in F6Publishing: 179] [Article Influence: 95.0] [Reference Citation Analysis]
267 Wang X, Xu G, Liu X, Liu Y, Zhang S, Zhang Z. Multiomics: unraveling the panoramic landscapes of SARS-CoV-2 infection. Cell Mol Immunol 2021;18:2313-24. [PMID: 34471261 DOI: 10.1038/s41423-021-00754-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
268 Hoffmann M, Arora P, Groß R, Seidel A, Hörnich BF, Hahn AS, Krüger N, Graichen L, Hofmann-Winkler H, Kempf A, Winkler MS, Schulz S, Jäck HM, Jahrsdörfer B, Schrezenmeier H, Müller M, Kleger A, Münch J, Pöhlmann S. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell 2021;184:2384-2393.e12. [PMID: 33794143 DOI: 10.1016/j.cell.2021.03.036] [Cited by in Crossref: 165] [Cited by in F6Publishing: 161] [Article Influence: 165.0] [Reference Citation Analysis]
269 Tamanna S, Clifton VL, Rae K, van Helden DF, Lumbers ER, Pringle KG. Angiotensin Converting Enzyme 2 (ACE2) in Pregnancy: Preeclampsia and Small for Gestational Age. Front Physiol 2020;11:590787. [PMID: 33101066 DOI: 10.3389/fphys.2020.590787] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
270 Al-Karmalawy AA, Dahab MA, Metwaly AM, Elhady SS, Elkaeed EB, Eissa IH, Darwish KM. Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of ACEIs Against SARS-CoV-2 Targeting the hACE2 Receptor. Front Chem 2021;9:661230. [PMID: 34017819 DOI: 10.3389/fchem.2021.661230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
271 Leung JM, Sin DD. Smoking, ACE-2 and COVID-19: ongoing controversies. Eur Respir J 2020;56:2001759. [PMID: 32430431 DOI: 10.1183/13993003.01759-2020] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 12.5] [Reference Citation Analysis]
272 Synowiec A, Szczepański A, Barreto-Duran E, Lie LK, Pyrc K. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): a Systemic Infection. Clin Microbiol Rev 2021;34:e00133-20. [PMID: 33441314 DOI: 10.1128/CMR.00133-20] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
273 Renn M, Bartok E, Zillinger T, Hartmann G, Behrendt R. Animal models of SARS-CoV-2 and COVID-19 for the development of prophylactic and therapeutic interventions. Pharmacol Ther 2021;228:107931. [PMID: 34171328 DOI: 10.1016/j.pharmthera.2021.107931] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
274 Khismatullin RR, Ponomareva AA, Nagaswami C, Ivaeva RA, Montone KT, Weisel JW, Litvinov RI. Pathology of lung-specific thrombosis and inflammation in COVID-19. J Thromb Haemost 2021. [PMID: 34538029 DOI: 10.1111/jth.15532] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
275 Macip G, Garcia-Segura P, Mestres-Truyol J, Saldivar-Espinoza B, Ojeda-Montes MJ, Gimeno A, Cereto-Massagué A, Garcia-Vallvé S, Pujadas G. Haste makes waste: A critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition. Med Res Rev 2021. [PMID: 34697818 DOI: 10.1002/med.21862] [Reference Citation Analysis]
276 Ghodsizad A, Grant AA, Mirsaeidi M, Sneij WC, Khalid L, Delazerda D, Auerbach JS, Alvarez RA, de Marchena EJ, Hare J, Guerra G, Vianna R, Loebe M. Management of crash and burn patients with SARS-CoV-2 associated ARDS. J Card Surg 2020;35:2129-30. [PMID: 32663349 DOI: 10.1111/jocs.14699] [Reference Citation Analysis]
277 Calabrese F, Pezzuto F, Fortarezza F, Hofman P, Kern I, Panizo A, von der Thüsen J, Timofeev S, Gorkiewicz G, Lunardi F. Pulmonary pathology and COVID-19: lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Arch 2020;477:359-72. [PMID: 32642842 DOI: 10.1007/s00428-020-02886-6] [Cited by in Crossref: 73] [Cited by in F6Publishing: 83] [Article Influence: 36.5] [Reference Citation Analysis]
278 Kakarla V, Kaneko N, Nour M, Khatibi K, Elahi F, Liebeskind DS, Hinman JD. Pathophysiologic mechanisms of cerebral endotheliopathy and stroke due to Sars-CoV-2. J Cereb Blood Flow Metab 2021;41:1179-92. [PMID: 33530831 DOI: 10.1177/0271678X20985666] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
279 Hammad WAB, Al Beloushi M, Ahmed B, Konje JC. Severe acute respiratory syndrome (SARS) coronavirus-2 infection (COVID-19) in pregnancy - An overview. Eur J Obstet Gynecol Reprod Biol 2021;263:106-16. [PMID: 34225131 DOI: 10.1016/j.ejogrb.2021.06.001] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
280 Ramakrishna G, Kumar P, Aggarwal S, Islam M, Singh R, Jagdish RK, Trehanpati N. SARS-Cov-2 (human) and COVID-19: Primer 2020. Hepatol Int 2020;14:475-7. [PMID: 32333304 DOI: 10.1007/s12072-020-10049-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
281 Calò LA, Rigato M, Sgarabotto L, Gianesello L, Bertoldi G, Ravarotto V, Davis PA. ACE2 and SARS-CoV-2 Infection Risk: Insights From Patients With Two Rare Genetic Tubulopathies, Gitelman's and Bartter's Syndromes. Front Med (Lausanne) 2021;8:647319. [PMID: 34017843 DOI: 10.3389/fmed.2021.647319] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
282 Shafiee A, Moradi L, Lim M, Brown J. Coronavirus disease 2019: A tissue engineering and regenerative medicine perspective. Stem Cells Transl Med. 2021;10:27-38. [PMID: 32820868 DOI: 10.1002/sctm.20-0197] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
283 Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul 2020;77:100741. [PMID: 32773102 DOI: 10.1016/j.jbior.2020.100741] [Cited by in Crossref: 63] [Cited by in F6Publishing: 62] [Article Influence: 31.5] [Reference Citation Analysis]
284 Lobato Gómez M, Huang X, Alvarez D, He W, Baysal C, Zhu C, Armario-Najera V, Blanco Perera A, Cerda Bennasser P, Saba-Mayoral A, Sobrino-Mengual G, Vargheese A, Abranches R, Abreu IA, Balamurugan S, Bock R, Buyel JF, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Ramalingam SK, Lacorte C, Lomonossoff GP, Luís IM, Ma JK, McDonald KA, Murad A, Nandi S, O'Keefe B, Oksman-Caldentey KM, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JCM, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Capell T, Christou P. Contributions of the international plant science community to the fight against human infectious diseases - part 1: epidemic and pandemic diseases. Plant Biotechnol J 2021. [PMID: 34182608 DOI: 10.1111/pbi.13657] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
285 Sfera A, Osorio C, Zapata Martín Del Campo CM, Pereida S, Maurer S, Maldonado JC, Kozlakidis Z. Endothelial Senescence and Chronic Fatigue Syndrome, a COVID-19 Based Hypothesis. Front Cell Neurosci 2021;15:673217. [PMID: 34248502 DOI: 10.3389/fncel.2021.673217] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
286 Flores-Pliego A, Miranda J, Vega-Torreblanca S, Valdespino-Vázquez Y, Helguera-Repetto C, Espejel-Nuñez A, Borboa-Olivares H, Espino Y Sosa S, Mateu-Rogell P, León-Juárez M, Ramírez-Santes V, Cardona-Pérez A, Villegas-Mota I, Torres-Torres J, Juárez-Reyes Á, Rizo-Pica T, González RO, González-Mariscal L, Estrada-Gutierrez G. Molecular Insights into the Thrombotic and Microvascular Injury in Placental Endothelium of Women with Mild or Severe COVID-19. Cells 2021;10:364. [PMID: 33578631 DOI: 10.3390/cells10020364] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
287 Heydari Z, Moeinvaziri F, Agarwal T, Pooyan P, Shpichka A, Maiti TK, Timashev P, Baharvand H, Vosough M. Organoids: a novel modality in disease modeling. Biodes Manuf 2021;:1-28. [PMID: 34395032 DOI: 10.1007/s42242-021-00150-7] [Reference Citation Analysis]
288 Wang S, Qiu Z, Hou Y, Deng X, Xu W, Zheng T, Wu P, Xie S, Bian W, Zhang C, Sun Z, Liu K, Shan C, Lin A, Jiang S, Xie Y, Zhou Q, Lu L, Huang J, Li X. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res. 2021;31:126-140. [PMID: 33420426 DOI: 10.1038/s41422-020-00460-y] [Cited by in Crossref: 67] [Cited by in F6Publishing: 71] [Article Influence: 67.0] [Reference Citation Analysis]
289 Barreda-Manso MA, Nieto-Díaz M, Soto A, Muñoz-Galdeano T, Reigada D, Maza RM. In Silico and In Vitro Analyses Validate Human MicroRNAs Targeting the SARS-CoV-2 3'-UTR. Int J Mol Sci 2021;22:6094. [PMID: 34198800 DOI: 10.3390/ijms22116094] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
290 Yang C, Huang Y, Liu S. Therapeutic Development in COVID-19. Adv Exp Med Biol 2021;1318:435-48. [PMID: 33973193 DOI: 10.1007/978-3-030-63761-3_25] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
291 Mahboubi Mehrabani M, Karvandi MS, Maafi P, Doroudian M. Neurological complications associated with Covid-19; molecular mechanisms and therapeutic approaches. Rev Med Virol 2022;:e2334. [PMID: 35138001 DOI: 10.1002/rmv.2334] [Reference Citation Analysis]
292 Ryu G, Shin HW. SARS-CoV-2 Infection of Airway Epithelial Cells. Immune Netw 2021;21:e3. [PMID: 33728096 DOI: 10.4110/in.2021.21.e3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
293 Byrnes JR, Zhou XX, Lui I, Elledge SK, Glasgow JE, Lim SA, Loudermilk RP, Chiu CY, Wang TT, Wilson MR, Leung KK, Wells JA. Competitive SARS-CoV-2 Serology Reveals Most Antibodies Targeting the Spike Receptor-Binding Domain Compete for ACE2 Binding. mSphere 2020;5:e00802-20. [PMID: 32938700 DOI: 10.1128/mSphere.00802-20] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
294 Shoemaker RH, Panettieri RA Jr, Libutti SK, Hochster HS, Watts NR, Wingfield PT, Starkl P, Pimenov L, Gawish R, Hladik A, Knapp S, Boring D, White JM, Lawrence Q, Boone J, Marshall JD, Matthews RL, Cholewa BD, Richig JW, Chen BT, McCormick DL, Gugensberger R, Höller S, Penninger JM, Wirnsberger G. Development of a novel, pan-variant aerosol intervention for COVID-19. bioRxiv 2021:2021. [PMID: 34545364 DOI: 10.1101/2021.09.14.459961] [Reference Citation Analysis]
295 Gue YX, Kanji R, Markides V, Gorog DA. Angiotensin Converting Enzyme 2 May Mediate Disease Severity In COVID-19. Am J Cardiol 2020;130:161-2. [PMID: 32636018 DOI: 10.1016/j.amjcard.2020.06.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
296 Anastasiou IA, Eleftheriadou I, Tentolouris A, Tsilingiris D, Tentolouris N. In Vitro Data of Current Therapies for SARS-CoV-2. Curr Med Chem 2020;27:4542-8. [PMID: 32400323 DOI: 10.2174/0929867327666200513075430] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
297 Badawi S, Ali BR. ACE2 Nascence, trafficking, and SARS-CoV-2 pathogenesis: the saga continues. Hum Genomics 2021;15:8. [PMID: 33514423 DOI: 10.1186/s40246-021-00304-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
298 Wang H, Li C, Obadan A, Frizzell H, Hsiang T, Gil S, Germond A, Fountain C, Baldessari A, Roffler S, Kiem H, Fuller D, Lieber A. In vivo HSC gene therapy for SARS-CoV2 infection using a decoy receptor. Human Gene Therapy. [DOI: 10.1089/hum.2021.295] [Reference Citation Analysis]
299 Battaglini D, Robba C, Ball L, Cruz FF, Silva PL, Pelosi P, Rocco PRM. Emerging therapies for COVID-19 pneumonia. Expert Opin Investig Drugs 2020;29:633-7. [PMID: 32419517 DOI: 10.1080/13543784.2020.1771694] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
300 Goldenberg D, McLaughlin C, Koduru SV, Ravnic DJ. Regenerative Engineering: Current Applications and Future Perspectives. Front Surg 2021;8:731031. [PMID: 34805257 DOI: 10.3389/fsurg.2021.731031] [Reference Citation Analysis]
301 Barros EP, Casalino L, Gaieb Z, Dommer AC, Wang Y, Fallon L, Raguette L, Belfon K, Simmerling C, Amaro RE. The flexibility of ACE2 in the context of SARS-CoV-2 infection. bioRxiv 2020:2020. [PMID: 32995769 DOI: 10.1101/2020.09.16.300459] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
302 Peng W, Wu H, Tan Y, Li M, Yang D, Li S. Mechanisms and treatments of myocardial injury in patients with corona virus disease 2019. Life Sci 2020;262:118496. [PMID: 32987060 DOI: 10.1016/j.lfs.2020.118496] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
303 Meng M, Zhao Q, Kumar R, Bai C, Deng Y, Wan B. Impact of cardiovascular and metabolic diseases on the severity of COVID-19: a systematic review and meta-analysis. Aging (Albany NY) 2020;12:23409-21. [PMID: 33199670 DOI: 10.18632/aging.103991] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
304 Li XT, Zhang MW, Zhang ZZ, Cao YD, Liu XY, Miao R, Xu Y, Song XF, Song JW, Liu Y, Xu YL, Li J, Dong Y, Zhong JC. Abnormal apelin-ACE2 and SGLT2 signaling contribute to adverse cardiorenal injury in patients with COVID-19. Int J Cardiol 2021;336:123-9. [PMID: 34000358 DOI: 10.1016/j.ijcard.2021.05.029] [Reference Citation Analysis]
305 Yu J. Vascularized Organoids: A More Complete Model. Int J Stem Cells 2021;14:127-37. [PMID: 33377457 DOI: 10.15283/ijsc20143] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
306 Lundström A, Ziegler L, Havervall S, Rudberg AS, von Meijenfeldt F, Lisman T, Mackman N, Sandén P, Thålin C. Soluble angiotensin-converting enzyme 2 is transiently elevated in COVID-19 and correlates with specific inflammatory and endothelial markers. J Med Virol 2021;93:5908-16. [PMID: 34138483 DOI: 10.1002/jmv.27144] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
307 Shao H, Ghaly HSA, Varamini P. Coronavirus Disease 2019: An Overview of the Complications and Management. INNOSC Theranostics and Pharmacological Sciences. [DOI: 10.36922/itps.v4i1.1037] [Reference Citation Analysis]
308 Paloschi V, Sabater-Lleal M, Middelkamp H, Vivas A, Johansson S, van der Meer A, Tenje M, Maegdefessel L. Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc Res 2021:cvab088. [PMID: 33729461 DOI: 10.1093/cvr/cvab088] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
309 McFadyen JD, Stevens H, Peter K. The Emerging Threat of (Micro)Thrombosis in COVID-19 and Its Therapeutic Implications. Circ Res. 2020;127:571-587. [PMID: 32586214 DOI: 10.1161/circresaha.120.317447] [Cited by in Crossref: 143] [Cited by in F6Publishing: 103] [Article Influence: 71.5] [Reference Citation Analysis]
310 Giordo R, Paliogiannis P, Mangoni AA, Pintus G. SARS-CoV-2 and endothelial cell interaction in COVID-19: molecular perspectives. Vasc Biol 2021;3:R15-23. [PMID: 33659858 DOI: 10.1530/VB-20-0017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
311 Amraei R, Yin W, Napoleon MA, Suder EL, Berrigan J, Zhao Q, Olejnik J, Chandler KB, Xia C, Feldman J, Hauser BM, Caradonna TM, Schmidt AG, Gummuluru S, Mühlberger E, Chitalia V, Costello CE, Rahimi N. CD209L/L-SIGN and CD209/DC-SIGN Act as Receptors for SARS-CoV-2. ACS Cent Sci 2021;7:1156-65. [PMID: 34341769 DOI: 10.1021/acscentsci.0c01537] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
312 Shah M, Ahmad B, Choi S, Woo HG. Mutations in the SARS-CoV-2 spike RBD are responsible for stronger ACE2 binding and poor anti-SARS-CoV mAbs cross-neutralization. Comput Struct Biotechnol J. 2020;18:3402-3414. [PMID: 33200028 DOI: 10.1016/j.csbj.2020.11.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
313 Mirsadraee S, Gorog DA, Mahon CF, Rawal B, Semple TR, Nicol ED, Arachchillage DRJ, Devaraj A, Price S, Desai SR, Ridge CA, Singh S, Padley SPG. Prevalence of Thrombotic Complications in ICU-Treated Patients With Coronavirus Disease 2019 Detected With Systematic CT Scanning. Crit Care Med 2021;49:804-15. [PMID: 33470780 DOI: 10.1097/CCM.0000000000004890] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
314 Oves M, Ravindran M, Rauf MA, Omaish Ansari M, Zahin M, Iyer AK, Ismail IMI, Khan MA, Palaniyar N. Comparing and Contrasting MERS, SARS-CoV, and SARS-CoV-2: Prevention, Transmission, Management, and Vaccine Development. Pathogens 2020;9:E985. [PMID: 33255989 DOI: 10.3390/pathogens9120985] [Reference Citation Analysis]
315 Yiangou L, Davis RP, Mummery CL. Using Cardiovascular Cells from Human Pluripotent Stem Cells for COVID-19 Research: Why the Heart Fails. Stem Cell Reports. 2021;16:385-397. [PMID: 33306986 DOI: 10.1016/j.stemcr.2020.11.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
316 Sumbria D, Berber E, Mathayan M, Rouse BT. Virus Infections and Host Metabolism-Can We Manage the Interactions? Front Immunol 2020;11:594963. [PMID: 33613518 DOI: 10.3389/fimmu.2020.594963] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
317 Medina-Enríquez MM, Lopez-León S, Carlos-Escalante JA, Aponte-Torres Z, Cuapio A, Wegman-Ostrosky T. ACE2: the molecular doorway to SARS-CoV-2. Cell Biosci 2020;10:148. [PMID: 33380340 DOI: 10.1186/s13578-020-00519-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
318 [DOI: 10.1101/2020.04.05.026633] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
319 Lv L, Zhang L. Host proviral and antiviral factors for SARS-CoV-2. Virus Genes 2021. [PMID: 34510331 DOI: 10.1007/s11262-021-01869-2] [Reference Citation Analysis]
320 Marei HE, Althani A, Afifi N, Pozzoli G, Caceci T, Angelini F, Cenciarelli C. Pandemic COVID-19 caused by SARS-CoV-2: genetic structure, vaccination, and therapeutic approaches. Mol Biol Rep 2021. [PMID: 34398427 DOI: 10.1007/s11033-021-06630-4] [Reference Citation Analysis]
321 Menezes MCS, Pestana DVS, Gameiro GR, da Silva LFF, Baron Ė, Rouby JJ, Auler JOC Jr. SARS-CoV-2 pneumonia-receptor binding and lung immunopathology: a narrative review. Crit Care 2021;25:53. [PMID: 33557908 DOI: 10.1186/s13054-020-03399-z] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
322 Hassler L, Wysocki J, Gelarden I, Tomatsidou A, Gula H, Nicoleascu V, Randall G, Henkin J, Yeldandi A, Batlle D. A novel soluble ACE2 protein totally protects from lethal disease caused by SARS-CoV-2 infection. bioRxiv 2021:2021. [PMID: 33758841 DOI: 10.1101/2021.03.12.435191] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
323 Winkler T, Ben-David U. Elevated expression of ACE2 in tumor-adjacent normal tissues of cancer patients. Int J Cancer 2020;147:3264-6. [PMID: 32525565 DOI: 10.1002/ijc.33145] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
324 Runft S, Färber I, Krüger J, Krüger N, Armando F, Rocha C, Pöhlmann S, Burigk L, Leitzen E, Ciurkiewicz M, Braun A, Schneider D, Baumgärtner L, Freisleben B, Baumgärtner W. Alternatives to animal models and their application in the discovery of species susceptibility to SARS-CoV-2 and other respiratory infectious pathogens: A review. Vet Pathol 2022;:3009858211073678. [PMID: 35130766 DOI: 10.1177/03009858211073678] [Reference Citation Analysis]
325 Dhillon P, Breuer M, Hirst N. COVID-19 breakthroughs: separating fact from fiction. FEBS J 2020;287:3612-32. [PMID: 32500928 DOI: 10.1111/febs.15442] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 11.0] [Reference Citation Analysis]
326 Alonso-Bellido IM, Bachiller S, Vázquez G, Cruz-Hernández L, Martínez E, Ruiz-Mateos E, Deierborg T, Venero JL, Real LM, Ruiz R. The Other Side of SARS-CoV-2 Infection: Neurological Sequelae in Patients. Front Aging Neurosci 2021;13:632673. [PMID: 33889082 DOI: 10.3389/fnagi.2021.632673] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
