BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, Wang Q, Zhou H, Yan J, Qi J. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020;181:894-904.e9. [PMID: 32275855 DOI: 10.1016/j.cell.2020.03.045] [Cited by in Crossref: 978] [Cited by in F6Publishing: 991] [Article Influence: 489.0] [Reference Citation Analysis]
Number Citing Articles
1 Mavrikou S, Tsekouras V, Hatziagapiou K, Tsalidou A, Bakakos P, Rovina N, Koutsoukou A, Michos A, Nikola O, Koniari E, Papaparaskevas J, Chrousos GP, Kanaka-gantenbein C, Kintzios S. Angiotensin-Converting Enzyme 2 (ACE2) As a Novel Biorecognition Element in A Cell-Based Biosensor for the Ultra-Rapid, Ultra-Sensitive Detection of the SARS-CoV-2 S1 Spike Protein Antigen. Chemosensors 2021;9:341. [DOI: 10.3390/chemosensors9120341] [Reference Citation Analysis]
2 Deinhardt-Emmer S, Wittschieber D, Sanft J, Kleemann S, Elschner S, Haupt KF, Vau V, Häring C, Rödel J, Henke A, Ehrhardt C, Bauer M, Philipp M, Gaßler N, Nietzsche S, Löffler B, Mall G. Early postmortem mapping of SARS-CoV-2 RNA in patients with COVID-19 and the correlation with tissue damage. Elife 2021;10:e60361. [PMID: 33781385 DOI: 10.7554/eLife.60361] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
3 Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, Luo Y, Chan JF, Sahi V, Figueroa A, Guo XV, Cerutti G, Bimela J, Gorman J, Zhou T, Chen Z, Yuen KY, Kwong PD, Sodroski JG, Yin MT, Sheng Z, Huang Y, Shapiro L, Ho DD. Potent Neutralizing Antibodies Directed to Multiple Epitopes on SARS-CoV-2 Spike. bioRxiv 2020:2020. [PMID: 32587975 DOI: 10.1101/2020.06.17.153486] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 10.5] [Reference Citation Analysis]
4 Barua A, Grot N, Plawski A. The basis of mink susceptibility to SARS-CoV-2 infection. J Appl Genet 2022. [PMID: 35396646 DOI: 10.1007/s13353-022-00689-w] [Reference Citation Analysis]
5 Anand R, Biswal S, Bhatt R, Tiwary BN. Computational perspectives revealed prospective vaccine candidates from five structural proteins of novel SARS corona virus 2019 (SARS-CoV-2). PeerJ 2020;8:e9855. [PMID: 33062414 DOI: 10.7717/peerj.9855] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Muchiri RN, Kibitel J, Redick MA, van Breemen RB. Advances in Magnetic Microbead Affinity Selection Screening: Discovery of Natural Ligands to the SARS-CoV-2 Spike Protein. J Am Soc Mass Spectrom 2021. [PMID: 34939787 DOI: 10.1021/jasms.1c00318] [Reference Citation Analysis]
7 Han P, Su C, Zhang Y, Bai C, Zheng A, Qiao C, Wang Q, Niu S, Chen Q, Zhang Y, Li W, Liao H, Li J, Zhang Z, Cho H, Yang M, Rong X, Hu Y, Huang N, Yan J, Wang Q, Zhao X, Gao GF, Qi J. Molecular insights into receptor binding of recent emerging SARS-CoV-2 variants. Nat Commun 2021;12:6103. [PMID: 34671049 DOI: 10.1038/s41467-021-26401-w] [Reference Citation Analysis]
8 Wong NA, Saier MH Jr. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci 2021;22:1308. [PMID: 33525632 DOI: 10.3390/ijms22031308] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
9 Vardhan S, Sahoo SK. Computational studies on the interaction of SARS-CoV-2 Omicron SGp RBD with human receptor ACE2, limonin and glycyrrhizic acid. Comput Biol Med 2022;144:105367. [PMID: 35247766 DOI: 10.1016/j.compbiomed.2022.105367] [Reference Citation Analysis]