327 Yang Y, Zhao Y, Zhang F, Zhang L, Li L. COVID-19 in Elderly Adults: Clinical Features, Molecular Mechanisms, and Proposed Strategies. Aging Dis 2020;11:1481-95. [PMID: 33269102 DOI: 10.14336/AD.2020.0903] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
328 Ye F, Lin X, Chen Z, Yang F, Lin S, Yang J, Chen H, Sun H, Wang L, Wen A, Zhang X, Dai Y, Cao Y, Yang J, Shen G, Yang L, Li J, Wang Z, Wang W, Wei X, Lu G. S19W, T27W, and N330Y mutations in ACE2 enhance SARS-CoV-2 S-RBD binding toward both wild-type and antibody-resistant viruses and its molecular basis. Signal Transduct Target Ther 2021;6:343. [PMID: 34531369 DOI: 10.1038/s41392-021-00756-4] [Reference Citation Analysis]
329 [DOI: 10.1101/2020.12.30.424801] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
330 Nikiforuk AM, Kuchinski KS, Twa DDW, Lukac CD, Sbihi H, Basham CA, Steidl C, Prystajecky NA, Jassem AN, Krajden M, Patrick DM, Sekirov I. The contrasting role of nasopharyngeal angiotensin converting enzyme 2 (ACE2) transcription in SARS-CoV-2 infection: A cross-sectional study of people tested for COVID-19 in British Columbia, Canada. EBioMedicine 2021;66:103316. [PMID: 33819740 DOI: 10.1016/j.ebiom.2021.103316] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
331 Basu A, Pamreddy A, Singh P, Sharma K. An Adverse Outcomes Approach to Study the Effects of SARS-CoV-2 in 3D Organoid Models. J Mol Biol 2021;:167213. [PMID: 34437890 DOI: 10.1016/j.jmb.2021.167213] [Reference Citation Analysis]
332 Gupta I, Sohail MU, Elzawawi KE, Amarah AH, Vranic S, Al-Asmakh M, Al Moustafa AE. SARS-CoV-2 infection and smoking: What is the association? A brief review. Comput Struct Biotechnol J 2021;19:1654-60. [PMID: 33777332 DOI: 10.1016/j.csbj.2021.03.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
333 Wazny V, Siau A, Wu KX, Cheung C. Vascular underpinning of COVID-19. Open Biol 2020;10:200208. [PMID: 32847471 DOI: 10.1098/rsob.200208] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
334 Uversky VN, Elrashdy F, Aljadawi A, Ali SM, Khan RH, Redwan EM. Severe acute respiratory syndrome coronavirus 2 infection reaches the human nervous system: How? J Neurosci Res 2021;99:750-77. [PMID: 33217763 DOI: 10.1002/jnr.24752] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
335 Cai L, Guo X, Cao Y, Ying P, Hong L, Zhang Y, Yi G, Fu M. Determining available strategies for prevention and therapy: Exploring COVID‑19 from the perspective of ACE2 (Review). Int J Mol Med 2021;47:43. [PMID: 33576441 DOI: 10.3892/ijmm.2021.4876] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
336 Katsura H, Sontake V, Tata A, Kobayashi Y, Edwards CE, Heaton BE, Konkimalla A, Asakura T, Mikami Y, Fritch EJ, Lee PJ, Heaton NS, Boucher RC, Randell SH, Baric RS, Tata PR. Human Lung Stem Cell-Based Alveolospheres Provide Insights into SARS-CoV-2-Mediated Interferon Responses and Pneumocyte Dysfunction. Cell Stem Cell 2020;27:890-904.e8. [PMID: 33128895 DOI: 10.1016/j.stem.2020.10.005] [Cited by in Crossref: 70] [Cited by in F6Publishing: 65] [Article Influence: 35.0] [Reference Citation Analysis]
337 Stein MC, Braun F, Krebs CF, Bunders MJ. Kidney organoid systems for studies of immune-mediated kidney diseases: challenges and opportunities. Cell Tissue Res 2021. [PMID: 34309728 DOI: 10.1007/s00441-021-03499-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
338 Suleiman A, Rafaa T, Al­rawi A, Dawood M. The impact of ACE2 genetic polymorphisms (rs2106809 and rs2074192) on gender susceptibility to COVID-19 infection and recovery: A systematic review. Baghdad J Biochem Appl Biol Sci 2021;2:167-80. [DOI: 10.47419/bjbabs.v2i03.53] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
339 Li S, Zhu H, Zhao M, Liu W, Wang L, Zhu B, Xie W, Zhao C, Zhou Y, Ren C, Liu H, Jiang X. When stem cells meet COVID-19: recent advances, challenges and future perspectives. Stem Cell Res Ther 2022;13:9. [PMID: 35012650 DOI: 10.1186/s13287-021-02683-1] [Reference Citation Analysis]
340 Mahalapbutr P, Kongtaworn N, Rungrotmongkol T. Structural insight into the recognition of S-adenosyl-L-homocysteine and sinefungin in SARS-CoV-2 Nsp16/Nsp10 RNA cap 2'-O-Methyltransferase. Comput Struct Biotechnol J 2020;18:2757-65. [PMID: 33020707 DOI: 10.1016/j.csbj.2020.09.032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
341 Addeo A, Friedlaender A. Cancer and COVID-19: Unmasking their ties. Cancer Treat Rev 2020;88:102041. [PMID: 32516704 DOI: 10.1016/j.ctrv.2020.102041] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
342 Zhou H, Yang J, Zhou C, Chen B, Fang H, Chen S, Zhang X, Wang L, Zhang L. A Review of SARS-CoV2: Compared With SARS-CoV and MERS-CoV. Front Med (Lausanne) 2021;8:628370. [PMID: 34950674 DOI: 10.3389/fmed.2021.628370] [Reference Citation Analysis]
343 Morais AHA, Passos TS, Maciel BLL, da Silva-Maia JK. Can Probiotics and Diet Promote Beneficial Immune Modulation and Purine Control in Coronavirus Infection? Nutrients 2020;12:E1737. [PMID: 32532069 DOI: 10.3390/nu12061737] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 11.5] [Reference Citation Analysis]
344 Steadman E, Fandaros M, Yin W. SARS-CoV-2 and Plasma Hypercoagulability. Cell Mol Bioeng 2021;:1-10. [PMID: 34221178 DOI: 10.1007/s12195-021-00685-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
345 Seyedpour S, Khodaei B, Loghman AH, Seyedpour N, Kisomi MF, Balibegloo M, Nezamabadi SS, Gholami B, Saghazadeh A, Rezaei N. Targeted therapy strategies against SARS-CoV-2 cell entry mechanisms: A systematic review of in vitro and in vivo studies. J Cell Physiol 2021;236:2364-92. [PMID: 32901936 DOI: 10.1002/jcp.30032] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
346 García-escobar A, Vera-vera S, Jurado-román A, Jiménez-valero S, Galeote G, Moreno R. Calcium Signaling Pathway Is Involved in the Shedding of ACE2 Catalytic Ectodomain: New Insights for Clinical and Therapeutic Applications of ACE2 for COVID-19. Biomolecules 2022;12:76. [DOI: 10.3390/biom12010076] [Reference Citation Analysis]
347 [DOI: 10.1101/2020.09.07.286567] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
348 Yi HG, Kim H, Kwon J, Choi YJ, Jang J, Cho DW. Application of 3D bioprinting in the prevention and the therapy for human diseases. Signal Transduct Target Ther 2021;6:177. [PMID: 33986257 DOI: 10.1038/s41392-021-00566-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
349 Shah M, Ung Moon S, Hyun Kim J, Thanh Thao T, Goo Woo H. SARS-CoV-2 pan-variant inhibitory peptides deter S1-ACE2 interaction and neutralize delta and omicron pseudoviruses. Computational and Structural Biotechnology Journal 2022;20:2042-56. [DOI: 10.1016/j.csbj.2022.04.030] [Reference Citation Analysis]
350 Ackermann M, Anders HJ, Bilyy R, Bowlin GL, Daniel C, De Lorenzo R, Egeblad M, Henneck T, Hidalgo A, Hoffmann M, Hohberger B, Kanthi Y, Kaplan MJ, Knight JS, Knopf J, Kolaczkowska E, Kubes P, Leppkes M, Mahajan A, Manfredi AA, Maueröder C, Maugeri N, Mitroulis I, Muñoz LE, Narasaraju T, Naschberger E, Neeli I, Ng LG, Radic MZ, Ritis K, Rovere-Querini P, Schapher M, Schauer C, Simon HU, Singh J, Skendros P, Stark K, Stürzl M, van der Vlag J, Vandenabeele P, Vitkov L, von Köckritz-Blickwede M, Yanginlar C, Yousefi S, Zarbock A, Schett G, Herrmann M. Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death Differ 2021. [PMID: 34031543 DOI: 10.1038/s41418-021-00805-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
351 Scialo F, Daniele A, Amato F, Pastore L, Matera MG, Cazzola M, Castaldo G, Bianco A. ACE2: The Major Cell Entry Receptor for SARS-CoV-2. Lung 2020;198:867-77. [PMID: 33170317 DOI: 10.1007/s00408-020-00408-4] [Cited by in F6Publishing: 26] [Reference Citation Analysis]
352 Lara-Ureña N, García-Domínguez M. Relevance of BET Family Proteins in SARS-CoV-2 Infection. Biomolecules 2021;11:1126. [PMID: 34439792 DOI: 10.3390/biom11081126] [Reference Citation Analysis]
353 Crippa S, Kägi G, Graf L, Meyer Sauteur PM, Kohler P. Stroke in a young adult with mild COVID-19 suggesting endotheliitis. New Microbes New Infect 2020;38:100781. [PMID: 33072334 DOI: 10.1016/j.nmni.2020.100781] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
354 Khodajou-Masouleh H, Shahangian SS, Rasti B. Reinforcing our defense or weakening the enemy? A comparative overview of defensive and offensive strategies developed to confront COVID-19. Drug Metab Rev 2021;:1-34. [PMID: 33980089 DOI: 10.1080/03602532.2021.1928686] [Reference Citation Analysis]
355 Aslam M, Ladilov Y. Targeting the sAC-Dependent cAMP Pool to Prevent SARS-Cov-2 Infection. Cells 2020;9:E1962. [PMID: 32854430 DOI: 10.3390/cells9091962] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
356 Abolpour R, Siamak S, Mohammadi M, Moradi P, Dehghani M. Linear parameter varying model of COVID-19 pandemic exploiting basis functions. Biomed Signal Process Control 2021;70:102999. [PMID: 34306169 DOI: 10.1016/j.bspc.2021.102999] [Reference Citation Analysis]
357 [DOI: 10.1101/2020.05.03.075473] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
358 Gurunathan S, Kang MH, Kim JH. Diverse Effects of Exosomes on COVID-19: A Perspective of Progress From Transmission to Therapeutic Developments. Front Immunol 2021;12:716407. [PMID: 34394121 DOI: 10.3389/fimmu.2021.716407] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
359 Maccio U, Zinkernagel AS, Shambat SM, Zeng X, Cathomas G, Ruschitzka F, Schuepbach RA, Moch H, Varga Z. SARS-CoV-2 leads to a small vessel endotheliitis in the heart. EBioMedicine 2021;63:103182. [PMID: 33422990 DOI: 10.1016/j.ebiom.2020.103182] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 20.0] [Reference Citation Analysis]
360 Alexandre J, Cracowski JL, Richard V, Bouhanick B; French Society of Pharmacology and Therapeutics (SFPT). Drugs acting on renin angiotensin system and use in ill patients with COVID-19. Therapie 2020;75:319-25. [PMID: 32553503 DOI: 10.1016/j.therap.2020.05.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
361 Karoyan P, Vieillard V, Gómez-Morales L, Odile E, Guihot A, Luyt CE, Denis A, Grondin P, Lequin O. Human ACE2 peptide-mimics block SARS-CoV-2 pulmonary cells infection. Commun Biol 2021;4:197. [PMID: 33580154 DOI: 10.1038/s42003-021-01736-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 18.0] [Reference Citation Analysis]
362 Perico L, Morigi M, Galbusera M, Pezzotta A, Gastoldi S, Imberti B, Perna A, Ruggenenti P, Donadelli R, Benigni A, Remuzzi G. SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and Complement System Leading to Platelet Aggregation. Front Immunol 2022;13:827146. [DOI: 10.3389/fimmu.2022.827146] [Reference Citation Analysis]
363 Szeghy RE, Province VM, Stute NL, Augenreich MA, Koontz LK, Stickford JL, Stickford ASL, Ratchford SM. Carotid stiffness, intima-media thickness and aortic augmentation index among adults with SARS-CoV-2. Exp Physiol 2021. [PMID: 33904234 DOI: 10.1113/EP089481] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
364 Lores E, Wysocki J, Batlle D. ACE2, the kidney and the emergence of COVID-19 two decades after ACE2 discovery. Clinical Science 2020;134:2791-805. [DOI: 10.1042/cs20200484] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
365 Cabbab ILN, Manalo RVM. Anti-inflammatory drugs and the renin-angiotensin-aldosterone system: Current knowledge and potential effects on early SARS-CoV-2 infection. Virus Res 2021;291:198190. [PMID: 33039544 DOI: 10.1016/j.virusres.2020.198190] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
366 Sharifkashani S, Bafrani MA, Khaboushan AS, Pirzadeh M, Kheirandish A, Yavarpour Bali H, Hessami A, Saghazadeh A, Rezaei N. Angiotensin-converting enzyme 2 (ACE2) receptor and SARS-CoV-2: Potential therapeutic targeting. Eur J Pharmacol 2020;884:173455. [PMID: 32745604 DOI: 10.1016/j.ejphar.2020.173455] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 18.5] [Reference Citation Analysis]
367 Manhas S, Anjali A, Mansoor S, Sharma V, Ahmad A, Rehman MU, Ahmad P. Covid-19 Pandemic and Current Medical Interventions. Arch Med Res 2020;51:473-81. [PMID: 32499154 DOI: 10.1016/j.arcmed.2020.05.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
368 Altmayer V, Ziveri J, Frère C, Salem JE, Weiss N, Cao A, Marois C, Rohaut B, Demeret S, Bourdoulous S, Le Guennec L. Endothelial cell biomarkers in critically ill COVID-19 patients with encephalitis. J Neurochem 2021. [PMID: 34822163 DOI: 10.1111/jnc.15545] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
369 Evans PC, Rainger GE, Mason JC, Guzik TJ, Osto E, Stamataki Z, Neil D, Hoefer IE, Fragiadaki M, Waltenberger J, Weber C, Bochaton-Piallat ML, Bäck M. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res 2020;116:2177-84. [PMID: 32750108 DOI: 10.1093/cvr/cvaa230] [Cited by in Crossref: 89] [Cited by in F6Publishing: 83] [Article Influence: 44.5] [Reference Citation Analysis]
370 Kormann R, Jacquot A, Alla A, Corbel A, Koszutski M, Voirin P, Garcia Parrilla M, Bevilacqua S, Schvoerer E, Gueant JL, Namour F, Levy B, Frimat L, Oussalah A. Coronavirus disease 2019: acute Fanconi syndrome precedes acute kidney injury. Clin Kidney J 2020;13:362-70. [PMID: 32695327 DOI: 10.1093/ckj/sfaa109] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
371 Hosseini P, Fallahi MS, Erabi G, Pakdin M, Zarezadeh SM, Faridzadeh A, Entezari S, Ansari A, Poudineh M, Deravi N. Multisystem Inflammatory Syndrome and Autoimmune Diseases Following COVID-19: Molecular Mechanisms and Therapeutic Opportunities. Front Mol Biosci 2022;9:804109. [DOI: 10.3389/fmolb.2022.804109] [Reference Citation Analysis]
372 Bastolla U. Mathematical Model of SARS-Cov-2 Propagation Versus ACE2 Fits COVID-19 Lethality Across Age and Sex and Predicts That of SARS. Front Mol Biosci 2021;8:706122. [PMID: 34322518 DOI: 10.3389/fmolb.2021.706122] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
373 Li M, Li S, Huang Y, Chen H, Zhang S, Zhang Z, Wu W, Zeng X, Zhou B, Li B. Secreted Expression of mRNA-Encoded Truncated ACE2 Variants for SARS-CoV-2 via Lipid-Like Nanoassemblies. Adv Mater 2021;33:e2101707. [PMID: 34278613 DOI: 10.1002/adma.202101707] [Reference Citation Analysis]
374 Vergara A, Jacobs-Cachá C, Molina-Van den Bosch M, Domínguez-Báez P, Benito B, García-Carro C, Serón D, Soler MJ. Effect of ramipril on kidney, lung and heart ACE2 in a diabetic mice model. Mol Cell Endocrinol 2021;529:111263. [PMID: 33811970 DOI: 10.1016/j.mce.2021.111263] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
375 Muhl L, He L, Sun Y, Andaloussi Mäe M, Pietilä R, Liu J, Genové G, Zhang L, Xie Y, Leptidis S, Mocci G, Stritt S, Osman A, Anisimov A, Hemanthakumar KA, Räsänen M, Hansson EM, Björkegren J, Vanlandewijck M, Blomgren K, Mäkinen T, Peng XR, Hu Y, Ernfors P, Arnold TD, Alitalo K, Lendahl U, Betsholtz C. The SARS-CoV-2 receptor ACE2 is expressed in mouse pericytes but not endothelial cells: Implications for COVID-19 vascular research. Stem Cell Reports 2022:S2213-6711(22)00149-7. [PMID: 35452595 DOI: 10.1016/j.stemcr.2022.03.016] [Reference Citation Analysis]
376 Iwanaga N, Cooper L, Rong L, Beddingfield B, Crabtree J, Tripp RA, Qin X, Kolls JK. Novel ACE2-IgG1 fusions with improved in vitro and in vivo activity against SARS-CoV2. bioRxiv 2020:2020. [PMID: 32587964 DOI: 10.1101/2020.06.15.152157] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
377 Xiu H, Gong J, Huang T, Peng Y, Bai S, Xiong G, Zhang S, Huang H, Cai Z, Zhang G. Fludarabine inhibits type I interferon-induced expression of the SARS-CoV-2 receptor angiotensin-converting enzyme 2. Cell Mol Immunol 2021;18:1829-31. [PMID: 34059790 DOI: 10.1038/s41423-021-00698-5] [Reference Citation Analysis]
378 Colombani T, Rogers ZJ, Eggermont LJ, Bencherif SA. Harnessing biomaterials for therapeutic strategies against COVID-19. Emergent Mater 2021;:1-10. [PMID: 33842840 DOI: 10.1007/s42247-021-00171-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
379 Halawa S, Pullamsetti SS, Bangham CRM, Stenmark KR, Dorfmüller P, Frid MG, Butrous G, Morrell NW, de Jesus Perez VA, Stuart DI, O'Gallagher K, Shah AM, Aguib Y, Yacoub MH. Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: a global perspective. Nat Rev Cardiol 2021. [PMID: 34873286 DOI: 10.1038/s41569-021-00640-2] [Reference Citation Analysis]
380 Wang HC, Huang PN, Hung HC, Tseng SN, Chang CC, Tsai YR, Wang YM, Shih SR, Hsu JT. Effect of a Neuropilin-1-Derived Virus Receptor Trap on Enterovirus A71 Infection In Vitro. Antimicrob Agents Chemother 2020;65:e00695-20. [PMID: 33139286 DOI: 10.1128/AAC.00695-20] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
381 Allison SJ. SARS-CoV-2 infection of kidney organoids prevented with soluble human ACE2. Nat Rev Nephrol 2020;16:316. [PMID: 32332922 DOI: 10.1038/s41581-020-0291-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
382 Motayo BO, Oluwasemowo OO, Olusola BA, Akinduti PA, Arege OT, Obafemi YD, Faneye AO, Isibor PO, Aworunse OS, Oranusi SU. Evolution and genetic diversity of SARS-CoV-2 in Africa using whole genome sequences. Int J Infect Dis 2021;103:282-7. [PMID: 33259879 DOI: 10.1016/j.ijid.2020.11.190] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
383 Maiti BK. Bioengineered angiotensin-converting-enzyme-2: a potential therapeutic option against SARS-CoV-2 infection. J Hum Hypertens 2021. [PMID: 34773078 DOI: 10.1038/s41371-021-00636-y] [Reference Citation Analysis]
384 Cevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ. [DOI: 10.1136/bmj.m3862] [Cited by in Crossref: 145] [Cited by in F6Publishing: 117] [Article Influence: 72.5] [Reference Citation Analysis]
385 Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2. Am J Respir Crit Care Med. 2020;202:756-759. [PMID: 32663409 DOI: 10.1164/rccm.202001-0179le] [Cited by in Crossref: 200] [Cited by in F6Publishing: 289] [Article Influence: 100.0] [Reference Citation Analysis]
386 Bojkova D, Wagner JUG, Shumliakivska M, Aslan GS, Saleem U, Hansen A, Luxán G, Günther S, Pham MD, Krishnan J, Harter PN, Ermel UH, Frangakis AS, Milting H, Zeiher AM, Klingel K, Cinatl J, Dendorfer A, Eschenhagen T, Tschöpe C, Ciesek S, Dimmeler S. SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes. Cardiovasc Res 2020;116:2207-15. [PMID: 32966582 DOI: 10.1093/cvr/cvaa267] [Cited by in Crossref: 50] [Cited by in F6Publishing: 65] [Article Influence: 25.0] [Reference Citation Analysis]
387 Thacker VV, Sharma K, Dhar N, Mancini GF, Sordet-Dessimoz J, McKinney JD. Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model. EMBO Rep 2021;22:e52744. [PMID: 33908688 DOI: 10.15252/embr.202152744] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
388 Gustafson D, Raju S, Wu R, Ching C, Veitch S, Rathnakumar K, Boudreau E, Howe KL, Fish JE. Overcoming Barriers: The Endothelium As a Linchpin of Coronavirus Disease 2019 Pathogenesis? Arterioscler Thromb Vasc Biol 2020;40:1818-29. [PMID: 32510978 DOI: 10.1161/ATVBAHA.120.314558] [Cited by in Crossref: 33] [Cited by in F6Publishing: 18] [Article Influence: 16.5] [Reference Citation Analysis]
389 Vouga M, Favre G, Martinez-Perez O, Pomar L, Acebal LF, Abascal-Saiz A, Hernandez MRV, Hcini N, Lambert V, Carles G, Sichitiu J, Salomon L, Stirnemann J, Ville Y, de Tejada BM, Goncé A, Hawkins-Villarreal A, Castillo K, Solsona EG, Trigo L, Cleary B, Geary M, Bartels H, Al-Kharouf F, Malone F, Higgins M, Keating N, Knowles S, Poncelet C, Ribeiro-do-Valle CC, Surita F, Dantas-Silva A, Borrelli C, Luz AG, Fuenzalida J, Carvajal J, Canales MG, Hernandez O, Grechukhina O, Ko AI, Reddy U, Figueiredo R, Moucho M, Pinto PV, De Luca C, De Santis M, de Campos DA, Martins I, Garabedian C, Subtil D, Bohrer B, Da Rocha Oppermann ML, Wender MCO, Schuler-Faccini L, Sanseverino MTV, Giugliani C, Friedrich L, Scherer MH, Mottet N, Ducarme G, Pelerin H, Moreau C, Breton B, Quibel T, Rozenberg P, Giannoni E, Granado C, Monod C, Mueller D, Hoesli I, Bassler D, Heldstab S, Kölble NO, Sentilhes L, Charvet M, Deprest J, Richter J, Van der Veeken L, Eggel-Hort B, Plantefeve G, Derouich M, Calvache AJN, Lopez-Giron MC, Burgos-Luna JM, Escobar-Vidarte MF, Hecher K, Tallarek AC, Hadar E, Haratz KK, Amikam U, Malinger G, Maymon R, Yogev Y, Schäffer L, Toussaint A, Rossier MC, De Sa RAM, Grawe C, Aebi-Popp K, Radan AP, Raio L, Surbek D, Böckenhoff P, Strizek B, Kaufmann M, Bloch A, Boulvain M, Johann S, Heldstab SA, Bernasconi MT, Grant G, Feki A, Brochut AM, Giral M, Sedille L, Papadia A, Brugger RC, Weber B, Fischer T, Kahlert C, Saines KN, Cambou M, Kanellos P, Chen X, Yin M, Haessig A, Ackermann S, Baud D, Panchaud A. Maternal outcomes and risk factors for COVID-19 severity among pregnant women. Sci Rep 2021;11:13898. [PMID: 34230507 DOI: 10.1038/s41598-021-92357-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
390 Di Rienzo L, Monti M, Milanetti E, Miotto M, Boffi A, Tartaglia GG, Ruocco G. Computational optimization of angiotensin-converting enzyme 2 for SARS-CoV-2 Spike molecular recognition. Comput Struct Biotechnol J 2021;19:3006-14. [PMID: 34002118 DOI: 10.1016/j.csbj.2021.05.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
391 Sun AM, Hoffman T, Luu BQ, Ashammakhi N, Li S. Application of lung microphysiological systems to COVID-19 modeling and drug discovery: a review. Biodes Manuf 2021;:1-19. [PMID: 34178414 DOI: 10.1007/s42242-021-00136-5] [Reference Citation Analysis]
392 Legrand M, Bell S, Forni L, Joannidis M, Koyner JL, Liu K, Cantaluppi V. Pathophysiology of COVID-19-associated acute kidney injury. Nat Rev Nephrol 2021. [PMID: 34226718 DOI: 10.1038/s41581-021-00452-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
393 Shirazi J, Donzanti MJ, Nelson KM, Zurakowski R, Fromen CA, Gleghorn JP. Significant Unresolved Questions and Opportunities for Bioengineering in Understanding and Treating COVID-19 Disease Progression. Cell Mol Bioeng 2020;:1-26. [PMID: 32837585 DOI: 10.1007/s12195-020-00637-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
394 Roganović J, Radenković M. Letter to the Editor: Diabetes, obesity and hypertension may promote oral SARS-CoV-2 infection-Salivary soluble ACE2 perspective. Oral Dis 2020. [PMID: 33141469 DOI: 10.1111/odi.13711] [Reference Citation Analysis]
395 Ming Y, Qiang L. Involvement of Spike Protein, Furin, and ACE2 in SARS-CoV-2-Related Cardiovascular Complications. SN Compr Clin Med 2020;:1-6. [PMID: 32838164 DOI: 10.1007/s42399-020-00400-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
396 Dong M, He F, Deng Y. How to Understand Herd Immunity in the Context of COVID-19. Viral Immunol 2021;34:174-81. [PMID: 33351708 DOI: 10.1089/vim.2020.0195] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
397 Wysocki J, Ye M, Hassler L, Gupta AK, Wang Y, Nicoleascu V, Randall G, Wertheim JA, Batlle D. A Novel Soluble ACE2 Variant with Prolonged Duration of Action Neutralizes SARS-CoV-2 Infection in Human Kidney Organoids. J Am Soc Nephrol 2021:ASN. [PMID: 33526471 DOI: 10.1681/ASN.2020101537] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 12.0] [Reference Citation Analysis]
398 Chen BH, Shi NN, Wu CW, An DA, Shi YX, Wesemann LD, Hu J, Xu JR, Shan F, Wu LM. Early cardiac involvement in patients with acute COVID-19 infection identified by multiparametric cardiovascular magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 2021;22:844-51. [PMID: 33686389 DOI: 10.1093/ehjci/jeab042] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
399 Menuchin-Lasowski Y, Schreiber A, Lecanda A, Mecate-Zambrano A, Brunotte L, Psathaki OE, Ludwig S, Rauen T, Schöler HR. SARS-CoV-2 infects and replicates in photoreceptor and retinal ganglion cells of human retinal organoids. Stem Cell Reports 2022:S2213-6711(22)00104-7. [PMID: 35334213 DOI: 10.1016/j.stemcr.2022.02.015] [Reference Citation Analysis]
400 Mosleh W, Chen K, Pfau SE, Vashist A. Endotheliitis and Endothelial Dysfunction in Patients with COVID-19: Its Role in Thrombosis and Adverse Outcomes. J Clin Med 2020;9:E1862. [PMID: 32549229 DOI: 10.3390/jcm9061862] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 12.5] [Reference Citation Analysis]
401 Ropa J, Cooper S, Capitano ML, Van't Hof W, Broxmeyer HE. Human Hematopoietic Stem, Progenitor, and Immune Cells Respond Ex Vivo to SARS-CoV-2 Spike Protein. Stem Cell Rev Rep 2021;17:253-65. [PMID: 33089452 DOI: 10.1007/s12015-020-10056-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
402 Kong J, Wen S, Cao W, Yue P, Xu X, Zhang Y, Luo L, Chen T, Li L, Wang F, Tao J, Zhou G, Luo S, Liu A, Bao F. Lung organoids, useful tools for investigating epithelial repair after lung injury. Stem Cell Res Ther 2021;12:95. [PMID: 33516265 DOI: 10.1186/s13287-021-02172-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
403 Murck H. Symptomatic Protective Action of Glycyrrhizin (Licorice) in COVID-19 Infection? Front Immunol 2020;11:1239. [PMID: 32574273 DOI: 10.3389/fimmu.2020.01239] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 20.0] [Reference Citation Analysis]
404 Sadeghzadeh-Bazargan A, Rezai M, Najar Nobari N, Mozafarpoor S, Goodarzi A. Skin manifestations as potential symptoms of diffuse vascular injury in critical COVID-19 patients. J Cutan Pathol 2021. [PMID: 33978234 DOI: 10.1111/cup.14059] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
405 Bruter AV, Korshunova DS, Kubekina MV, Sergiev PV, Kalinina AA, Ilchuk LA, Silaeva YY, Korshunov EN, Soldatov VO, Deykin AV. Novel transgenic mice with Cre-dependent co-expression of GFP and human ACE2: a safe tool for study of COVID-19 pathogenesis. Transgenic Res 2021. [PMID: 33855640 DOI: 10.1007/s11248-021-00249-8] [Reference Citation Analysis]
406 Davidson AM, Wysocki J, Batlle D. Interaction of SARS-CoV-2 and Other Coronavirus With ACE (Angiotensin-Converting Enzyme)-2 as Their Main Receptor: Therapeutic Implications. Hypertension 2020;76:1339-49. [PMID: 32851855 DOI: 10.1161/HYPERTENSIONAHA.120.15256] [Cited by in Crossref: 51] [Cited by in F6Publishing: 32] [Article Influence: 25.5] [Reference Citation Analysis]
407 Liu MY, Zheng B, Zhang Y, Li JP. Role and mechanism of angiotensin-converting enzyme 2 in acute lung injury in coronavirus disease 2019. Chronic Dis Transl Med 2020;6:98-105. [PMID: 32550040 DOI: 10.1016/j.cdtm.2020.05.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
408 Pei R, Feng J, Zhang Y, Sun H, Li L, Yang X, He J, Xiao S, Xiong J, Lin Y, Wen K, Zhou H, Chen J, Rong Z, Chen X. Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection. Protein Cell. 2020;12:; 1-17. [PMID: 33314005 DOI: 10.1007/s13238-020-00811-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
409 Petrović T, Lauc G, Trbojević-Akmačić I. The Importance of Glycosylation in COVID-19 Infection. Adv Exp Med Biol 2021;1325:239-64. [PMID: 34495539 DOI: 10.1007/978-3-030-70115-4_12] [Reference Citation Analysis]
410 Joseph B, Angeline NG, Arasu S. COVID-19-Practicing Prevention in the Workplace. Indian J Occup Environ Med 2020;24:133-6. [PMID: 33746423 DOI: 10.4103/ijoem.ijoem_460_20] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
411 Sekhavati E, Jafari F, SeyedAlinaghi S, Jamalimoghadamsiahkali S, Sadr S, Tabarestani M, Pirhayati M, Zendehdel A, Manafi N, Hajiabdolbaghi M, Ahmadinejad Z, Kouchak HE, Jafari S, Khalili H, Salehi M, Seifi A, Golestan FS, Ghiasvand F. Safety and effectiveness of azithromycin in patients with CoVID-19: An open-label randomised trial. Int J Antimicrob Agents. 2020;56:106143. [PMID: 32853672 DOI: 10.1016/j.ijantimicag.2020.106143] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 15.5] [Reference Citation Analysis]
412 Malchrzak W, Mastalerz-Migas A, Sroka Z, Spiegel M. One Year of the COVID-19 Pandemic. What Do We Know and What Is Yet to Come? - The Summarising Review. Int J Public Health 2021;66:1603975. [PMID: 34588946 DOI: 10.3389/ijph.2021.1603975] [Reference Citation Analysis]
413 Shamim S, Khan M, Kharaba ZJ, Ijaz M, Murtaza G. Potential strategies for combating COVID-19. Arch Virol 2020;165:2419-38. [PMID: 32778950 DOI: 10.1007/s00705-020-04768-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
414 Han Y, Duan X, Yang L, Nilsson-Payant BE, Wang P, Duan F, Tang X, Yaron TM, Zhang T, Uhl S, Bram Y, Richardson C, Zhu J, Zhao Z, Redmond D, Houghton S, Nguyen DT, Xu D, Wang X, Jessurun J, Borczuk A, Huang Y, Johnson JL, Liu Y, Xiang J, Wang H, Cantley LC, tenOever BR, Ho DD, Pan FC, Evans T, Chen HJ, Schwartz RE, Chen S. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature. 2021;589:270-275. [PMID: 33116299 DOI: 10.1038/s41586-020-2901-9] [Cited by in Crossref: 96] [Cited by in F6Publishing: 109] [Article Influence: 48.0] [Reference Citation Analysis]
415 Hofer M, Lutolf MP. Engineering organoids. Nat Rev Mater 2021;:1-19. [PMID: 33623712 DOI: 10.1038/s41578-021-00279-y] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 26.0] [Reference Citation Analysis]
416 Wang B, Dai T, Sun W, Wei Y, Ren J, Zhang L, Zhang M, Zhou F. Protein N-myristoylation: functions and mechanisms in control of innate immunity. Cell Mol Immunol 2021;18:878-88. [PMID: 33731917 DOI: 10.1038/s41423-021-00663-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
417 İnanç İ, Erdemli E. Histopathological features of SARS-CoV-2 infection and relationships with organoid technology. J Int Med Res 2021;49:3000605211044382. [PMID: 34521239 DOI: 10.1177/03000605211044382] [Reference Citation Analysis]
418 Mamedov T, Gurbuzaslan I, Yuksel D, Ilgin M, Mammadova G, Ozkul A, Hasanova G. Soluble Human Angiotensin- Converting Enzyme 2 as a Potential Therapeutic Tool for COVID-19 is Produced at High Levels In Nicotiana benthamiana Plant With Potent Anti-SARS-CoV-2 Activity. Front Plant Sci 2021;12:742875. [PMID: 34938305 DOI: 10.3389/fpls.2021.742875] [Reference Citation Analysis]
419 Kafami M, Nematbakhsh M. Renin Angiotensin Converting Enzyme 2 and COVID-19: Prevention and Treatment. Int J Prev Med 2021;12:70. [PMID: 34447512 DOI: 10.4103/ijpvm.IJPVM_585_20] [Reference Citation Analysis]
420 Kooshkaki O, Derakhshani A, Conradie AM, Hemmat N, Barreto SG, Baghbanzadeh A, Singh PK, Safarpour H, Asadzadeh Z, Najafi S, Brunetti O, Racanelli V, Silvestris N, Baradaran B. Coronavirus Disease 2019: A Brief Review of the Clinical Manifestations and Pathogenesis to the Novel Management Approaches and Treatments. Front Oncol 2020;10:572329. [PMID: 33194671 DOI: 10.3389/fonc.2020.572329] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
421 Ratchford SM, Stickford JL, Province VM, Stute N, Augenreich MA, Koontz LK, Bobo LK, Stickford ASL. Vascular alterations among young adults with SARS-CoV-2. Am J Physiol Heart Circ Physiol 2021;320:H404-10. [PMID: 33306450 DOI: 10.1152/ajpheart.00897.2020] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
422 Sisay T, Tolessa T. COVID-19 Pandemic: A Compressive Review on Gender, Herd Immunity, and Physiological Mechanisms. Risk Manag Healthc Policy 2020;13:2963-74. [PMID: 33363420 DOI: 10.2147/RMHP.S276342] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
423 Jung F, Krüger-Genge A, Franke RP, Hufert F, Küpper JH. COVID-19 and the endothelium. Clin Hemorheol Microcirc 2020;75:7-11. [PMID: 32568187 DOI: 10.3233/CH-209007] [Cited by in Crossref: 35] [Cited by in F6Publishing: 17] [Article Influence: 17.5] [Reference Citation Analysis]
424 Heimfarth L, Serafini MR, Martins-Filho PR, Quintans JSS, Quintans-Júnior LJ. Drug repurposing and cytokine management in response to COVID-19: A review. Int Immunopharmacol 2020;88:106947. [PMID: 32919216 DOI: 10.1016/j.intimp.2020.106947] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
425 Feng W, Zong W, Wang F, Ju S. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): a review. Mol Cancer 2020;19:100. [PMID: 32487159 DOI: 10.1186/s12943-020-01218-1] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 17.5] [Reference Citation Analysis]
426 Wang H, Brown PC, Chow ECY, Ewart L, Ferguson SS, Fitzpatrick S, Freedman BS, Guo GL, Hedrich W, Heyward S, Hickman J, Isoherranen N, Li AP, Liu Q, Mumenthaler SM, Polli J, Proctor WR, Ribeiro A, Wang JY, Wange RL, Huang SM. 3D cell culture models: Drug pharmacokinetics, safety assessment, and regulatory consideration. Clin Transl Sci 2021. [PMID: 33982436 DOI: 10.1111/cts.13066] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
427 Moschonas IC, Tselepis AD. SARS-CoV-2 infection and thrombotic complications: a narrative review. J Thromb Thrombolysis 2021;52:111-23. [PMID: 33449290 DOI: 10.1007/s11239-020-02374-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
428 [DOI: 10.1101/2021.02.11.430787] [Cited by in Crossref: 37] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
429 Lumbers ER, Head R, Smith GR, Delforce SJ, Jarrott B, H Martin J, Pringle KG. The interacting physiology of COVID-19 and the renin-angiotensin-aldosterone system: Key agents for treatment. Pharmacol Res Perspect 2022;10:e00917. [PMID: 35106954 DOI: 10.1002/prp2.917] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
430 Popovych V, Koshel I, Haman Y, Leschak V, Malofiichuk O, Kapustina N, Shevaga I, Shevaga O, Kunytska T. A randomized, open-label, multicentre, comparative study of therapeutic efficacy, safety, and tolerability of BNO 1030 extract, containing marshmallow root, chamomile flowers, horsetail herb, walnut leaves, yarrow herb, oak bark, dandelion herb, in the treatment of mild forms of COVID-19. Clin Phytosci 2021;7. [DOI: 10.1186/s40816-021-00308-x] [Reference Citation Analysis]
431 Barros EP, Casalino L, Gaieb Z, Dommer AC, Wang Y, Fallon L, Raguette L, Belfon K, Simmerling C, Amaro RE. The flexibility of ACE2 in the context of SARS-CoV-2 infection. Biophys J 2021;120:1072-84. [PMID: 33189680 DOI: 10.1016/j.bpj.2020.10.036] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 16.0] [Reference Citation Analysis]
432 Sriram K, Insel PA. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br J Pharmacol 2020;177:4825-44. [PMID: 32333398 DOI: 10.1111/bph.15082] [Cited by in Crossref: 78] [Cited by in F6Publishing: 67] [Article Influence: 39.0] [Reference Citation Analysis]
433 Hanson QM, Wilson KM, Shen M, Itkin Z, Eastman RT, Shinn P, Hall MD. Targeting ACE2-RBD interaction as a platform for COVID19 therapeutics: Development and drug repurposing screen of an AlphaLISA proximity assay. bioRxiv 2020:2020. [PMID: 32577632 DOI: 10.1101/2020.06.16.154708] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
434 Sharma S, Mishra A, Ashraf Z. COVID-19 Induced Coagulopathy (CIC): Thrombotic Manifestations of Viral Infection. TH Open 2022;6:e70-9. [PMID: 35280973 DOI: 10.1055/s-0042-1744185] [Reference Citation Analysis]
435 [DOI: 10.1101/2020.05.25.115600] [Cited by in Crossref: 29] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
436 Alhenc-Gelas F, Drueke TB. Blockade of SARS-CoV-2 infection by recombinant soluble ACE2. Kidney Int 2020;97:1091-3. [PMID: 32354636 DOI: 10.1016/j.kint.2020.04.009] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 13.5] [Reference Citation Analysis]
437 Du Y, Shi R, Zhang Y, Duan X, Li L, Zhang J, Wang F, Zhang R, Shen H, Wang Y, Wu Z, Peng Q, Pan T, Sun W, Huang W, Feng Y, Feng H, Xiao J, Tan W, Wang Y, Wang C, Yan J. A broadly neutralizing humanized ACE2-targeting antibody against SARS-CoV-2 variants. Nat Commun 2021;12:5000. [PMID: 34404805 DOI: 10.1038/s41467-021-25331-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
438 Miloradovic D, Pavlovic D, Jankovic MG, Nikolic S, Papic M, Milivojevic N, Stojkovic M, Ljujic B. Human Embryos, Induced Pluripotent Stem Cells, and Organoids: Models to Assess the Effects of Environmental Plastic Pollution. Front Cell Dev Biol 2021;9:709183. [PMID: 34540831 DOI: 10.3389/fcell.2021.709183] [Reference Citation Analysis]
439 Wang Y, Wang P, Qin J. Human Organoids and Organs-on-Chips for Addressing COVID-19 Challenges. Adv Sci (Weinh) 2022;:e2105187. [PMID: 35107217 DOI: 10.1002/advs.202105187] [Reference Citation Analysis]
440 Higuchi Y, Suzuki T, Arimori T, Ikemura N, Mihara E, Kirita Y, Ohgitani E, Mazda O, Motooka D, Nakamura S, Sakai Y, Itoh Y, Sugihara F, Matsuura Y, Matoba S, Okamoto T, Takagi J, Hoshino A. Engineered ACE2 receptor therapy overcomes mutational escape of SARS-CoV-2. Nat Commun 2021;12:3802. [PMID: 34155214 DOI: 10.1038/s41467-021-24013-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
441 Nicosia RF, Ligresti G, Caporarello N, Akilesh S, Ribatti D. COVID-19 Vasculopathy: Mounting Evidence for an Indirect Mechanism of Endothelial Injury. Am J Pathol 2021;191:1374-84. [PMID: 34033751 DOI: 10.1016/j.ajpath.2021.05.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