10 Lu S, Zhao Y, Yu W, Yang Y, Gao J, Wang J, Kuang D, Yang M, Yang J, Ma C, Xu J, Qian X, Li H, Zhao S, Li J, Wang H, Long H, Zhou J, Luo F, Ding K, Wu D, Zhang Y, Dong Y, Liu Y, Zheng Y, Lin X, Jiao L, Zheng H, Dai Q, Sun Q, Hu Y, Ke C, Liu H, Peng X. Comparison of nonhuman primates identified the suitable model for COVID-19. Signal Transduct Target Ther 2020;5:157. [PMID: 32814760 DOI: 10.1038/s41392-020-00269-6] [Cited by in Crossref: 62] [Cited by in F6Publishing: 69] [Article Influence: 31.0] [Reference Citation Analysis]
11 Dieterle ME, Haslwanter D, Bortz RH 3rd, Wirchnianski AS, Lasso G, Vergnolle O, Abbasi SA, Fels JM, Laudermilch E, Florez C, Mengotto A, Kimmel D, Malonis RJ, Georgiev G, Quiroz J, Barnhill J, Pirofski LA, Daily JP, Dye JM, Lai JR, Herbert AS, Chandran K, Jangra RK. A replication-competent vesicular stomatitis virus for studies of SARS-CoV-2 spike-mediated cell entry and its inhibition. bioRxiv 2020:2020. [PMID: 32511365 DOI: 10.1101/2020.05.20.105247] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
12 Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M, Scott JA, Vitale F, Unal MA, Mattevi C, Bedognetti D, Merkoçi A, Tasciotti E, Yilmazer A, Gogotsi Y, Stellacci F, Delogu LG. Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano 2020;14:6383-406. [PMID: 32519842 DOI: 10.1021/acsnano.0c03697] [Cited by in Crossref: 173] [Cited by in F6Publishing: 121] [Article Influence: 86.5] [Reference Citation Analysis]
13 Bouwman KM, Tomris I, Turner HL, van der Woude R, Shamorkina TM, Bosman GP, Rockx B, Herfst S, Snijder J, Haagmans BL, Ward AB, Boons GJ, de Vries RP. Multimerization- and glycosylation-dependent receptor binding of SARS-CoV-2 spike proteins. PLoS Pathog 2021;17:e1009282. [PMID: 33556147 DOI: 10.1371/journal.ppat.1009282] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
14 Lubbe L, Cozier GE, Oosthuizen D, Acharya KR, Sturrock ED. ACE2 and ACE: structure-based insights into mechanism, regulation and receptor recognition by SARS-CoV. Clin Sci (Lond) 2020;134:2851-71. [PMID: 33146371 DOI: 10.1042/CS20200899] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
15 Sun XL. The Role of Cell Surface Sialic Acids for SARS-CoV-2 Infection. Glycobiology 2021:cwab032. [PMID: 33909065 DOI: 10.1093/glycob/cwab032] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
16 Mishra L, Bandyopadhyay T. Unbinding of hACE2 and inhibitors from the receptor binding domain of SARS-CoV-2 spike protein. J Biomol Struct Dyn 2022;:1-20. [PMID: 35293839 DOI: 10.1080/07391102.2022.2046641] [Reference Citation Analysis]
17 Brynjolfsson SF, Sigurgrimsdottir H, Einarsdottir ED, Bjornsdottir GA, Armannsdottir B, Baldvinsdottir GE, Bjarnason A, Gudlaugsson O, Gudmundsson S, Sigurdardottir ST, Love A, Kristinsson KG, Ludviksson BR. Detailed Multiplex Analysis of SARS-CoV-2 Specific Antibodies in COVID-19 Disease. Front Immunol 2021;12:695230. [PMID: 34177962 DOI: 10.3389/fimmu.2021.695230] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Mariano G, Farthing RJ, Lale-Farjat SLM, Bergeron JRC. Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be. Front Mol Biosci. 2020;7:605236. [PMID: 33392262 DOI: 10.3389/fmolb.2020.605236] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