442 Mitsuyama K, Tsuruta K, Takedatsu H, Yoshioka S, Morita M, Niwa M, Matsumoto S. Clinical Features and Pathogenic Mechanisms of Gastrointestinal Injury in COVID-19. J Clin Med. 2020;9:3630. [PMID: 33187280 DOI: 10.3390/jcm9113630] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
443 Shademan B, Nourazarian A, Hajazimian S, Isazadeh A, Biray Avci C, Oskouee MA. CRISPR Technology in Gene-Editing-Based Detection and Treatment of SARS-CoV-2. Front Mol Biosci 2022;8:772788. [DOI: 10.3389/fmolb.2021.772788] [Reference Citation Analysis]
444 Trougakos IP, Stamatelopoulos K, Terpos E, Tsitsilonis OE, Aivalioti E, Paraskevis D, Kastritis E, Pavlakis GN, Dimopoulos MA. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci 2021;28:9. [PMID: 33435929 DOI: 10.1186/s12929-020-00703-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
445 Calò LA, Davis PA. Far di Necessità Virtù, using rare tubulopathies, Gitelman's and Bartter's syndromes, to inform the fight against COVID-19. J Nephrol 2021;34:281-3. [PMID: 33387334 DOI: 10.1007/s40620-020-00951-6] [Reference Citation Analysis]
446 Singh J, Alam A, Samal J, Maeurer M, Ehtesham NZ, Chakaya J, Hira S, Hasnain SE. Role of multiple factors likely contributing to severity-mortality of COVID-19. Infect Genet Evol 2021;96:105101. [PMID: 34624542 DOI: 10.1016/j.meegid.2021.105101] [Reference Citation Analysis]
447 Chueh TI, Zheng CM, Hou YC, Lu KC. Novel Evidence of Acute Kidney Injury in COVID-19. J Clin Med 2020;9:E3547. [PMID: 33153216 DOI: 10.3390/jcm9113547] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
448 Shpichka A, Bikmulina P, Peshkova M, Heydari Z, Kosheleva N, Vosough M, Timashev P. Organoids in modelling infectious diseases. Drug Discov Today 2021:S1359-6446(21)00363-9. [PMID: 34418577 DOI: 10.1016/j.drudis.2021.08.005] [Reference Citation Analysis]
449 Twomey JD, Luo S, Dean AQ, Bozza WP, Nalli A, Zhang B. COVID-19 update: The race to therapeutic development. Drug Resist Updat 2020;53:100733. [PMID: 33161277 DOI: 10.1016/j.drup.2020.100733] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
450 Mule S, Singh A, Greish K, Sahebkar A, Kesharwani P, Shukla R. Drug repurposing strategies and key challenges for COVID-19 management. J Drug Target 2021;:1-17. [PMID: 34854327 DOI: 10.1080/1061186X.2021.2013852] [Reference Citation Analysis]
451 Zhang Q, Jeppesen DK, Higginbotham JN, Franklin JL, Crowe JE Jr, Coffey RJ. Angiotensin-converting Enzyme 2-containing Small Extracellular Vesicles and Exomeres Bind the Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein. Gastroenterology 2021;160:958-961.e3. [PMID: 33022277 DOI: 10.1053/j.gastro.2020.09.042] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
452 Kennedy CC, Brown EE, Abutaleb NO, Truskey GA. Development and Application of Endothelial Cells Derived From Pluripotent Stem Cells in Microphysiological Systems Models. Front Cardiovasc Med 2021;8:625016. [PMID: 33659279 DOI: 10.3389/fcvm.2021.625016] [Reference Citation Analysis]
453 Stebbing J, Sánchez Nievas G, Falcone M, Youhanna S, Richardson P, Ottaviani S, Shen JX, Sommerauer C, Tiseo G, Ghiadoni L, Virdis A, Monzani F, Rizos LR, Forfori F, Avendaño Céspedes A, De Marco S, Carrozzi L, Lena F, Sánchez-Jurado PM, Lacerenza LG, Cesira N, Caldevilla Bernardo D, Perrella A, Niccoli L, Méndez LS, Matarrese D, Goletti D, Tan YJ, Monteil V, Dranitsaris G, Cantini F, Farcomeni A, Dutta S, Burley SK, Zhang H, Pistello M, Li W, Romero MM, Andrés Pretel F, Simón-Talero RS, García-Molina R, Kutter C, Felce JH, Nizami ZF, Miklosi AG, Penninger JM, Menichetti F, Mirazimi A, Abizanda P, Lauschke VM. JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Sci Adv 2021;7:eabe4724. [PMID: 33187978 DOI: 10.1126/sciadv.abe4724] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 47.0] [Reference Citation Analysis]
454 Wang X, Sahu KK, Cerny J. Coagulopathy, endothelial dysfunction, thrombotic microangiopathy and complement activation: potential role of complement system inhibition in COVID-19. J Thromb Thrombolysis 2021;51:657-62. [PMID: 33063256 DOI: 10.1007/s11239-020-02297-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
455 Aghagoli G, Gallo Marin B, Katchur NJ, Chaves-Sell F, Asaad WF, Murphy SA. Neurological Involvement in COVID-19 and Potential Mechanisms: A Review. Neurocrit Care. 2021;34:1062-1071. [PMID: 32661794 DOI: 10.1007/s12028-020-01049-4] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 44.0] [Reference Citation Analysis]
456 Gil C, Ginex T, Maestro I, Nozal V, Barrado-Gil L, Cuesta-Geijo MÁ, Urquiza J, Ramírez D, Alonso C, Campillo NE, Martinez A. COVID-19: Drug Targets and Potential Treatments. J Med Chem 2020;63:12359-86. [PMID: 32511912 DOI: 10.1021/acs.jmedchem.0c00606] [Cited by in Crossref: 119] [Cited by in F6Publishing: 97] [Article Influence: 59.5] [Reference Citation Analysis]
457 Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the Blood-Brain Barrier. Int J Mol Sci 2021;22:2681. [PMID: 33800954 DOI: 10.3390/ijms22052681] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
458 Wang Q, Luo Y, Shang W, Shi Z, Xiao G, Zhang L. Comprehensive interactome analysis of the spike protein of swine acute diarrhea syndrome coronavirus. Biosaf Health 2021;3:156-63. [PMID: 34027383 DOI: 10.1016/j.bsheal.2021.05.002] [Reference Citation Analysis]
459 Subbarayan K, Ulagappan K, Wickenhauser C, Bachmann M, Seliger B. Immune Interaction Map of Human SARS-CoV-2 Target Genes: Implications for Therapeutic Avenues. Front Immunol 2021;12:597399. [PMID: 33796097 DOI: 10.3389/fimmu.2021.597399] [Reference Citation Analysis]
460 Natarelli L, Parca L, Mazza T, Weber C, Virgili F, Fratantonio D. MicroRNAs and Long Non-Coding RNAs as Potential Candidates to Target Specific Motifs of SARS-CoV-2. Noncoding RNA 2021;7:14. [PMID: 33670580 DOI: 10.3390/ncrna7010014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
461 Hu Y, Liu L, Lu X. Regulation of Angiotensin-Converting Enzyme 2: A Potential Target to Prevent COVID-19? Front Endocrinol (Lausanne) 2021;12:725967. [PMID: 34745001 DOI: 10.3389/fendo.2021.725967] [Reference Citation Analysis]
462 Basso T, Dale H, Langvatn H, Lønne G, Skråmm I, Westberg M, Wik TS, Witsø E. Virus transmission during orthopedic surgery on patients with COVID-19 - a brief narrative review. Acta Orthop 2020;91:534-7. [PMID: 32408845 DOI: 10.1080/17453674.2020.1764234] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
463 Kaluthantrige Don F, Huch M. Organoids, Where We Stand and Where We Go. Trends Mol Med 2021;27:416-8. [PMID: 33865720 DOI: 10.1016/j.molmed.2021.03.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
464 Wirnsberger G, Monteil V, Eaton B, Postnikova E, Murphy M, Braunsfeld B, Crozier I, Kricek F, Niederhöfer J, Schwarzböck A, Breid H, Sanchez Jimenez A, Bugajska-Schretter A, Dohnal A, Ruf C, Gugenberger R, Hagelkruys A, Montserrat N, Holbrook MR, Oostenbrink C, Shoemaker RH, Mirazimi A, Penninger JM. Clinical grade ACE2 as a universal agent to block SARS-CoV-2 variants. bioRxiv 2021:2021. [PMID: 34545368 DOI: 10.1101/2021.09.10.459744] [Reference Citation Analysis]
465 Yang G, Tan Z, Zhou L, Yang M, Peng L, Liu J, Cai J, Yang R, Han J, Huang Y, He S. Effects of Angiotensin II Receptor Blockers and ACE (Angiotensin-Converting Enzyme) Inhibitors on Virus Infection, Inflammatory Status, and Clinical Outcomes in Patients With COVID-19 and Hypertension: A Single-Center Retrospective Study. Hypertension 2020;76:51-8. [DOI: 10.1161/hypertensionaha.120.15143] [Cited by in Crossref: 145] [Cited by in F6Publishing: 82] [Article Influence: 72.5] [Reference Citation Analysis]
466 Yalcin HC, Sukumaran V, Al-Ruweidi MKAA, Shurbaji S. Do Changes in ACE-2 Expression Affect SARS-CoV-2 Virulence and Related Complications: A Closer Look into Membrane-Bound and Soluble Forms. Int J Mol Sci 2021;22:6703. [PMID: 34201415 DOI: 10.3390/ijms22136703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
467 Muralidar S, Gopal G, Visaga Ambi S. Targeting the viral-entry facilitators of SARS-CoV-2 as a therapeutic strategy in COVID-19. J Med Virol 2021;93:5260-76. [PMID: 33851732 DOI: 10.1002/jmv.27019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
468 Roganović JR. microRNA‐146a and ‐155, upregulated by periodontitis and type 2 diabetes in oral fluids, are predicted to regulate SARS‐CoV‐2 oral receptor genes. J Periodontol 2021;92. [DOI: 10.1002/jper.20-0623] [Reference Citation Analysis]
469 Bitencourt L, Pedrosa AL, de Brito SBCS, Fróes ACF, de Carvalho ST, Fonseca GG, Ferreira GC, Fradico PF, Simões E Silva AC. COVID-19 and Renal Diseases: An Update. Curr Drug Targets 2021;22:52-67. [PMID: 33050860 DOI: 10.2174/1389450121999201013151300] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
470 Oliveira LCG, Cruz NAN, Ricelli B, Tedesco-Silva H Jr, Medina-Pestana JO, Casarini DE. Interactions amongst inflammation, renin-angiotensin-aldosterone and kallikrein-kinin systems: suggestive approaches for COVID-19 therapy. J Venom Anim Toxins Incl Trop Dis 2021;27:e20200181. [PMID: 34925477 DOI: 10.1590/1678-9199-JVATITD-2020-0181] [Reference Citation Analysis]
471 Menon R, Otto EA, Sealfon R, Nair V, Wong AK, Theesfeld CL, Chen X, Wang Y, Boppana AS, Luo J, Yang Y, Kasson PM, Schaub JA, Berthier CC, Eddy S, Lienczewski CC, Godfrey B, Dagenais SL, Sohaney R, Hartman J, Fermin D, Subramanian L, Looker HC, Harder JL, Mariani LH, Hodgin JB, Sexton JZ, Wobus CE, Naik AS, Nelson RG, Troyanskaya OG, Kretzler M. SARS-CoV-2 receptor networks in diabetic and COVID-19-associated kidney disease. Kidney Int 2020;98:1502-18. [PMID: 33038424 DOI: 10.1016/j.kint.2020.09.015] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 10.0] [Reference Citation Analysis]
472 Cocozza F, Névo N, Piovesana E, Lahaye X, Buchrieser J, Schwartz O, Manel N, Tkach M, Théry C, Martin-Jaular L. Extracellular vesicles containing ACE2 efficiently prevent infection by SARS-CoV-2 Spike protein-containing virus. J Extracell Vesicles 2020;10:e12050. [PMID: 33391636 DOI: 10.1002/jev2.12050] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
473 Tan Y, Zhang W, Zhu Z, Qiao N, Ling Y, Guo M, Yin T, Fang H, Xu X, Lu G, Zhang P, Yang S, Fu Z, Liang D, Xie Y, Zhang R, Jiang L, Yu S, Lu J, Jiang F, Chen J, Xiao C, Wang S, Chen S, Bian XW, Lu H, Liu F, Chen S. Integrating longitudinal clinical laboratory tests with targeted proteomic and transcriptomic analyses reveal the landscape of host responses in COVID-19. Cell Discov 2021;7:42. [PMID: 34103487 DOI: 10.1038/s41421-021-00274-1] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
474 Yahyavi A, Hemmati N, Derakhshan P, Banivaheb B, Karimi Behnagh A, Tofighi R, TehraniYazdi A, Kabir A. Angiotensin enzyme inhibitors and angiotensin receptor blockers as protective factors in COVID-19 mortality: a retrospective cohort study. Intern Emerg Med 2021;16:883-93. [PMID: 33085063 DOI: 10.1007/s11739-020-02523-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
475 Farzi R, Aghbash PS, Eslami N, Azadi A, Shamekh A, Hemmat N, Entezari-Maleki T, Baghi HB. The role of antigen-presenting cells in the pathogenesis of COVID-19. Pathol Res Pract 2022;233:153848. [PMID: 35338971 DOI: 10.1016/j.prp.2022.153848] [Reference Citation Analysis]
476 Chen KG, Park K, Spence JR. Studying SARS-CoV-2 infectivity and therapeutic responses with complex organoids. Nat Cell Biol 2021;23:822-33. [PMID: 34341531 DOI: 10.1038/s41556-021-00721-x] [Reference Citation Analysis]
477 Kountouri A, Korakas E, Ikonomidis I, Raptis A, Tentolouris N, Dimitriadis G, Lambadiari V. Type 1 Diabetes Mellitus in the SARS-CoV-2 Pandemic: Oxidative Stress as a Major Pathophysiological Mechanism Linked to Adverse Clinical Outcomes. Antioxidants (Basel) 2021;10:752. [PMID: 34065123 DOI: 10.3390/antiox10050752] [Reference Citation Analysis]
478 Kichloo A, Albosta M, Kumar A, Aljadah M, Mohamed M, El-Amir Z, Wani F, Jamal S, Singh J, Kichloo A. Emerging therapeutics in the management of COVID-19. World J Virol 2021; 10(1): 1-29 [PMID: 33585175 DOI: 10.5501/wjv.v10.i1.1] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
479 Boström KI, Yao Y. Options for COVID-19 Entry into Pulmonary Cells. Biomed J Sci Tech Res 2020;29:22337-8. [PMID: 33283173 DOI: 10.26717/bjstr.2020.29.004781] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
480 Brooks SD, Smith RL, Moreira AS, Ackerman HC. Oral Lisinopril Raises Tissue Levels of ACE2, the SARS-CoV-2 Receptor, in Healthy Male and Female Mice. Front Pharmacol 2022;13:798349. [DOI: 10.3389/fphar.2022.798349] [Reference Citation Analysis]
481 Ravi V, Saxena S, Panda PS. Basic virology of SARS-CoV 2. Indian J Med Microbiol 2022:S0255-0857(22)00041-X. [PMID: 35300895 DOI: 10.1016/j.ijmmb.2022.02.005] [Reference Citation Analysis]
482 Ramani A, Müller L, Ostermann PN, Gabriel E, Abida-Islam P, Müller-Schiffmann A, Mariappan A, Goureau O, Gruell H, Walker A, Andrée M, Hauka S, Houwaart T, Dilthey A, Wohlgemuth K, Omran H, Klein F, Wieczorek D, Adams O, Timm J, Korth C, Schaal H, Gopalakrishnan J. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J 2020;39:e106230. [PMID: 32876341 DOI: 10.15252/embj.2020106230] [Cited by in Crossref: 107] [Cited by in F6Publishing: 110] [Article Influence: 53.5] [Reference Citation Analysis]
483 [DOI: 10.1101/2020.07.08.193672] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
484 Krishnamurthy S, Lockey RF, Kolliputi N. Soluble ACE2 as a potential therapy for COVID-19. Am J Physiol Cell Physiol 2021;320:C279-81. [PMID: 33502950 DOI: 10.1152/ajpcell.00478.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
485 Zhou X, Jiang X, Qu M, Aninwene GE 2nd, Jucaud V, Moon JJ, Gu Z, Sun W, Khademhosseini A. Engineering Antiviral Vaccines. ACS Nano 2020;14:12370-89. [PMID: 33001626 DOI: 10.1021/acsnano.0c06109] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
486 Zhang Y, Tang LV. Overview of Targets and Potential Drugs of SARS-CoV-2 According to the Viral Replication. J Proteome Res 2021;20:49-59. [PMID: 33347311 DOI: 10.1021/acs.jproteome.0c00526] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
487 Chakraborty J, Banerjee I, Vaishya R, Ghosh S. Bioengineered in Vitro Tissue Models to Study SARS-CoV-2 Pathogenesis and Therapeutic Validation.ACS Biomater Sci Eng. 2020;6:6540. [PMID: 33320635 DOI: 10.1021/acsbiomaterials.0c01226] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
488 Ermel A, Thyvalikakath TP, Foroud T, Khan B, Srinivasan M. Can Salivary Innate Immune Molecules Provide Clue on Taste Dysfunction in COVID-19? Front Microbiol 2021;12:727430. [PMID: 34707585 DOI: 10.3389/fmicb.2021.727430] [Reference Citation Analysis]
489 Yang J, Perez EA, Hou C, Zhang P, Van Scoyk M, Winn RA, Rong L, Liu J. Identification of the SARS-CoV-2 Entry Receptor ACE2 as a Direct Target for Transcriptional Repression by Miz1. Front Immunol 2021;12:648815. [PMID: 34305888 DOI: 10.3389/fimmu.2021.648815] [Reference Citation Analysis]
490 Iwasaki M, Saito J, Zhao H, Sakamoto A, Hirota K, Ma D. Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications. Inflammation 2021;44:13-34. [PMID: 33029758 DOI: 10.1007/s10753-020-01337-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
491 Kanimozhi G, Pradhapsingh B, Singh Pawar C, Khan HA, Alrokayan SH, Prasad NR. SARS-CoV-2: Pathogenesis, Molecular Targets and Experimental Models. Front Pharmacol 2021;12:638334. [PMID: 33967772 DOI: 10.3389/fphar.2021.638334] [Reference Citation Analysis]
492 Rajpoot S, Ohishi T, Kumar A, Pan Q, Banerjee S, Zhang KYJ, Baig MS. A Novel Therapeutic Peptide Blocks SARS-CoV-2 Spike Protein Binding with Host Cell ACE2 Receptor. Drugs R D 2021;21:273-83. [PMID: 34324175 DOI: 10.1007/s40268-021-00357-0] [Reference Citation Analysis]
493 Galán M, Jiménez-Altayó F. Small Resistance Artery Disease and ACE2 in Hypertension: A New Paradigm in the Context of COVID-19. Front Cardiovasc Med 2020;7:588692. [PMID: 33195477 DOI: 10.3389/fcvm.2020.588692] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
494 Abu-Farha M, Al-Mulla F, Thanaraj TA, Kavalakatt S, Ali H, Abdul Ghani M, Abubaker J. Impact of Diabetes in Patients Diagnosed With COVID-19. Front Immunol 2020;11:576818. [PMID: 33335527 DOI: 10.3389/fimmu.2020.576818] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
495 Yuan Y, Leiby KL, Greaney AM, Raredon MSB, Qian H, Schupp JC, Engler AJ, Baevova P, Adams TS, Kural MH, Wang J, Obata T, Yoder MC, Kaminski N, Niklason LE. A Pulmonary Vascular Model From Endothelialized Whole Organ Scaffolds. Front Bioeng Biotechnol 2021;9:760309. [PMID: 34869270 DOI: 10.3389/fbioe.2021.760309] [Reference Citation Analysis]
496 Qin H, Zhao A. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics. Protein Cell. 2020. [PMID: 32519302 DOI: 10.1007/s13238-020-00738-2] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 13.0] [Reference Citation Analysis]
497 [DOI: 10.1101/2020.12.03.407031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
498 Lim SA, Gramespacher JA, Pance K, Rettko NJ, Solomon P, Jin J, Lui I, Elledge SK, Liu J, Bracken CJ, Simmons G, Zhou XX, Leung KK, Wells JA. Bispecific VH/Fab antibodies targeting neutralizing and non-neutralizing Spike epitopes demonstrate enhanced potency against SARS-CoV-2. MAbs 2021;13:1893426. [PMID: 33666135 DOI: 10.1080/19420862.2021.1893426] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
499 Méndez-Barbero N, Gutiérrez-Muñoz C, Colio LMB. Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling. Int J Mol Sci 2021;22:7284. [PMID: 34298897 DOI: 10.3390/ijms22147284] [Reference Citation Analysis]
500 Li M, Zhao Y, Li Y, Chen X, Luo D, Luo M, Hou J, Liu J, Liu H, Wang H, Dong Y, Zhang L, Ji M, Zhao X, Wei C, Li W, Gao J, Shan H, Fu X. Development and evaluation of a Novel RT-PCR system for reliable and rapid SARS-CoV-2 screening of blood donations. Transfusion 2020;60:2952-61. [PMID: 32798248 DOI: 10.1111/trf.16049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
501 Qaisrani MN, Belousov R, Rehman JU, Goliaei EM, Girotto I, Franklin-Mergarejo R, Güell O, Hassanali A, Roldán É. Phospholipids dock SARS-CoV-2 spike protein via hydrophobic interactions: a minimal in-silico study of lecithin nasal spray therapy. Eur Phys J E Soft Matter 2021;44:132. [PMID: 34718875 DOI: 10.1140/epje/s10189-021-00137-3] [Reference Citation Analysis]
502 Sica A, Colombo MP, Trama A, Horn L, Garassino MC, Torri V. Immunometabolic Status of COVID-19 Cancer Patients. Physiol Rev 2020;100:1839-50. [PMID: 32721181 DOI: 10.1152/physrev.00018.2020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
503 Labò N, Ohnuki H, Tosato G. Vasculopathy and Coagulopathy Associated with SARS-CoV-2 Infection. Cells 2020;9:E1583. [PMID: 32629875 DOI: 10.3390/cells9071583] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
504 Lawal IO, Kgatle MM, Mokoala K, Farate A, Sathekge MM. Cardiovascular disturbances in COVID-19: an updated review of the pathophysiology and clinical evidence of cardiovascular damage induced by SARS-CoV-2. BMC Cardiovasc Disord 2022;22:93. [PMID: 35264107 DOI: 10.1186/s12872-022-02534-8] [Reference Citation Analysis]
505 Chen R, Yang J, Gao X, Ding X, Yang Y, Shen Y, He C, Xiang H, Ke J, Yuan F, Cheng R, Lv H, Li P, Zhang L, Liu C, Tan H, Huang L. Influence of blood pressure control and application of renin-angiotensin-aldosterone system inhibitors on the outcomes in COVID-19 patients with hypertension. J Clin Hypertens (Greenwich) 2020;22:1974-83. [PMID: 33006442 DOI: 10.1111/jch.14038] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
506 Pitsillou E, Liang J, Ververis K, Hung A, Karagiannis TC. Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay. J Mol Graph Model 2021;104:107851. [PMID: 33556646 DOI: 10.1016/j.jmgm.2021.107851] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
507 Domingo P, Mur I, Pomar V, Corominas H, Casademont J, de Benito N. The four horsemen of a viral Apocalypse: The pathogenesis of SARS-CoV-2 infection (COVID-19). EBioMedicine 2020;58:102887. [PMID: 32736307 DOI: 10.1016/j.ebiom.2020.102887] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 27.0] [Reference Citation Analysis]
508 Ngai HW, Kim DH, Hammad M, Gutova M, Aboody K, Cox CD. Stem Cell‐based therapies for COVID‐19‐related acute respiratory distress syndrome. J Cellular Molecular Medi. [DOI: 10.1111/jcmm.17265] [Reference Citation Analysis]
509 Liu H, Timko MP. Improving Protein Quantity and Quality—The Next Level of Plant Molecular Farming. IJMS 2022;23:1326. [DOI: 10.3390/ijms23031326] [Reference Citation Analysis]
510 Aksoy H, Karadag AS, Wollina U. Angiotensin II receptors: Impact for COVID-19 severity. Dermatol Ther 2020;33:e13989. [PMID: 32645228 DOI: 10.1111/dth.13989] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
511 Verma AK, Beg MMA, Bhatt D, Dev K, Alsahli MA, Rahmani AH, Goyal Y. Assessment and Management of Diabetic Patients During the COVID-19 Pandemic. Diabetes Metab Syndr Obes 2021;14:3131-46. [PMID: 34262317 DOI: 10.2147/DMSO.S285614] [Reference Citation Analysis]
512 Gao S, Zhang L. ACE2 partially dictates the host range and tropism of SARS-CoV-2. Comput Struct Biotechnol J 2020;18:4040-7. [PMID: 33282147 DOI: 10.1016/j.csbj.2020.11.032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
513 Sukocheva OA, Maksoud R, Beeraka NM, Madhunapantula SV, Sinelnikov M, Nikolenko VN, Neganova ME, Klochkov SG, Amjad Kamal M, Staines DR, Marshall-gradisnik S. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. Journal of Advanced Research 2021. [DOI: 10.1016/j.jare.2021.11.013] [Reference Citation Analysis]
514 Hoevenaar M, Goossens D, Roorda J. Angiotensin-converting enzyme 2, the complement system, the kallikrein-kinin system, type-2 diabetes, interleukin-6, and their interactions regarding the complex COVID-19 pathophysiological crossroads. J Renin Angiotensin Aldosterone Syst 2020;21:1470320320979097. [PMID: 33283602 DOI: 10.1177/1470320320979097] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
515 Liu J, Li Y, Liu L, Hu X, Wang X, Hu H, Hu Z, Zhou Y, Wang M. Infection of human sweat glands by SARS-CoV-2. Cell Discov 2020;6:84. [PMID: 33298845 DOI: 10.1038/s41421-020-00229-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
516 Aghamollaei H, Sarvestani R, Bakherad H, Zare H, Guest PC, Ranjbar R, Sahebkar A. Emerging Technologies for the Treatment of COVID-19. Adv Exp Med Biol 2021;1321:81-96. [PMID: 33656715 DOI: 10.1007/978-3-030-59261-5_7] [Reference Citation Analysis]
517 Leist SR, Schäfer A, Martinez DR. Cell and animal models of SARS-CoV-2 pathogenesis and immunity. Dis Model Mech 2020;13:dmm046581. [PMID: 32887790 DOI: 10.1242/dmm.046581] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
518 Qiao Y, Wang XM, Mannan R, Pitchiaya S, Zhang Y, Wotring JW, Xiao L, Robinson DR, Wu YM, Tien JC, Cao X, Simko SA, Apel IJ, Bawa P, Kregel S, Narayanan SP, Raskind G, Ellison SJ, Parolia A, Zelenka-Wang S, McMurry L, Su F, Wang R, Cheng Y, Delekta AD, Mei Z, Pretto CD, Wang S, Mehra R, Sexton JZ, Chinnaiyan AM. Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2 and TMPRSS2. Proc Natl Acad Sci U S A 2020:202021450. [PMID: 33310900 DOI: 10.1073/pnas.2021450118] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 17.0] [Reference Citation Analysis]
519 Miesbach W. Pathological Role of Angiotensin II in Severe COVID-19. TH Open 2020;4:e138-44. [PMID: 32607467 DOI: 10.1055/s-0040-1713678] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 13.5] [Reference Citation Analysis]
520 Gilham D, Smith AL, Fu L, Moore DY, Muralidharan A, Reid SPM, Stotz SC, Johansson JO, Sweeney M, Wong NCW, Kulikowski E, El-Gamal D. Bromodomain and Extraterminal Protein Inhibitor, Apabetalone (RVX-208), Reduces ACE2 Expression and Attenuates SARS-Cov-2 Infection In Vitro. Biomedicines 2021;9:437. [PMID: 33919584 DOI: 10.3390/biomedicines9040437] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
521 Chang CK, Lin SM, Satange R, Lin SC, Sun SC, Wu HY, Kehn-Hall K, Hou MH. Targeting protein-protein interaction interfaces in COVID-19 drug discovery. Comput Struct Biotechnol J 2021;19:2246-55. [PMID: 33936565 DOI: 10.1016/j.csbj.2021.04.003] [Reference Citation Analysis]
522 Rodell CB. An ACE therapy for COVID-19. Sci Transl Med 2020;12:eabb5676. [DOI: 10.1126/scitranslmed.abb5676] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
523 Srivastava A, Bandopadhyay A, Das D, Pandey RK, Singh V, Khanam N, Srivastava N, Singh PP, Dubey PK, Pathak A, Gupta P, Rai N, Sultana GNN, Chaubey G. Genetic Association of ACE2 rs2285666 Polymorphism With COVID-19 Spatial Distribution in India.Front Genet. 2020;11:564741. [PMID: 33101387 DOI: 10.3389/fgene.2020.564741] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
524 Garreta E, Prado P, Stanifer ML, Monteil V, Marco A, Ullate-Agote A, Moya-Rull D, Vilas-Zornoza A, Tarantino C, Romero JP, Jonsson G, Oria R, Leopoldi A, Hagelkruys A, Gallo M, González F, Domingo-Pedrol P, Gavaldà A, Del Pozo CH, Hasan Ali O, Ventura-Aguiar P, Campistol JM, Prosper F, Mirazimi A, Boulant S, Penninger JM, Montserrat N. A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells. Cell Metab 2022:S1550-4131(22)00136-X. [PMID: 35561674 DOI: 10.1016/j.cmet.2022.04.009] [Reference Citation Analysis]
525 Ishida K, Torres J, Yaghi S. Response by Ishida et al Regarding Article, "SARS-CoV-2 and Stroke in a New York Healthcare System". Stroke 2020;51:e316-7. [PMID: 33104484 DOI: 10.1161/STROKEAHA.120.031606] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
526 Fließer E, Birnhuber A, Marsh LM, Gschwandtner E, Klepetko W, Olschewski H, Kwapiszewska G. Dysbalance of ACE2 levels - a possible cause for severe COVID-19 outcome in COPD. J Pathol Clin Res 2021;7:446-58. [PMID: 33978304 DOI: 10.1002/cjp2.224] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
527 Bagheri M, Niavarani A. Molecular dynamics analysis predicts ritonavir and naloxegol strongly block the SARS-CoV-2 spike protein-hACE2 binding. Journal of Biomolecular Structure and Dynamics. [DOI: 10.1080/07391102.2020.1830854] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
528 Mirabelli M, Chiefari E, Puccio L, Foti DP, Brunetti A. Potential Benefits and Harms of Novel Antidiabetic Drugs During COVID-19 Crisis. Int J Environ Res Public Health 2020;17:E3664. [PMID: 32456064 DOI: 10.3390/ijerph17103664] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
529 Yamamoto K, Takeshita H, Rakugi H. ACE2, angiotensin 1-7 and skeletal muscle: review in the era of COVID-19. Clin Sci (Lond) 2020;134:3047-62. [PMID: 33231620 DOI: 10.1042/CS20200486] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
530 Barabari P, Moharamzadeh K. Novel Coronavirus (COVID-19) and Dentistry-A Comprehensive Review of Literature. Dent J (Basel) 2020;8:E53. [PMID: 32455612 DOI: 10.3390/dj8020053] [Cited by in Crossref: 46] [Cited by in F6Publishing: 31] [Article Influence: 23.0] [Reference Citation Analysis]
531 Illi B, Vasapollo B, Valensise H, Totta P. SARS-CoV-2, Endothelial Dysfunction, and the Renin-Angiotensin System (RAS): A Potentially Dangerous Triad for the Development of Pre-Eclampsia. Reprod Med 2021;2:95-106. [DOI: 10.3390/reprodmed2020010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
532 Chitsike L, Duerksen-Hughes P. Keep out! SARS-CoV-2 entry inhibitors: their role and utility as COVID-19 therapeutics. Virol J 2021;18:154. [PMID: 34301275 DOI: 10.1186/s12985-021-01624-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
533 Manning JT, Fink B. Understanding COVID-19: Digit ratio (2D:4D) and sex differences in national case fatality rates. Early Hum Dev 2020;146:105074. [PMID: 32419720 DOI: 10.1016/j.earlhumdev.2020.105074] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
534 Degauque N, Haziot A, Brouard S, Mooney N. Endothelial cell, myeloid, and adaptive immune responses in SARS-CoV-2 infection. FASEB J 2021;35:e21577. [PMID: 33831263 DOI: 10.1096/fj.202100024R] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
535 Kuriakose J, Montezano AC, Touyz RM. ACE2/Ang-(1-7)/Mas1 axis and the vascular system: vasoprotection to COVID-19-associated vascular disease. Clin Sci (Lond) 2021;135:387-407. [PMID: 33511992 DOI: 10.1042/CS20200480] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
536 Aronson JK, Auker-Howlett D, Ghiara V, Kelly MP, Williamson J. The use of mechanistic reasoning in assessing coronavirus interventions. J Eval Clin Pract 2021;27:684-93. [PMID: 32666676 DOI: 10.1111/jep.13438] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
537 Suresh V, Parida D, Minz AP, Sethi M, Sahoo BS, Senapati S. Tissue Distribution of ACE2 Protein in Syrian Golden Hamster (Mesocricetus auratus) and Its Possible Implications in SARS-CoV-2 Related Studies. Front Pharmacol 2020;11:579330. [PMID: 33568991 DOI: 10.3389/fphar.2020.579330] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
538 Liu Y, Zhang HG. Vigilance on New-Onset Atherosclerosis Following SARS-CoV-2 Infection. Front Med (Lausanne) 2020;7:629413. [PMID: 33553222 DOI: 10.3389/fmed.2020.629413] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
539 Kloc M, Ghobrial RM, Lewicki S, Kubiak JZ. Macrophages in diabetes mellitus (DM) and COVID-19: do they trigger DM? J Diabetes Metab Disord 2020;:1-4. [PMID: 33102261 DOI: 10.1007/s40200-020-00665-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
540 Bellone M, Calvisi SL. ACE polymorphisms and COVID-19-related mortality in Europe. J Mol Med (Berl) 2020;98:1505-9. [PMID: 32935155 DOI: 10.1007/s00109-020-01981-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
541 Valencia I, Peiró C, Lorenzo Ó, Sánchez-Ferrer CF, Eckel J, Romacho T. DPP4 and ACE2 in Diabetes and COVID-19: Therapeutic Targets for Cardiovascular Complications? Front Pharmacol 2020;11:1161. [PMID: 32848769 DOI: 10.3389/fphar.2020.01161] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
542 Carcaterra M, Caruso C. Alveolar epithelial cell type II as main target of SARS-CoV-2 virus and COVID-19 development via NF-Kb pathway deregulation: A physio-pathological theory. Med Hypotheses 2021;146:110412. [PMID: 33308936 DOI: 10.1016/j.mehy.2020.110412] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
543 Shin CH, Kim KH, Jeeva S, Kang SM. Towards Goals to Refine Prophylactic and Therapeutic Strategies Against COVID-19 Linked to Aging and Metabolic Syndrome. Cells 2021;10:1412. [PMID: 34204163 DOI: 10.3390/cells10061412] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
544 Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21:571-584. [PMID: 32636524 DOI: 10.1038/s41580-020-0259-3] [Cited by in Crossref: 183] [Cited by in F6Publishing: 185] [Article Influence: 91.5] [Reference Citation Analysis]
545 Havranek B, Chan KK, Wu A, Procko E, Islam SM. Computationally Designed ACE2 Decoy Receptor Binds SARS-CoV-2 Spike (S) Protein with Tight Nanomolar Affinity. J Chem Inf Model 2021;61:4656-69. [PMID: 34427448 DOI: 10.1021/acs.jcim.1c00783] [Reference Citation Analysis]
546 Yin J, Wang S, Liu Y, Chen J, Li D, Xu T. Coronary microvascular dysfunction pathophysiology in COVID-19. Microcirculation 2021;:e12718. [PMID: 34013612 DOI: 10.1111/micc.12718] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
547 Sharma HN, Latimore COD, Matthews QL. Biology and Pathogenesis of SARS-CoV-2: Understandings for Therapeutic Developments against COVID-19. Pathogens 2021;10:1218. [PMID: 34578250 DOI: 10.3390/pathogens10091218] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
548 Hoffmann M, Hofmann-Winkler H, Krüger N, Kempf A, Nehlmeier I, Graichen L, Arora P, Sidarovich A, Moldenhauer AS, Winkler MS, Schulz S, Jäck HM, Stankov MV, Behrens GMN, Pöhlmann S. SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination. Cell Rep 2021;36:109415. [PMID: 34270919 DOI: 10.1016/j.celrep.2021.109415] [Cited by in Crossref: 11] [Cited by in F6Publishing: 31] [Article Influence: 11.0] [Reference Citation Analysis]
549 Kulkarni AV, Kumar P, Tevethia HV, Premkumar M, Arab JP, Candia R, Talukdar R, Sharma M, Qi X, Rao PN, Reddy DN. Systematic review with meta-analysis: liver manifestations and outcomes in COVID-19. Aliment Pharmacol Ther. 2020;52:584-599. [PMID: 32638436 DOI: 10.1111/apt.15916] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 29.5] [Reference Citation Analysis]
550 Mohammadpour S, Torshizi Esfahani A, Halaji M, Lak M, Ranjbar R. An updated review of the association of host genetic factors with susceptibility and resistance to COVID-19. J Cell Physiol 2021;236:49-54. [PMID: 32542735 DOI: 10.1002/jcp.29868] [Cited by in F6Publishing: 14] [Reference Citation Analysis]
551 Ferreira LLG, Andricopulo AD. Medicamentos e tratamentos para a Covid-19. Estud av 2020;34:7-27. [DOI: 10.1590/s0103-4014.2020.34100.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
552 [DOI: 10.1101/2020.12.18.423106] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
553 Shahid M, Shahzad-Ul-Hussan S. Structural insights of key enzymes into therapeutic intervention against SARS-CoV-2. J Struct Biol 2021;213:107690. [PMID: 33383190 DOI: 10.1016/j.jsb.2020.107690] [Reference Citation Analysis]
554 Oz M, Lorke DE, Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacol Ther 2021;221:107750. [PMID: 33275999 DOI: 10.1016/j.pharmthera.2020.107750] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
555 Oz M, Lorke DE. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed Pharmacother 2021;136:111193. [PMID: 33461019 DOI: 10.1016/j.biopha.2020.111193] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
556 Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, Aoki K, Kellman BP, Bridger R, Barouch DH, Brindley MA, Lewis NE, Tiemeyer M, Chen B, Woods RJ, Wells L. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. bioRxiv. 2020;. [PMID: 32743578 DOI: 10.1101/2020.06.25.172403] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
557 Akhtar S, Benter IF, Danjuma MI, Doi SAR, Hasan SS, Habib AM. Pharmacotherapy in COVID-19 patients: a review of ACE2-raising drugs and their clinical safety. J Drug Target 2020;28:683-99. [PMID: 32700580 DOI: 10.1080/1061186X.2020.1797754] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
558 Liu L, Chopra P, Li X, Bouwman KM, Tompkins SM, Wolfert MA, de Vries RP, Boons GJ. Heparan Sulfate Proteoglycans as Attachment Factor for SARS-CoV-2. ACS Cent Sci 2021;7:1009-18. [PMID: 34235261 DOI: 10.1021/acscentsci.1c00010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
559 Shahbazi B, Mafakher L, Teimoori-toolabi L. Different compounds against Angiotensin-Converting Enzyme 2 (ACE2) receptor potentially containing the infectivity of SARS-CoV-2: an in silico study. J Mol Model 2022;28. [DOI: 10.1007/s00894-022-05059-1] [Reference Citation Analysis]
560 Wang C, Wang S, Chen Y, Zhao J, Han S, Zhao G, Kang J, Liu Y, Wang L, Wang X, Xu Y, Wang S, Huang Y, Wang J, Zhao J. Membrane Nanoparticles Derived from ACE2-Rich Cells Block SARS-CoV-2 Infection. ACS Nano 2021;15:6340-51. [PMID: 33734675 DOI: 10.1021/acsnano.0c06836] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
561 Harschnitz O, Studer L. Human stem cell models to study host-virus interactions in the central nervous system. Nat Rev Immunol 2021;21:441-53. [PMID: 33398129 DOI: 10.1038/s41577-020-00474-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
562 Nicholson P, Alshafai L, Krings T. Neuroimaging Findings in Patients with COVID-19. AJNR Am J Neuroradiol 2020;41:1380-3. [PMID: 32527843 DOI: 10.3174/ajnr.A6630] [Cited by in Crossref: 31] [Cited by in F6Publishing: 15] [Article Influence: 15.5] [Reference Citation Analysis]
563 Chary MA, Barbuto AF, Izadmehr S, Hayes BD, Burns MM. COVID-19: Therapeutics and Their Toxicities. J Med Toxicol 2020;16:284-94. [PMID: 32356252 DOI: 10.1007/s13181-020-00777-5] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 18.5] [Reference Citation Analysis]
564 Shao S, Yang Q, Pan R, Yu X, Chen Y. Interaction of Severe Acute Respiratory Syndrome Coronavirus 2 and Diabetes. Front Endocrinol (Lausanne) 2021;12:731974. [PMID: 34690930 DOI: 10.3389/fendo.2021.731974] [Reference Citation Analysis]
565 Manna VJ, Choi H, Rotoli SM, Caradonna SJ. The dynamic nature of the Coronavirus receptor, angiotensin-converting enzyme 2 (ACE2) in differentiating airway epithelia. BBA Advances 2022. [DOI: 10.1016/j.bbadva.2022.100044] [Reference Citation Analysis]
566 Iqubal A, Iqubal MK, Hoda F, Najmi AK, Haque SE. COVID-19 and cardiovascular complications: an update from the underlying mechanism to consequences and possible clinical intervention. Expert Rev Anti Infect Ther 2021;19:1083-92. [PMID: 33618607 DOI: 10.1080/14787210.2021.1893692] [Reference Citation Analysis]
567 Montanari M, Canonico B, Nordi E, Vandini D, Barocci S, Benedetti S, Carlotti E, Zamai L. Which ones, when and why should renin-angiotensin system inhibitors work against COVID-19? Adv Biol Regul 2021;81:100820. [PMID: 34419773 DOI: 10.1016/j.jbior.2021.100820] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