19 Moise L, Ross TM, Hoft DF, Martin WD, De Groot AS. Exploit T cell Immunity for Rapid, Safe and Effective COVID-19 Vaccines. Expert Rev Vaccines 2020;19:781-4. [PMID: 32962468 DOI: 10.1080/14760584.2020.1825946] [Reference Citation Analysis]
20 Natarajan P, Kanchi M, Gunaseelan V, Sigamani A, James H, Kumar B. Coronavirus and Homo Sapiens in Coronavirus Disease 2019 (COVID-19). Journal of Cardiac Critical Care TSS 2020;4:121-31. [DOI: 10.1055/s-0040-1721190] [Reference Citation Analysis]
21 [DOI: 10.1101/2020.06.10.144964] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Madjunkov M, Dviri M, Librach C. A comprehensive review of the impact of COVID-19 on human reproductive biology, assisted reproduction care and pregnancy: a Canadian perspective. J Ovarian Res 2020;13:140. [PMID: 33246480 DOI: 10.1186/s13048-020-00737-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
23 Fu Y, Xiong S. Tagged extracellular vesicles with the RBD of the viral spike protein for delivery of antiviral agents against SARS-COV-2 infection. J Control Release 2021;335:584-95. [PMID: 34089793 DOI: 10.1016/j.jconrel.2021.05.049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Zang J, Zhu Y, Zhou Y, Gu C, Yi Y, Wang S, Xu S, Hu G, Du S, Yin Y, Wang Y, Yang Y, Zhang X, Wang H, Yin F, Zhang C, Deng Q, Xie Y, Huang Z. Yeast-produced RBD-based recombinant protein vaccines elicit broadly neutralizing antibodies and durable protective immunity against SARS-CoV-2 infection. Cell Discov 2021;7:71. [PMID: 34408130 DOI: 10.1038/s41421-021-00315-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
25 Lu L, Zhang H, Zhan M, Jiang J, Yin H, Dauphars DJ, Li SY, Li Y, He YW. Antibody response and therapy in COVID-19 patients: what can be learned for vaccine development? Sci China Life Sci 2020;63:1833-49. [PMID: 33355886 DOI: 10.1007/s11427-020-1859-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
26 Rajput A, Thakur A, Mukhopadhyay A, Kamboj S, Rastogi A, Gautam S, Jassal H, Kumar M. Prediction of repurposed drugs for Coronaviruses using artificial intelligence and machine learning. Comput Struct Biotechnol J 2021;19:3133-48. [PMID: 34055238 DOI: 10.1016/j.csbj.2021.05.037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Arbeitman CR, Rojas P, Ojeda-May P, Garcia ME. The SARS-CoV-2 spike protein is vulnerable to moderate electric fields. Nat Commun 2021;12:5407. [PMID: 34518528 DOI: 10.1038/s41467-021-25478-7] [Reference Citation Analysis]
28 Li Z, Ma Z, Li Y, Gao S, Xiao S. Porcine epidemic diarrhea virus: Molecular mechanisms of attenuation and vaccines. Microb Pathog 2020;149:104553. [PMID: 33011361 DOI: 10.1016/j.micpath.2020.104553] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
29 [DOI: 10.1101/2020.05.04.075911] [Cited by in Crossref: 61] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
30 Ahmed NZ, John Davis GD, Khan AA, Prabhakar L, Ram Paratap M, Afnaan Z, Devi Sri M, Anwar N. Arq Ajīb - a wonder Unani formulation for inhibiting SARS-CoV-2 spike glycoprotein and main protease - an in silico approach. J Complement Integr Med 2021. [PMID: 34679263 DOI: 10.1515/jcim-2021-0241] [Reference Citation Analysis]