568 Huang Q, Yan J. SARS-CoV-2 virus: Vaccines in development. Fundamental Research 2021;1:131-8. [DOI: 10.1016/j.fmre.2021.01.009] [Cited by in Crossref: 6] [Article Influence: 6.0] [Reference Citation Analysis]
569 Hammoud SH, Wehbe Z, Abdelhady S, Kobeissy F, Eid AH, El-Yazbi AF. Dysregulation of Angiotensin Converting Enzyme 2 Expression and Function in Comorbid Disease Conditions Possibly Contributes to Coronavirus Infectious Disease 2019 Complication Severity. Mol Pharmacol. 2021;99:17-28. [PMID: 33082267 DOI: 10.1124/molpharm.120.000119] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
570 Karuppan MKM, Devadoss D, Nair M, Chand HS, Lakshmana MK. SARS-CoV-2 Infection in the Central and Peripheral Nervous System-Associated Morbidities and Their Potential Mechanism. Mol Neurobiol 2021;58:2465-80. [PMID: 33439437 DOI: 10.1007/s12035-020-02245-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
571 Khunti K, Knighton P, Zaccardi F, Bakhai C, Barron E, Holman N, Kar P, Meace C, Sattar N, Sharp S, Wareham NJ, Weaver A, Woch E, Young B, Valabhji J. Prescription of glucose-lowering therapies and risk of COVID-19 mortality in people with type 2 diabetes: a nationwide observational study in England. Lancet Diabetes Endocrinol 2021;9:293-303. [PMID: 33798464 DOI: 10.1016/S2213-8587(21)00050-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 18.0] [Reference Citation Analysis]
572 Mohammad S, Bouchama A, Mohammad Alharbi B, Rashid M, Saleem Khatlani T, Gaber NS, Malik SS. SARS-CoV-2 ORF8 and SARS-CoV ORF8ab: Genomic Divergence and Functional Convergence. Pathogens 2020;9:E677. [PMID: 32825438 DOI: 10.3390/pathogens9090677] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
573 Uddin M, Mustafa F, Rizvi TA, Loney T, Suwaidi HA, Al-Marzouqi AHH, Eldin AK, Alsabeeha N, Adrian TE, Stefanini C, Nowotny N, Alsheikh-Ali A, Senok AC. SARS-CoV-2/COVID-19: Viral Genomics, Epidemiology, Vaccines, and Therapeutic Interventions. Viruses 2020;12:E526. [PMID: 32397688 DOI: 10.3390/v12050526] [Cited by in Crossref: 77] [Cited by in F6Publishing: 63] [Article Influence: 38.5] [Reference Citation Analysis]
574 Elshabrawy HA. SARS-CoV-2: An Update on Potential Antivirals in Light of SARS-CoV Antiviral Drug Discoveries. Vaccines (Basel) 2020;8:E335. [PMID: 32585913 DOI: 10.3390/vaccines8020335] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
575 Farkouh ME, Stone GW, Lala A, Bagiella E, Moreno PR, Nadkarni GN, Ben-Yehuda O, Granada JF, Dressler O, Tinuoye EO, Granada C, Bustamante J, Peyra C, Godoy LC, Palacios IF, Fuster V. Anticoagulation in Patients With COVID-19: JACC Review Topic of the Week. J Am Coll Cardiol 2022;79:917-28. [PMID: 35241226 DOI: 10.1016/j.jacc.2021.12.023] [Reference Citation Analysis]
576 Schälter F, Dürholz K, Bucci L, Burmester G, Caporali R, Figuereido C, Cobra JF, Manger B, Zaiss MM, Schett G. Does methotrexate influence COVID-19 infection? Case series and mechanistic data. Arthritis Res Ther 2021;23:166. [PMID: 34112217 DOI: 10.1186/s13075-021-02464-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
577 Raheem A, Liang L, Zhang G, Cui S. Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Front Immunol 2021;12:616713. [PMID: 33897683 DOI: 10.3389/fimmu.2021.616713] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
578 Kangabam R, Sahoo S, Ghosh A, Roy R, Silla Y, Misra N, Suar M. Next-generation computational tools and resources for coronavirus research: From detection to vaccine discovery. Comput Biol Med 2021;128:104158. [PMID: 33301953 DOI: 10.1016/j.compbiomed.2020.104158] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
579 Liu Z, VanBlargan LA, Bloyet LM, Rothlauf PW, Chen RE, Stumpf S, Zhao H, Errico JM, Theel ES, Liebeskind MJ, Alford B, Buchser WJ, Ellebedy AH, Fremont DH, Diamond MS, Whelan SPJ. Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host Microbe 2021;29:477-488.e4. [PMID: 33535027 DOI: 10.1016/j.chom.2021.01.014] [Cited by in Crossref: 159] [Cited by in F6Publishing: 170] [Article Influence: 159.0] [Reference Citation Analysis]
580 Almehdi AM, Khoder G, Alchakee AS, Alsayyid AT, Sarg NH, Soliman SSM. SARS-CoV-2 spike protein: pathogenesis, vaccines, and potential therapies. Infection 2021. [PMID: 34339040 DOI: 10.1007/s15010-021-01677-8] [Reference Citation Analysis]
581 Sanclemente-Alaman I, Moreno-Jiménez L, Benito-Martín MS, Canales-Aguirre A, Matías-Guiu JA, Matías-Guiu J, Gómez-Pinedo U. Experimental Models for the Study of Central Nervous System Infection by SARS-CoV-2. Front Immunol 2020;11:2163. [PMID: 32983181 DOI: 10.3389/fimmu.2020.02163] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
582 Dean AQ, Bozza WP, Twomey JD, Luo S, Nalli A, Zhang B. The fight against COVID-19: Striking a balance in the renin-angiotensin system. Drug Discov Today 2021:S1359-6446(21)00192-6. [PMID: 33865979 DOI: 10.1016/j.drudis.2021.04.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
583 Wenzel UO, Kintscher U. ACE2 and SARS-CoV-2: Tissue or Plasma, Good or Bad? Am J Hypertens 2021;34:274-7. [PMID: 33151267 DOI: 10.1093/ajh/hpaa175] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
584 Amgalan A, Malinowski AK, Othman M. COVID-19 and Sex-/Gender-Specific Differences: Understanding the Discrimination. Semin Thromb Hemost 2021;47:341-7. [PMID: 32882714 DOI: 10.1055/s-0040-1715455] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
585 Kragstrup TW, Singh HS, Grundberg I, Nielsen AL, Rivellese F, Mehta A, Goldberg MB, Filbin MR, Qvist P, Bibby BM. Plasma ACE2 predicts outcome of COVID-19 in hospitalized patients. PLoS One 2021;16:e0252799. [PMID: 34086837 DOI: 10.1371/journal.pone.0252799] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
586 Duan L, Zheng Q, Zhang H, Niu Y, Lou Y, Wang H. The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications for the Design of Spike-Based Vaccine Immunogens. Front Immunol 2020;11:576622. [PMID: 33117378 DOI: 10.3389/fimmu.2020.576622] [Cited by in Crossref: 69] [Cited by in F6Publishing: 50] [Article Influence: 34.5] [Reference Citation Analysis]
587 Figueiro-Filho EA, Hobson SR, Farine D, Yudin MH. Highly expressed ACE-2 receptors during pregnancy: A protective factor for SARS-COV-2 infection? Med Hypotheses 2021;153:110641. [PMID: 34256245 DOI: 10.1016/j.mehy.2021.110641] [Reference Citation Analysis]
588 Allen JD, Watanabe Y, Chawla H, Newby ML, Crispin M. Subtle Influence of ACE2 Glycan Processing on SARS-CoV-2 Recognition. J Mol Biol 2021;433:166762. [PMID: 33340519 DOI: 10.1016/j.jmb.2020.166762] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
589 Becker RC. COVID-19 update: Covid-19-associated coagulopathy. J Thromb Thrombolysis 2020;50:54-67. [PMID: 32415579 DOI: 10.1007/s11239-020-02134-3] [Cited by in Crossref: 222] [Cited by in F6Publishing: 204] [Article Influence: 111.0] [Reference Citation Analysis]
590 Sahanic S, Löffler-Ragg J, Tymoszuk P, Hilbe R, Demetz E, Masanetz RK, Theurl M, Holfeld J, Gollmann-Tepeköylü C, Tzankov A, Weiss G, Giera M, Tancevski I. The Role of Innate Immunity and Bioactive Lipid Mediators in COVID-19 and Influenza. Front Physiol 2021;12:688946. [PMID: 34366882 DOI: 10.3389/fphys.2021.688946] [Reference Citation Analysis]
591 Nakhleh A, Shehadeh N. Glycemic control of type 2 diabetic patients with coronavirus disease during hospitalization: a proposal for early insulin therapy. Am J Physiol Endocrinol Metab 2020;318:E835-7. [PMID: 32401039 DOI: 10.1152/ajpendo.00163.2020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
592 Liu J, Li Y, Liu Q, Yao Q, Wang X, Zhang H, Chen R, Ren L, Min J, Deng F, Yan B, Liu L, Hu Z, Wang M, Zhou Y. SARS-CoV-2 cell tropism and multiorgan infection. Cell Discov 2021;7:17. [PMID: 33758165 DOI: 10.1038/s41421-021-00249-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
593 Akhmerov A, Marbán E. COVID-19 and the Heart. Circ Res 2020;126:1443-55. [PMID: 32252591 DOI: 10.1161/CIRCRESAHA.120.317055] [Cited by in Crossref: 306] [Cited by in F6Publishing: 185] [Article Influence: 153.0] [Reference Citation Analysis]
594 Rangaswamy AN, Ashok A, Hanumanthappa P, Chandrashekaramurthy AS, Kumbaiah M, Hiregouda P, Sharma V, Sosalegowda AH. Identification of Potential Peptide Inhibitors of ACE-2 Target of SARS-CoV-2 from Buckwheat & Quinoa. Int J Pept Res Ther 2021;:1-15. [PMID: 33850482 DOI: 10.1007/s10989-021-10211-1] [Reference Citation Analysis]
595 Soler MJ, Batlle D. Revisiting the renin-angiotensin system. Mol Cell Endocrinol 2021;529:111268. [PMID: 33819521 DOI: 10.1016/j.mce.2021.111268] [Reference Citation Analysis]
596 Johansen MD, Irving A, Montagutelli X, Tate MD, Rudloff I, Nold MF, Hansbro NG, Kim RY, Donovan C, Liu G, Faiz A, Short KR, Lyons JG, McCaughan GW, Gorrell MD, Cole A, Moreno C, Couteur D, Hesselson D, Triccas J, Neely GG, Gamble JR, Simpson SJ, Saunders BM, Oliver BG, Britton WJ, Wark PA, Nold-Petry CA, Hansbro PM. Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunol 2020;13:877-91. [PMID: 32820248 DOI: 10.1038/s41385-020-00340-z] [Cited by in Crossref: 60] [Cited by in F6Publishing: 57] [Article Influence: 30.0] [Reference Citation Analysis]
597 Zambrana C, Xenos A, Böttcher R, Malod-Dognin N, Pržulj N. Network neighbors of viral targets and differentially expressed genes in COVID-19 are drug target candidates. Sci Rep 2021;11:18985. [PMID: 34556735 DOI: 10.1038/s41598-021-98289-x] [Reference Citation Analysis]
598 Kaur M, Sharma A, Kumar S, Singh G, Barnwal RP. SARS-CoV-2: Insights into its structural intricacies and functional aspects for drug and vaccine development. Int J Biol Macromol 2021;179:45-60. [PMID: 33662418 DOI: 10.1016/j.ijbiomac.2021.02.212] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
599 Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, Liu M, Zhao X, Xie Y, Yang Y, Zhang S, Fan Z, Dong J, Yuan Z, Ding Z, Zhang Y, Hu L. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 2020;13:120. [PMID: 32887634 DOI: 10.1186/s13045-020-00954-7] [Cited by in Crossref: 113] [Cited by in F6Publishing: 120] [Article Influence: 56.5] [Reference Citation Analysis]
600 Lapaillerie D, Charlier C, Fernandes HS, Sousa SF, Lesbats P, Weigel P, Favereaux A, Guyonnet-Duperat V, Parissi V. In Silico, In Vitro and In Cellulo Models for Monitoring SARS-CoV-2 Spike/Human ACE2 Complex, Viral Entry and Cell Fusion. Viruses 2021;13:365. [PMID: 33669132 DOI: 10.3390/v13030365] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
601 Wruck W, Adjaye J. SARS-CoV-2 receptor ACE2 is co-expressed with genes related to transmembrane serine proteases, viral entry, immunity and cellular stress. Sci Rep 2020;10:21415. [PMID: 33293627 DOI: 10.1038/s41598-020-78402-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
602 Zhang X, Han P, Wang H, Xu Y, Li F, Li M, Fan L, Zhang H, Dai Q, Lin H, Qi X, Liang J, Wang X, Yang X. Engineering mesenchymal stromal cells with neutralizing and anti-inflammatory capability against SARS-CoV-2 infection. Mol Ther Methods Clin Dev 2021;21:754-64. [PMID: 34007862 DOI: 10.1016/j.omtm.2021.05.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
603 Tyagi A, Nigam S, Chauhan RS. A Concise Review of Baseline Facts of SARS‐CoV‐2 for Interdisciplinary Research. ChemistrySelect 2020;5:10897-923. [DOI: 10.1002/slct.202002420] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
604 Mast FD, Navare AT, van der Sloot AM, Coulombe-Huntington J, Rout MP, Baliga NS, Kaushansky A, Chait BT, Aderem A, Rice CM, Sali A, Tyers M, Aitchison JD. Crippling life support for SARS-CoV-2 and other viruses through synthetic lethality. J Cell Biol 2020;219:e202006159. [PMID: 32785687 DOI: 10.1083/jcb.202006159] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
605 Lu L, Liu X, Jin R, Guan R, Lin R, Qu Z. Potential Roles of the Renin-Angiotensin System in the Pathogenesis and Treatment of COVID-19. Biomed Res Int 2020;2020:7520746. [PMID: 33204713 DOI: 10.1155/2020/7520746] [Reference Citation Analysis]
606 Zhang L, Zhou L, Bao L, Liu J, Zhu H, Lv Q, Liu R, Chen W, Tong W, Wei Q, Xu Y, Deng W, Gao H, Xue J, Song Z, Yu P, Han Y, Zhang Y, Sun X, Yu X, Qin C. SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther 2021;6:337. [PMID: 34489403 DOI: 10.1038/s41392-021-00719-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
607 Singh A, Dhar R. A large-scale computational screen identifies strong potential inhibitors for disrupting SARS-CoV-2 S-protein and human ACE2 interaction. J Biomol Struct Dyn 2021;:1-14. [PMID: 33998954 DOI: 10.1080/07391102.2021.1921034] [Reference Citation Analysis]
608 Suganya S, Divya S, Parani M. Severe acute respiratory syndrome-coronavirus-2: Current advances in therapeutic targets and drug development. Rev Med Virol 2021;31:e2174. [PMID: 32965078 DOI: 10.1002/rmv.2174] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
609 Panigrahi S, Goswami T, Ferrari B, Antonelli CJ, Bazdar DA, Gilmore H, Freeman ML, Lederman MM, Sieg SF. SARS-CoV-2 Spike Protein Destabilizes Microvascular Homeostasis. Microbiol Spectr 2021;:e0073521. [PMID: 34935423 DOI: 10.1128/Spectrum.00735-21] [Reference Citation Analysis]
610 Li D, Hu J, Li D, Yang W, Yin SF, Qiu R. Reviews on Biological Activity, Clinical Trial and Synthesis Progress of Small Molecules for the Treatment of COVID-19. Top Curr Chem (Cham) 2021;379:4. [PMID: 33428032 DOI: 10.1007/s41061-020-00318-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
611 Rao S, Baranova A, Cao H, Chen J, Zhang X, Zhang F. Genetic mechanisms of COVID-19 and its association with smoking and alcohol consumption. Brief Bioinform 2021:bbab284. [PMID: 34308962 DOI: 10.1093/bib/bbab284] [Reference Citation Analysis]
612 Saponaro F, Rutigliano G, Sestito S, Bandini L, Storti B, Bizzarri R, Zucchi R. ACE2 in the Era of SARS-CoV-2: Controversies and Novel Perspectives. Front Mol Biosci 2020;7:588618. [PMID: 33195436 DOI: 10.3389/fmolb.2020.588618] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 14.0] [Reference Citation Analysis]
613 Siri M, Dastghaib S, Zamani M, Rahmani-Kukia N, Geraylow KR, Fakher S, Keshvarzi F, Mehrbod P, Ahmadi M, Mokarram P, Coombs KM, Ghavami S. Autophagy, Unfolded Protein Response, and Neuropilin-1 Cross-Talk in SARS-CoV-2 Infection: What Can Be Learned from Other Coronaviruses. Int J Mol Sci 2021;22:5992. [PMID: 34206057 DOI: 10.3390/ijms22115992] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
614 Burslem GM. The role of chemical biology in the fight against SARS-CoV-2. Biochem J 2021;478:157-77. [PMID: 33439990 DOI: 10.1042/BCJ20200514] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
615 Chen DY, Khan N, Close BJ, Goel RK, Blum B, Tavares AH, Kenney D, Conway HL, Ewoldt JK, Chitalia VC, Crossland NA, Chen CS, Kotton DN, Baker SC, Fuchs SY, Connor JH, Douam F, Emili A, Saeed M. SARS-CoV-2 disrupts proximal elements in the JAK-STAT pathway. J Virol 2021;:JVI0086221. [PMID: 34260266 DOI: 10.1128/JVI.00862-21] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
616 Glasgow A, Glasgow J, Limonta D, Solomon P, Lui I, Zhang Y, Nix MA, Rettko NJ, Zha S, Yamin R, Kao K, Rosenberg OS, Ravetch JV, Wiita AP, Leung KK, Lim SA, Zhou XX, Hobman TC, Kortemme T, Wells JA. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proc Natl Acad Sci U S A 2020;117:28046-55. [PMID: 33093202 DOI: 10.1073/pnas.2016093117] [Cited by in Crossref: 64] [Cited by in F6Publishing: 53] [Article Influence: 32.0] [Reference Citation Analysis]
617 [DOI: 10.1101/2020.05.12.091314] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
618 Zhou H, Fang Y, Xu T, Ni WJ, Shen AZ, Meng XM. Potential therapeutic targets and promising drugs for combating SARS-CoV-2. Br J Pharmacol 2020;177:3147-61. [PMID: 32368792 DOI: 10.1111/bph.15092] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 16.5] [Reference Citation Analysis]
619 Santa S, Doku DA, Olwal CO, Brown CA, Tagoe EA, Quaye O. Paradox of COVID-19 in pregnancy: are pregnant women more protected against or at elevated risk of severe COVID-19? Future Microbiol 2022. [PMID: 35510478 DOI: 10.2217/fmb-2021-0233] [Reference Citation Analysis]
620 Nappi F, Iervolino A, Avtaar Singh SS. Thromboembolic Complications of SARS-CoV-2 and Metabolic Derangements: Suggestions from Clinical Practice Evidence to Causative Agents. Metabolites 2021;11:341. [PMID: 34070672 DOI: 10.3390/metabo11060341] [Reference Citation Analysis]
621 Hunt AC, Case JB, Park YJ, Cao L, Wu K, Walls AC, Liu Z, Bowen JE, Yeh HW, Saini S, Helms L, Zhao YT, Hsiang TY, Starr TN, Goreshnik I, Kozodoy L, Carter L, Ravichandran R, Green LB, Matochko WL, Thomson CA, Vögeli B, Krüger-Gericke A, VanBlargan LA, Chen RE, Ying B, Bailey AL, Kafai NM, Boyken S, Ljubetič A, Edman N, Ueda G, Chow C, Addetia A, Panpradist N, Gale M, Freedman BS, Lutz BR, Bloom JD, Ruohola-Baker H, Whelan SPJ, Stewart L, Diamond MS, Veesler D, Jewett MC, Baker D. Multivalent designed proteins protect against SARS-CoV-2 variants of concern. bioRxiv 2021:2021. [PMID: 34268509 DOI: 10.1101/2021.07.07.451375] [Reference Citation Analysis]
622 Mei J, Zhou Y, Yang X, Zhang F, Liu X, Yu B. Active components in Ephedra sinica stapf disrupt the interaction between ACE2 and SARS-CoV-2 RBD: Potent COVID-19 therapeutic agents. J Ethnopharmacol 2021;278:114303. [PMID: 34102269 DOI: 10.1016/j.jep.2021.114303] [Reference Citation Analysis]
623 Jamalipour Soufi G, Iravani S. Potential inhibitors of SARS-CoV-2: recent advances. J Drug Target 2021;29:349-64. [PMID: 33210953 DOI: 10.1080/1061186X.2020.1853736] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
624 Egilmezer E, Rawlinson WD. Review of studies of severe acute respiratory syndrome related coronavirus-2 pathogenesis in human organoid models. Rev Med Virol 2021. [PMID: 33763936 DOI: 10.1002/rmv.2227] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
625 Xiao T, Lu J, Zhang J, Johnson RI, McKay LGA, Storm N, Lavine CL, Peng H, Cai Y, Rits-Volloch S, Lu S, Quinlan BD, Farzan M, Seaman MS, Griffiths A, Chen B. A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent in vitro. bioRxiv 2020:2020. [PMID: 32995768 DOI: 10.1101/2020.09.18.301952] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
626 Park YJ, Farooq J, Cho J, Sadanandan N, Cozene B, Gonzales-Portillo B, Saft M, Borlongan MC, Borlongan MC, Shytle RD, Willing AE, Garbuzova-Davis S, Sanberg PR, Borlongan CV. Fighting the War Against COVID-19 via Cell-Based Regenerative Medicine: Lessons Learned from 1918 Spanish Flu and Other Previous Pandemics. Stem Cell Rev Rep 2021;17:9-32. [PMID: 32789802 DOI: 10.1007/s12015-020-10026-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
627 Rizki-Safitri A, Traitteur T, Morizane R. Bioengineered Kidney Models: Methods and Functional Assessments. Function (Oxf) 2021;2:zqab026. [PMID: 35330622 DOI: 10.1093/function/zqab026] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
628 Mahalingam R, Dharmalingam P, Santhanam A, Kotla S, Davuluri G, Karmouty-Quintana H, Ashrith G, Thandavarayan RA. Single-cell RNA sequencing analysis of SARS-CoV-2 entry receptors in human organoids. J Cell Physiol 2021;236:2950-8. [PMID: 32944935 DOI: 10.1002/jcp.30054] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
629 Maveddat A, Mallah H, Rao S, Ali K, Sherali S, Nugent K. Severe Acute Respiratory Distress Syndrome Secondary to Coronavirus 2 (SARS-CoV-2). Int J Occup Environ Med 2020;11:157-78. [PMID: 33098401 DOI: 10.34172/ijoem.2020.2202] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
630 Park S, Kim H, Woo K, Kim JM, Jo HJ, Jeong Y, Lee KH. SARS-CoV-2 Variant Screening Using a Virus-Receptor-Based Electrical Biosensor. Nano Lett 2021. [PMID: 34962130 DOI: 10.1021/acs.nanolett.1c03108] [Reference Citation Analysis]
631 Tu WJ, McCuaig RD, Melino M, Rawle DJ, Le TT, Yan K, Suhrbier A, Johnston RL, Koufariotis LT, Waddell N, Cross EM, Tsimbalyuk S, Bain A, Ahern E, Collinson N, Phipps S, Forwood JK, Seddiki N, Rao S. Targeting novel LSD1-dependent ACE2 demethylation domains inhibits SARS-CoV-2 replication. Cell Discov 2021;7:37. [PMID: 34031383 DOI: 10.1038/s41421-021-00279-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
632 Pawlos A, Niedzielski M, Gorzelak-Pabiś P, Broncel M, Woźniak E. COVID-19: Direct and Indirect Mechanisms of Statins. Int J Mol Sci 2021;22:4177. [PMID: 33920709 DOI: 10.3390/ijms22084177] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
633 Knowlton KU. Pathogenesis of SARS-CoV-2 induced cardiac injury from the perspective of the virus. J Mol Cell Cardiol 2020;147:12-7. [PMID: 32771409 DOI: 10.1016/j.yjmcc.2020.08.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
634 Campana P, Parisi V, Leosco D, Bencivenga D, Della Ragione F, Borriello A. Dendritic Cells and SARS-CoV-2 Infection: Still an Unclarified Connection. Cells 2020;9:E2046. [PMID: 32911691 DOI: 10.3390/cells9092046] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
635 Duan X, Tang X, Nair MS, Zhang T, Qiu Y, Zhang W, Wang P, Huang Y, Xiang J, Wang H, Schwartz RE, Ho DD, Evans T, Chen S. An airway organoid-based screen identifies a role for the HIF1α-glycolysis axis in SARS-CoV-2 infection. Cell Rep 2021;37:109920. [PMID: 34731648 DOI: 10.1016/j.celrep.2021.109920] [Reference Citation Analysis]
636 Konwarh R. Nanobodies: Prospects of Expanding the Gamut of Neutralizing Antibodies Against the Novel Coronavirus, SARS-CoV-2. Front Immunol 2020;11:1531. [PMID: 32655584 DOI: 10.3389/fimmu.2020.01531] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 13.0] [Reference Citation Analysis]
637 Wu J, Yuan X, Wang B, Gu R, Li W, Xiang X, Tang L, Sun H. Severe Acute Respiratory Syndrome Coronavirus 2: From Gene Structure to Pathogenic Mechanisms and Potential Therapy. Front Microbiol 2020;11:1576. [PMID: 32719672 DOI: 10.3389/fmicb.2020.01576] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
638 Zhao X, Ding Y, Du J, Fan Y. 2020 update on human coronaviruses: One health, one world. Med Nov Technol Devices 2020;8:100043. [PMID: 33521622 DOI: 10.1016/j.medntd.2020.100043] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
639 Hanna R, Dalvi S, Sălăgean T, Bordea IR, Benedicenti S. Phototherapy as a Rational Antioxidant Treatment Modality in COVID-19 Management; New Concept and Strategic Approach: Critical Review. Antioxidants (Basel) 2020;9:E875. [PMID: 32947974 DOI: 10.3390/antiox9090875] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
640 Garreta E, Nauryzgaliyeva Z, Marco A, Safi W, Montserrat N. Dissecting nephron morphogenesis using kidney organoids from human pluripotent stem cells. Curr Opin Genet Dev 2021;72:22-9. [PMID: 34781071 DOI: 10.1016/j.gde.2021.10.002] [Reference Citation Analysis]
641 Youk J, Kim T, Evans KV, Jeong YI, Hur Y, Hong SP, Kim JH, Yi K, Kim SY, Na KJ, Bleazard T, Kim HM, Fellows M, Mahbubani KT, Saeb-Parsy K, Kim SY, Kim YT, Koh GY, Choi BS, Ju YS, Lee JH. Three-Dimensional Human Alveolar Stem Cell Culture Models Reveal Infection Response to SARS-CoV-2. Cell Stem Cell 2020;27:905-919.e10. [PMID: 33142113 DOI: 10.1016/j.stem.2020.10.004] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 27.5] [Reference Citation Analysis]
642 Manolis AS, Manolis TA, Manolis AA, Melita H. The Controversy of Renin-Angiotensin-System Blocker Facilitation Versus Countering COVID-19 Infection. J Cardiovasc Pharmacol 2020;76:397-406. [PMID: 32769760 DOI: 10.1097/FJC.0000000000000894] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
643 Schimmel L, Chew KY, Stocks CJ, Yordanov TE, Essebier P, Kulasinghe A, Monkman J, Dos Santos Miggiolaro AFR, Cooper C, de Noronha L, Schroder K, Lagendijk AK, Labzin LI, Short KR, Gordon EJ. Endothelial cells are not productively infected by SARS-CoV-2. Clin Transl Immunology 2021;10:e1350. [PMID: 34721846 DOI: 10.1002/cti2.1350] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
644 Peng F, Tu L, Yang Y, Hu P, Wang R, Hu Q, Cao F, Jiang T, Sun J, Xu G, Chang C. Management and Treatment of COVID-19: The Chinese Experience. Can J Cardiol 2020;36:915-30. [PMID: 32439306 DOI: 10.1016/j.cjca.2020.04.010] [Cited by in Crossref: 70] [Cited by in F6Publishing: 67] [Article Influence: 35.0] [Reference Citation Analysis]
645 Li AJ, Li X. Sex-dependent immune response and lethality of COVID-19. Stem Cell Res 2020;50:102116. [PMID: 33352531 DOI: 10.1016/j.scr.2020.102116] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
646 Abdelrahman Z, Chen Z, Lyu H, Wang X. Comparisons of the immunological landscape between COVID-19, influenza, and respiratory syncytial virus patients by clustering analysis. Comput Struct Biotechnol J 2021;19:2347-55. [PMID: 33907612 DOI: 10.1016/j.csbj.2021.04.043] [Reference Citation Analysis]
647 Ma D, Liu S, Hu L, He Q, Shi W, Yan D, Cao Y, Zhang G, Wang Z, Wu J, Jiang C. Single-cell RNA sequencing identify SDCBP in ACE2-positive bronchial epithelial cells negatively correlates with COVID-19 severity. J Cell Mol Med 2021;25:7001-12. [PMID: 34137173 DOI: 10.1111/jcmm.16714] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
648 Chan KK, Tan TJC, Narayanan KK, Procko E. An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants. Sci Adv 2021;7:eabf1738. [PMID: 33597251 DOI: 10.1126/sciadv.abf1738] [Cited by in Crossref: 19] [Cited by in F6Publishing: 26] [Article Influence: 19.0] [Reference Citation Analysis]
649 Kim HN, Park HH, Lim W, Hong KS, Ahn JH, Na DH, Kim I, Jang JG, Bae J, Lee W. Ferritin Nanocage‐Based Methyltransferase SETD6 for COVID‐19 Therapy. Adv Funct Mater 2020;30:2006110. [DOI: 10.1002/adfm.202006110] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
650 Gupta D, Kumar A, Mandloi A, Shenoy V. Renin angiotensin aldosterone system in pulmonary fibrosis: Pathogenesis to therapeutic possibilities. Pharmacol Res 2021;174:105924. [PMID: 34607005 DOI: 10.1016/j.phrs.2021.105924] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
651 Yamaguchi T, Hoshizaki M, Minato T, Nirasawa S, Asaka MN, Niiyama M, Imai M, Uda A, Chan JF, Takahashi S, An J, Saku A, Nukiwa R, Utsumi D, Kiso M, Yasuhara A, Poon VK, Chan CC, Fujino Y, Motoyama S, Nagata S, Penninger JM, Kamada H, Yuen KY, Kamitani W, Maeda K, Kawaoka Y, Yasutomi Y, Imai Y, Kuba K. ACE2-like carboxypeptidase B38-CAP protects from SARS-CoV-2-induced lung injury. Nat Commun 2021;12:6791. [PMID: 34815389 DOI: 10.1038/s41467-021-27097-8] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
652 Khezri MR, Zolbanin NM, Ghasemnejad-Berenji M, Jafari R. Azithromycin: Immunomodulatory and antiviral properties for SARS-CoV-2 infection. Eur J Pharmacol 2021;905:174191. [PMID: 34015317 DOI: 10.1016/j.ejphar.2021.174191] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
653 Shen XR, Geng R, Li Q, Chen Y, Li SF, Wang Q, Min J, Yang Y, Li B, Jiang RD, Wang X, Zheng XS, Zhu Y, Jia JK, Yang XL, Liu MQ, Gong QC, Zhang YL, Guan ZQ, Li HL, Zheng ZH, Shi ZL, Zhang HL, Peng K, Zhou P. ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal Transduct Target Ther 2022;7:83. [PMID: 35277473 DOI: 10.1038/s41392-022-00919-x] [Reference Citation Analysis]
654 Wadowski PP, Jilma B, Kopp CW, Ertl S, Gremmel T, Koppensteiner R. Glycocalyx as Possible Limiting Factor in COVID-19. Front Immunol 2021;12:607306. [PMID: 33692785 DOI: 10.3389/fimmu.2021.607306] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
655 Zhang J, Huang F, Xia B, Yuan Y, Yu F, Wang G, Chen Q, Wang Q, Li Y, Li R, Song Z, Pan T, Chen J, Lu G, Zhang H. The interferon-stimulated exosomal hACE2 potently inhibits SARS-CoV-2 replication through competitively blocking the virus entry. Signal Transduct Target Ther 2021;6:189. [PMID: 33980808 DOI: 10.1038/s41392-021-00604-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
656 Gorshkov K, Susumu K, Chen J, Xu M, Pradhan M, Zhu W, Hu X, Breger JC, Wolak M, Oh E. Quantum Dot-Conjugated SARS-CoV-2 Spike Pseudo-Virions Enable Tracking of Angiotensin Converting Enzyme 2 Binding and Endocytosis. ACS Nano 2020;14:12234-47. [PMID: 32845122 DOI: 10.1021/acsnano.0c05975] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 11.5] [Reference Citation Analysis]
657 Ropón-Palacios G, Pérez-Silva J, Rojas-Humpire R, Olivos-Ramírez GE, Chenet-Zuta M, Cornejo-Villanueva V, Carmen-Sifuentes S, Otazu K, Ramirez-Díaz YL, Chozo KV, Camps I. Glycosylation is key for enhancing drug recognition into spike glycoprotein of SARS-CoV-2. Comput Biol Chem 2022;98:107668. [PMID: 35339763 DOI: 10.1016/j.compbiolchem.2022.107668] [Reference Citation Analysis]
658 Zamai L. The Yin and Yang of ACE/ACE2 Pathways: The Rationale for the Use of Renin-Angiotensin System Inhibitors in COVID-19 Patients. Cells 2020;9:E1704. [PMID: 32708755 DOI: 10.3390/cells9071704] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
659 Jacob F, Pather SR, Huang WK, Wong SZH, Zhou H, Zhang F, Cubitt B, Chen CZ, Xu M, Pradhan M, Zhang DY, Zheng W, Bang AG, Song H, de A Torre JC, Ming GL. Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism. bioRxiv 2020:2020. [PMID: 32766575 DOI: 10.1101/2020.07.28.225151] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
660 Tazi Mezalek Z. [COVID-19: Coagulopathy and thrombosis]. Rev Med Interne 2021;42:93-100. [PMID: 33509669 DOI: 10.1016/j.revmed.2020.12.014] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
661 Qu L, Chen C, Yin T, Fang Q, Hong Z, Zhou R, Tang H, Dong H. ACE2 and Innate Immunity in the Regulation of SARS-CoV-2-Induced Acute Lung Injury: A Review. Int J Mol Sci 2021;22:11483. [PMID: 34768911 DOI: 10.3390/ijms222111483] [Reference Citation Analysis]
662 Larijani B, Foroughi-Heravani N, Abedi M, Tayanloo-Beik A, Rezaei-Tavirani M, Adibi H, Arjmand B. Recent Advances of COVID-19 Modeling Based on Regenerative Medicine. Front Cell Dev Biol 2021;9:683619. [PMID: 34760882 DOI: 10.3389/fcell.2021.683619] [Reference Citation Analysis]
663 de Oliveira M, De Sibio MT, Costa FAS, Sakalem ME. Airway and Alveoli Organoids as Valuable Research Tools in COVID-19. ACS Biomater Sci Eng 2021;7:3487-502. [PMID: 34288642 DOI: 10.1021/acsbiomaterials.1c00306] [Reference Citation Analysis]
664 Cao M, Su X, Jiang S. Broad-Spectrum Anti-coronavirus Vaccines and Therapeutics to Combat the Current COVID-19 Pandemic and Future Coronavirus Disease Outbreaks. Stem Cell Reports 2021;16:398-411. [PMID: 33691145 DOI: 10.1016/j.stemcr.2020.12.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
665 Gan HH, Twaddle A, Marchand B, Gunsalus KC. Structural Modeling of the SARS-CoV-2 Spike/Human ACE2 Complex Interface can Identify High-Affinity Variants Associated with Increased Transmissibility. J Mol Biol 2021;433:167051. [PMID: 33992693 DOI: 10.1016/j.jmb.2021.167051] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
666 Jacob F, Pather SR, Huang WK, Zhang F, Wong SZH, Zhou H, Cubitt B, Fan W, Chen CZ, Xu M, Pradhan M, Zhang DY, Zheng W, Bang AG, Song H, Carlos de la Torre J, Ming GL. Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism Predominates in Choroid Plexus Epithelium. Cell Stem Cell 2020;27:937-950.e9. [PMID: 33010822 DOI: 10.1016/j.stem.2020.09.016] [Cited by in Crossref: 76] [Cited by in F6Publishing: 85] [Article Influence: 38.0] [Reference Citation Analysis]
667 Amraei R, Xia C, Olejnik J, White MR, Napoleon MA, Lotfollahzadeh S, Hauser BM, Schmidt AG, Chitalia V, Mühlberger E, Costello CE, Rahimi N. Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells. Proc Natl Acad Sci USA 2022;119:e2113874119. [DOI: 10.1073/pnas.2113874119] [Reference Citation Analysis]
668 Yu J. Organoids: A New Model for SARS-CoV-2 Translational Research. Int J Stem Cells 2021;14:138-49. [PMID: 33632991 DOI: 10.15283/ijsc20169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
669 Mou H, Quinlan BD, Peng H, Liu G, Guo Y, Peng S, Zhang L, Davis-Gardner ME, Gardner MR, Crynen G, DeVaux LB, Voo ZX, Bailey CC, Alpert MD, Rader C, Gack MU, Choe H, Farzan M. Mutations derived from horseshoe bat ACE2 orthologs enhance ACE2-Fc neutralization of SARS-CoV-2. PLoS Pathog 2021;17:e1009501. [PMID: 33836016 DOI: 10.1371/journal.ppat.1009501] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
670 AlAjmi MF, Rehman MT, Hussain A. Celecoxib, Glipizide, Lapatinib, and Sitagliptin as potential suspects of aggravating SARS-CoV-2 (COVID-19) infection: a computational approach. J Biomol Struct Dyn 2021;:1-12. [PMID: 34709124 DOI: 10.1080/07391102.2021.1994013] [Reference Citation Analysis]
671 Issa H, Eid AH, Berry B, Takhviji V, Khosravi A, Mantash S, Nehme R, Hallal R, Karaki H, Dhayni K, Faour WH, Kobeissy F, Nehme A, Zibara K. Combination of Angiotensin (1-7) Agonists and Convalescent Plasma as a New Strategy to Overcome Angiotensin Converting Enzyme 2 (ACE2) Inhibition for the Treatment of COVID-19. Front Med (Lausanne) 2021;8:620990. [PMID: 33816521 DOI: 10.3389/fmed.2021.620990] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
672 Wu J, Deng W, Li S, Yang X. Advances in research on ACE2 as a receptor for 2019-nCoV. Cell Mol Life Sci 2021;78:531-44. [PMID: 32780149 DOI: 10.1007/s00018-020-03611-x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 12.5] [Reference Citation Analysis]
673 Elrashdy F, Aljaddawi AA, Redwan EM, Uversky VN. On the potential role of exosomes in the COVID-19 reinfection/reactivation opportunity. J Biomol Struct Dyn. 2020;1-12. [PMID: 32643586 DOI: 10.1080/07391102.2020.1790426] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
674 Wagner JUG, Bojkova D, Shumliakivska M, Luxán G, Nicin L, Aslan GS, Milting H, Kandler JD, Dendorfer A, Heumueller AW, Fleming I, Bibli SI, Jakobi T, Dieterich C, Zeiher AM, Ciesek S, Cinatl J, Dimmeler S. Increased susceptibility of human endothelial cells to infections by SARS-CoV-2 variants. Basic Res Cardiol 2021;116:42. [PMID: 34224022 DOI: 10.1007/s00395-021-00882-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
675 Hong W, Xiong J, Nyaruaba R, Li J, Muturi E, Liu H, Yu J, Yang H, Wei H. Rapid determination of infectious SARS-CoV-2 in PCR-positive samples by SDS-PMA assisted RT-qPCR. Sci Total Environ 2021;797:149085. [PMID: 34293609 DOI: 10.1016/j.scitotenv.2021.149085] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
676 Farhud DD, Zokaei S. Fight against Viruses (COVID-19): Peace among Nations. Iran J Public Health 2020;49:1-3. [PMID: 34268199 DOI: 10.18502/ijph.v49iS1.3663] [Reference Citation Analysis]
677 Paris GC, Azevedo AA, Ferreira AL, Azevedo YMA, Rainho MA, Oliveira GP, Silva KR, Cortez EAC, Stumbo AC, Carvalho SN, de Carvalho L, Thole AA. Therapeutic potential of mesenchymal stem cells in multiple organs affected by COVID-19. Life Sci 2021;278:119510. [PMID: 33865879 DOI: 10.1016/j.lfs.2021.119510] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
678 Jacob CO. On the genetics and immunopathogenesis of COVID-19. Clin Immunol 2020;220:108591. [PMID: 32920210 DOI: 10.1016/j.clim.2020.108591] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
679 Watzky M, de Dieuleveult M, Letessier A, Saint-Ruf C, Miotto B. Assessing the consequences of environmental exposures on the expression of the human receptor and proteases involved in SARS-CoV-2 cell-entry. Environ Res 2021;195:110317. [PMID: 33069705 DOI: 10.1016/j.envres.2020.110317] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
680 Bailey AL, Dmytrenko O, Greenberg L, Bredemeyer AL, Ma P, Liu J, Penna V, Lai L, Winkler ES, Sviben S, Brooks E, Nair AP, Heck KA, Rali AS, Simpson L, Saririan M, Hobohm D, Stump WT, Fitzpatrick JA, Xie X, Shi PY, Hinson JT, Gi WT, Schmidt C, Leuschner F, Lin CY, Diamond MS, Greenberg MJ, Lavine KJ. SARS-CoV-2 Infects Human Engineered Heart Tissues and Models COVID-19 Myocarditis. bioRxiv 2020:2020. [PMID: 33173875 DOI: 10.1101/2020.11.04.364315] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
681 Grzegorowska O, Lorkowski J. Possible Correlations between Atherosclerosis, Acute Coronary Syndromes and COVID-19. J Clin Med 2020;9:E3746. [PMID: 33233333 DOI: 10.3390/jcm9113746] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
682 Bibilashvili RS, Sidorova MV, Dudkina US, Palkeeva ME, Molokoedov AS, Kozlovskaya LI, Egorov AM, Ishmukhametov AA, Parfyonova EV. Peptide Inhibitors of the Interaction of the SARS-CoV-2 Receptor-Binding Domain with the ACE2 Cell Receptor. Biochem Mosc Suppl B Biomed Chem 2021;15:274-80. [PMID: 34745440 DOI: 10.1134/S199075082104003X] [Reference Citation Analysis]
683 Zanganeh S, Goodarzi N, Doroudian M, Movahed E. Potential COVID-19 therapeutic approaches targeting angiotensin-converting enzyme 2; An updated review. Rev Med Virol 2021;:e2321. [PMID: 34958163 DOI: 10.1002/rmv.2321] [Reference Citation Analysis]
684 Memon B, Abdelalim EM. ACE2 function in the pancreatic islet: Implications for relationship between SARS-CoV-2 and diabetes. Acta Physiol (Oxf) 2021;:e13733. [PMID: 34561952 DOI: 10.1111/apha.13733] [Reference Citation Analysis]
685 Jia W, Wang J, Sun B, Zhou J, Shi Y, Zhou Z. The Mechanisms and Animal Models of SARS-CoV-2 Infection. Front Cell Dev Biol 2021;9:578825. [PMID: 33987176 DOI: 10.3389/fcell.2021.578825] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
686 Stoeger T, Nunes Amaral LA. COVID-19 research risks ignoring important host genes due to pre-established research patterns. Elife 2020;9:e61981. [PMID: 33231169 DOI: 10.7554/eLife.61981] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
687 Yang J, Petitjean SJL, Koehler M, Zhang Q, Dumitru AC, Chen W, Derclaye S, Vincent SP, Soumillion P, Alsteens D. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat Commun 2020;11:4541. [PMID: 32917884 DOI: 10.1038/s41467-020-18319-6] [Cited by in Crossref: 113] [Cited by in F6Publishing: 107] [Article Influence: 56.5] [Reference Citation Analysis]
688 Gressens SB, Leftheriotis G, Dussaule JC, Flamant M, Levy BI, Vidal-Petiot E. Controversial Roles of the Renin Angiotensin System and Its Modulators During the COVID-19 Pandemic. Front Physiol 2021;12:624052. [PMID: 33692701 DOI: 10.3389/fphys.2021.624052] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
689 Xiong J, Xiang Y, Huang Z, Liu X, Wang M, Ge G, Chen H, Xu J, Zheng M, Chen L. Structure-Based Virtual Screening and Identification of Potential Inhibitors of SARS-CoV-2 S-RBD and ACE2 Interaction. Front Chem 2021;9:740702. [PMID: 34646813 DOI: 10.3389/fchem.2021.740702] [Reference Citation Analysis]
690 [DOI: 10.1101/2020.10.23.20218511] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
691 Penninger JM, Grant MB, Sung JJY. The Role of Angiotensin Converting Enzyme 2 in Modulating Gut Microbiota, Intestinal Inflammation, and Coronavirus Infection. Gastroenterology. 2021;160:39-46. [PMID: 33130103 DOI: 10.1053/j.gastro.2020.07.067] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
692 Calligaris M, Cuffaro D, Bonelli S, Spanò DP, Rossello A, Nuti E, Scilabra SD. Strategies to Target ADAM17 in Disease: From its Discovery to the iRhom Revolution. Molecules 2021;26:944. [PMID: 33579029 DOI: 10.3390/molecules26040944] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
693 Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Care 2020;24:353. [PMID: 32546188 DOI: 10.1186/s13054-020-03062-7] [Cited by in Crossref: 162] [Cited by in F6Publishing: 146] [Article Influence: 81.0] [Reference Citation Analysis]
694 Hess DC, Eldahshan W, Rutkowski E. COVID-19-Related Stroke. Transl Stroke Res. 2020;11:322-325. [PMID: 32378030 DOI: 10.1007/s12975-020-00818-9] [Cited by in Crossref: 169] [Cited by in F6Publishing: 157] [Article Influence: 84.5] [Reference Citation Analysis]
695 Zheng A, Wu L, Ma R, Han P, Huang B, Qiao C, Wang Q, Tan W, Gao GF, Han P. A binding-enhanced but enzymatic activity-eliminated human ACE2 efficiently neutralizes SARS-CoV-2 variants. Signal Transduct Target Ther 2022;7:10. [PMID: 35013100 DOI: 10.1038/s41392-021-00821-y] [Reference Citation Analysis]
696 Dey P, Vaijayanthimala S, Dalvi VS, Jain A, Gola D, Bajpai M, Bharti RK, Chauhan N. COVID-19: Understanding the Pandemic Emergence, Impact and Infection Prevalence Worldwide. J Pure Appl Microbiol 2020;14:2235-51. [DOI: 10.22207/jpam.14.4.02] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
697 Sohag AAM, Hannan MA, Rahman S, Hossain M, Hasan M, Khan MK, Khatun A, Dash R, Uddin MJ. Revisiting potential druggable targets against SARS-CoV-2 and repurposing therapeutics under preclinical study and clinical trials: A comprehensive review. Drug Dev Res 2020. [PMID: 32632960 DOI: 10.1002/ddr.21709] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
698 Aimrane A, Laaradia MA, Sereno D, Perrin P, Draoui A, Bougadir B, Hadach M, Zahir M, Fdil N, El Hiba O, El Hidan MA, Kahime K. Insight into COVID-19's epidemiology, pathology, and treatment. Heliyon 2022;8:e08799. [DOI: 10.1016/j.heliyon.2022.e08799] [Reference Citation Analysis]
699 Li S, Li S, Disoma C, Zheng R, Zhou M, Razzaq A, Liu P, Zhou Y, Dong Z, Du A, Peng J, Hu L, Huang J, Feng P, Jiang T, Xia Z. SARS‐CoV‐2: Mechanism of infection and emerging technologies for future prospects. Rev Med Virol 2021;31. [DOI: 10.1002/rmv.2168] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
700 Pang XC, Zhang HX, Zhang Z, Rinkiko S, Cui YM, Zhu YZ. The Two-Way Switch Role of ACE2 in the Treatment of Novel Coronavirus Pneumonia and Underlying Comorbidities. Molecules 2020;26:E142. [PMID: 33396184 DOI: 10.3390/molecules26010142] [Reference Citation Analysis]
701 Chapoval SP, Keegan AD. Perspectives and potential approaches for targeting neuropilin 1 in SARS-CoV-2 infection. Mol Med 2021;27:162. [PMID: 34961486 DOI: 10.1186/s10020-021-00423-y] [Reference Citation Analysis]
702 Zhang J, Xiao T, Cai Y, Chen B. Structure of SARS-CoV-2 spike protein. Curr Opin Virol 2021;50:173-82. [PMID: 34534731 DOI: 10.1016/j.coviro.2021.08.010] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
703 Roberts KA, Colley L, Agbaedeng TA, Ellison-Hughes GM, Ross MD. Vascular Manifestations of COVID-19 - Thromboembolism and Microvascular Dysfunction. Front Cardiovasc Med 2020;7:598400. [PMID: 33195487 DOI: 10.3389/fcvm.2020.598400] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
704 Natarelli L, Virgili F, Weber C. SARS-CoV-2, Cardiovascular Diseases, and Noncoding RNAs: A Connected Triad. Int J Mol Sci 2021;22:12243. [PMID: 34830125 DOI: 10.3390/ijms222212243] [Reference Citation Analysis]
705 Calò LA, Davis PA. Are the Clinical Presentations (Phenotypes) of Gitelman's and Bartter's Syndromes Gene Mutations Driven by Their Effects on Intracellular pH, Their "pH" Enotype? Int J Mol Sci 2020;21:E5660. [PMID: 32784543 DOI: 10.3390/ijms21165660] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
706 Nolasco P, Borsoi J, Moraes CB, Freitas-Junior LH, Pereira LV. Human induced pluripotent stem cells as a tool for disease modeling and drug screening for COVID-19. Genet Mol Biol 2020;44:e20200198. [PMID: 33275129 DOI: 10.1590/1678-4685-GMB-2020-0198] [Reference Citation Analysis]
707 Shibata S, Arima H, Asayama K, Hoshide S, Ichihara A, Ishimitsu T, Kario K, Kishi T, Mogi M, Nishiyama A, Ohishi M, Ohkubo T, Tamura K, Tanaka M, Yamamoto E, Yamamoto K, Itoh H. Hypertension and related diseases in the era of COVID-19: a report from the Japanese Society of Hypertension Task Force on COVID-19. Hypertens Res 2020;43:1028-46. [PMID: 32737423 DOI: 10.1038/s41440-020-0515-0] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 19.0] [Reference Citation Analysis]
708 Robinson FA, Mihealsick RP, Wagener BM, Hanna P, Poston MD, Efimov IR, Shivkumar K, Hoover DB. Role of angiotensin-converting enzyme 2 and pericytes in cardiac complications of COVID-19 infection. Am J Physiol Heart Circ Physiol 2020;319:H1059-68. [PMID: 33036546 DOI: 10.1152/ajpheart.00681.2020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
709 Zhang J, Xie B, Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav Immun 2020;87:59-73. [PMID: 32334062 DOI: 10.1016/j.bbi.2020.04.046] [Cited by in Crossref: 111] [Cited by in F6Publishing: 100] [Article Influence: 55.5] [Reference Citation Analysis]
710 [DOI: 10.1101/2020.06.01.20119651] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
711 Rahman MM, Hasan M, Ahmed A. Potential detrimental role of soluble ACE2 in severe COVID-19 comorbid patients. Rev Med Virol 2021. [PMID: 33426683 DOI: 10.1002/rmv.2213] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
712 [DOI: 10.1101/2020.04.24.050534] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
713 Murdocca M, Citro G, Romeo I, Lupia A, Miersch S, Amadio B, Bonomo A, Rossi A, Sidhu SS, Pandolfi PP, Alcaro S, Sangiuolo FC, Novelli G. Peptide Platform as a Powerful Tool in the Fight against COVID-19. Viruses 2021;13:1667. [PMID: 34452531 DOI: 10.3390/v13081667] [Reference Citation Analysis]
714 Geurts MH, van der Vaart J, Beumer J, Clevers H. The Organoid Platform: Promises and Challenges as Tools in the Fight against COVID-19. Stem Cell Reports 2021;16:412-8. [PMID: 33691146 DOI: 10.1016/j.stemcr.2020.11.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
715 Cosar B, Karagulleoglu ZY, Unal S, Ince AT, Uncuoglu DB, Tuncer G, Kilinc BR, Ozkan YE, Ozkoc HC, Demir IN, Eker A, Karagoz F, Simsek SY, Yasar B, Pala M, Demir A, Atak IN, Mendi AH, Bengi VU, Cengiz Seval G, Gunes Altuntas E, Kilic P, Demir-Dora D. SARS-CoV-2 Mutations and their Viral Variants. Cytokine Growth Factor Rev 2021:S1359-6101(21)00053-8. [PMID: 34580015 DOI: 10.1016/j.cytogfr.2021.06.001] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
716 Servidio C, Stellacci F. Therapeutic approaches against coronaviruses acute respiratory syndrome. Pharmacol Res Perspect 2021;9:e00691. [PMID: 33378565 DOI: 10.1002/prp2.691] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
717 Klonoff DC. The Coronavirus 2019 Pandemic and Diabetes: An International Perspective. J Diabetes Sci Technol 2020;14:703-4. [PMID: 32517506 DOI: 10.1177/1932296820933075] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
718 Li M, Gong J, Gao L, Zou T, Kang J, Xu H. Advanced human developmental toxicity and teratogenicity assessment using human organoid models. Ecotoxicol Environ Saf 2022;235:113429. [PMID: 35325609 DOI: 10.1016/j.ecoenv.2022.113429] [Reference Citation Analysis]
719 Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A 2020;117:11727-34. [PMID: 32376634 DOI: 10.1073/pnas.2003138117] [Cited by in Crossref: 1047] [Cited by in F6Publishing: 977] [Article Influence: 523.5] [Reference Citation Analysis]
720 Paoli A, Gorini S, Caprio M. The dark side of the spoon - glucose, ketones and COVID-19: a possible role for ketogenic diet? J Transl Med 2020;18:441. [PMID: 33218357 DOI: 10.1186/s12967-020-02600-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
721 Bos JM, Hebl VB, Oberg AL, Sun Z, Herman DS, Teekakirikul P, Seidman JG, Seidman CE, Dos Remedios CG, Maleszewski JJ, Schaff HV, Dearani JA, Noseworthy PA, Friedman PA, Ommen SR, Brozovich FV, Ackerman MJ. Marked Up-Regulation of ACE2 in Hearts of Patients With Obstructive Hypertrophic Cardiomyopathy: Implications for SARS-CoV-2-Mediated COVID-19. Mayo Clin Proc 2020;95:1354-68. [PMID: 32448590 DOI: 10.1016/j.mayocp.2020.04.028] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 13.0] [Reference Citation Analysis]
722 Hanafi R, Roger PA, Perin B, Kuchcinski G, Deleval N, Dallery F, Michel D, Hacein-Bey L, Pruvo JP, Outteryck O, Constans JM. COVID-19 Neurologic Complication with CNS Vasculitis-Like Pattern. AJNR Am J Neuroradiol 2020;41:1384-7. [PMID: 32554425 DOI: 10.3174/ajnr.A6651] [Cited by in Crossref: 66] [Cited by in F6Publishing: 38] [Article Influence: 33.0] [Reference Citation Analysis]
723 Mandrycky CJ, Howard CC, Rayner SG, Shin YJ, Zheng Y. Organ-on-a-chip systems for vascular biology. J Mol Cell Cardiol 2021;159:1-13. [PMID: 34118217 DOI: 10.1016/j.yjmcc.2021.06.002] [Reference Citation Analysis]
724 Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, Bolling MC, Dijkstra G, Voors AA, Osterhaus AD, van der Voort PH, Mulder DJ, van Goor H. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020;251:228-248. [PMID: 32418199 DOI: 10.1002/path.5471] [Cited by in Crossref: 284] [Cited by in F6Publishing: 280] [Article Influence: 142.0] [Reference Citation Analysis]
725 Ahmad Mulyadi Lai HI, Chou SJ, Chien Y, Tsai PH, Chien CS, Hsu CC, Jheng YC, Wang ML, Chiou SH, Chou YB, Hwang DK, Lin TC, Chen SJ, Yang YP. Expression of Endogenous Angiotensin-Converting Enzyme 2 in Human Induced Pluripotent Stem Cell-Derived Retinal Organoids. Int J Mol Sci 2021;22:1320. [PMID: 33525682 DOI: 10.3390/ijms22031320] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
726 [DOI: 10.1101/2020.08.21.261727] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
727 Sokolowska M, Lukasik ZM, Agache I, Akdis CA, Akdis D, Akdis M, Barcik W, Brough HA, Eiwegger T, Eljaszewicz A, Eyerich S, Feleszko W, Gomez-Casado C, Hoffmann-Sommergruber K, Janda J, Jiménez-Saiz R, Jutel M, Knol EF, Kortekaas Krohn I, Kothari A, Makowska J, Moniuszko M, Morita H, O'Mahony L, Nadeau K, Ozdemir C, Pali-Schöll I, Palomares O, Papaleo F, Prunicki M, Schmidt-Weber CB, Sediva A, Schwarze J, Shamji MH, Tramper-Stranders GA, van de Veen W, Untersmayr E. Immunology of COVID-19: Mechanisms, clinical outcome, diagnostics, and perspectives-A report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 2020;75:2445-76. [PMID: 32584441 DOI: 10.1111/all.14462] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 22.5] [Reference Citation Analysis]
728 Liu F, Han K, Blair R, Kenst K, Qin Z, Upcin B, Wörsdörfer P, Midkiff CC, Mudd J, Belyaeva E, Milligan NS, Rorison TD, Wagner N, Bodem J, Dölken L, Aktas BH, Vander Heide RS, Yin XM, Kolls JK, Roy CJ, Rappaport J, Ergün S, Qin X. SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro. Front Cell Infect Microbiol 2021;11:701278. [PMID: 34307198 DOI: 10.3389/fcimb.2021.701278] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
729 Sheikhi A, Hojjat-Farsangi M. An immunotherapeutic method for COVID-19 patients: a soluble ACE2-Anti-CD16 VHH to block SARS-CoV-2 Spike protein. Hum Vaccin Immunother 2021;17:92-7. [PMID: 32663051 DOI: 10.1080/21645515.2020.1787066] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
730 Huang Z, Ning B, Yang HS, Youngquist BM, Niu A, Lyon CJ, Beddingfield BJ, Fears AC, Monk CH, Murrell AE, Bilton SJ, Linhuber JP, Norton EB, Dietrich ML, Yee J, Lai W, Scott JW, Yin XM, Rappaport J, Robinson JE, Saba NS, Roy CJ, Zwezdaryk KJ, Zhao Z, Hu TY. Sensitive tracking of circulating viral RNA through all stages of SARS-CoV-2 infection. J Clin Invest 2021;131:146031. [PMID: 33561010 DOI: 10.1172/JCI146031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
731 Godoy LC, Goligher EC, Lawler PR, Slutsky AS, Zarychanski R. Anticipating and managing coagulopathy and thrombotic manifestations of severe COVID-19. CMAJ 2020;192:E1156-61. [PMID: 32816822 DOI: 10.1503/cmaj.201240] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
732 Tarnawski AS, Ahluwalia A. Endothelial cells and blood vessels are major targets for COVID-19-induced tissue injury and spreading to various organs. World J Gastroenterol 2022;28:275-89. [PMID: 35110950 DOI: 10.3748/wjg.v28.i3.275] [Reference Citation Analysis]
733 Krasemann S, Haferkamp U, Pfefferle S, Woo MS, Heinrich F, Schweizer M, Appelt-menzel A, Cubukova A, Barenberg J, Leu J, Hartmann K, Thies E, Littau JL, Sepulveda-falla D, Zhang L, Ton K, Liang Y, Matschke J, Ricklefs F, Sauvigny T, Sperhake J, Fitzek A, Gerhartl A, Brachner A, Geiger N, König E, Bodem J, Franzenburg S, Franke A, Moese S, Müller F, Geisslinger G, Claussen C, Kannt A, Zaliani A, Gribbon P, Ondruschka B, Neuhaus W, Friese MA, Glatzel M, Pless O. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Reports 2022. [DOI: 10.1016/j.stemcr.2021.12.011] [Reference Citation Analysis]
734 Gao Q, Xu L, Cai J. New drug targets for hypertension: A literature review. Biochim Biophys Acta Mol Basis Dis 2021;1867:166037. [PMID: 33309796 DOI: 10.1016/j.bbadis.2020.166037] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
735 Bilge Ö, Çap M, Kepenek F, Erdogan E, Tatlı İ, Öztürk C, Taştan E, Gündoğan C, Işık F, Okşul M, Oktay M, Akın H, Burak C, Karahan MZ, Kömek H, Tanboğa İH. The effect of prior COVID-19 infection on coronary microvascular dysfunction. Acta Cardiol 2022;:1-6. [PMID: 35451344 DOI: 10.1080/00015385.2022.2067641] [Reference Citation Analysis]
736 Tharappel AM, Samrat SK, Li Z, Li H. Targeting Crucial Host Factors of SARS-CoV-2. ACS Infect Dis 2020;6:2844-65. [PMID: 33112126 DOI: 10.1021/acsinfecdis.0c00456] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
737 Warner FJ, Rajapaksha H, Shackel N, Herath CB. ACE2: from protection of liver disease to propagation of COVID-19. Clin Sci (Lond). 2020;134:3137-3158. [PMID: 33284956 DOI: 10.1042/cs20201268] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
738 Ma C, Su S, Wang J, Wei L, Du L, Jiang S. From SARS-CoV to SARS-CoV-2: safety and broad-spectrum are important for coronavirus vaccine development. Microbes Infect 2020;22:245-53. [PMID: 32437926 DOI: 10.1016/j.micinf.2020.05.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 11.5] [Reference Citation Analysis]
739 Saavedra JM. COVID-19, Angiotensin Receptor Blockers, and the Brain. Cell Mol Neurobiol 2020;40:667-74. [PMID: 32385549 DOI: 10.1007/s10571-020-00861-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
740 Guo G, Ye L, Pan K, Chen Y, Xing D, Yan K, Chen Z, Ding N, Li W, Huang H, Zhang L, Li X, Xue X. New insights of emerging SARS-CoV-2: Epidemiology, etiology, clinical features, clinical treatment, and prevention. Front Cell Dev Biol. 2020;8:410. [PMID: 32574318 DOI: 10.3389/fcell.2020.00410] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 23.0] [Reference Citation Analysis]
741 Kumar A, Narayan RK, Kumari C, Faiq MA, Kulandhasamy M, Kant K, Pareek V. SARS-CoV-2 cell entry receptor ACE2 mediated endothelial dysfunction leads to vascular thrombosis in COVID-19 patients. Med Hypotheses 2020;145:110320. [PMID: 33032170 DOI: 10.1016/j.mehy.2020.110320] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
742 Kalejaiye TD, Bhattacharya R, Burt MA, Travieso T, Okafor AE, Mou X, Blasi M, Musah S. SARS-CoV-2 Employ BSG/CD147 and ACE2 Receptors to Directly Infect Human Induced Pluripotent Stem Cell-Derived Kidney Podocytes. Front Cell Dev Biol 2022;10:855340. [DOI: 10.3389/fcell.2022.855340] [Reference Citation Analysis]
743 Glasgow A, Glasgow J, Limonta D, Solomon P, Lui I, Zhang Y, Nix MA, Rettko NJ, Lim SA, Zha S, Yamin R, Kao K, Rosenberg OS, Ravetch JV, Wiita AP, Leung KK, Zhou XX, Hobman TC, Kortemme T, Wells JA. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. bioRxiv 2020:2020. [PMID: 32766586 DOI: 10.1101/2020.07.31.231746] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
744 Fekrazad R, Asefi S, Pourhajibagher M, Vahdatinia F, Fekrazad S, Bahador A, Abrahamse H, Hamblin MR. Photobiomodulation and Antiviral Photodynamic Therapy in COVID-19 Management. Adv Exp Med Biol 2021;1318:517-47. [PMID: 33973198 DOI: 10.1007/978-3-030-63761-3_30] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2]