31 Vallée A, Lecarpentier Y, Vallée JN. Interplay of Opposing Effects of the WNT/β-Catenin Pathway and PPARγ and Implications for SARS-CoV2 Treatment. Front Immunol 2021;12:666693. [PMID: 33927728 DOI: 10.3389/fimmu.2021.666693] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Du Y, Wang H, Chen L, Fang Q, Zhang B, Jiang L, Wu Z, Yang Y, Zhou Y, Chen B, Lyu J, Wang Z. Non-RBM Mutations Impaired SARS-CoV-2 Spike Protein Regulated to the ACE2 Receptor Based on Molecular Dynamic Simulation. Front Mol Biosci 2021;8:614443. [PMID: 34386518 DOI: 10.3389/fmolb.2021.614443] [Reference Citation Analysis]
33 Jeong BS, Cha JS, Hwang I, Kim U, Adolf-Bryfogle J, Coventry B, Cho HS, Kim KD, Oh BH. Computational design of a neutralizing antibody with picomolar binding affinity for all concerning SARS-CoV-2 variants. MAbs 2022;14:2021601. [PMID: 35030983 DOI: 10.1080/19420862.2021.2021601] [Reference Citation Analysis]
34 Silva-Filho JC, Melo CGF, Oliveira JL. The influence of ABO blood groups on COVID-19 susceptibility and severity: A molecular hypothesis based on carbohydrate-carbohydrate interactions. Med Hypotheses 2020;144:110155. [PMID: 33254482 DOI: 10.1016/j.mehy.2020.110155] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 10.5] [Reference Citation Analysis]
35 Chen R, Yu YL, Li W, Liu Y, Lu JX, Chen F, Zhou Q, Xia ZY, Gao L, Meng QT, Ma D. Gastrointestinal Symptoms Associated With Unfavorable Prognosis of COVID-19 Patients: A Retrospective Study. Front Med (Lausanne) 2020;7:608259. [PMID: 33262996 DOI: 10.3389/fmed.2020.608259] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
36 Ernzen K, Trask AJ, Peeples ME, Garg V, Zhao MT. Human Stem Cell Models of SARS-CoV-2 Infection in the Cardiovascular System. Stem Cell Rev Rep 2021. [PMID: 34365591 DOI: 10.1007/s12015-021-10229-4] [Reference Citation Analysis]
37 Perez-Miller S, Patek M, Moutal A, Cabel CR, Thorne CA, Campos SK, Khanna R. In silico identification and validation of inhibitors of the interaction between neuropilin receptor 1 and SARS-CoV-2 Spike protein. bioRxiv 2020:2020. [PMID: 32995772 DOI: 10.1101/2020.09.22.308783] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
38 Hurlburt NK, Wan YH, Stuart AB, Feng J, McGuire AT, Stamatatos L, Pancera M. Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation. bioRxiv 2020:2020. [PMID: 32577631 DOI: 10.1101/2020.06.12.148692] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
39 Ogedjo M, Onoka I, Sahini M, Shadrack DM. Accommodating receptor flexibility and free energy calculation to reduce false positive binders in the discovery of natural products blockers of SARS-COV-2 spike RBD-ACE2 interface. Biochem Biophys Rep 2021;27:101024. [PMID: 34056140 DOI: 10.1016/j.bbrep.2021.101024] [Reference Citation Analysis]
40 Bhattacharyya C, Das C, Ghosh A, Singh AK, Mukherjee S, Majumder PP, Basu A, Biswas NK. SARS-CoV-2 mutation 614G creates an elastase cleavage site enhancing its spread in high AAT-deficient regions. Infect Genet Evol 2021;90:104760. [PMID: 33556558 DOI: 10.1016/j.meegid.2021.104760] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
41 Wang W, Li SS, Xu XF, Yang C, Niu XG, Yin SX, Pan XY, Xu W, Hu GD, Wang C, Liu SW. Danshensu alleviates pseudo-typed SARS-CoV-2 induced mouse acute lung inflammation. Acta Pharmacol Sin 2021. [PMID: 34267343 DOI: 10.1038/s41401-021-00714-4] [Reference Citation Analysis]
42 Shukla N, Roelle SM, Suzart VG, Bruchez AM, Matreyek KA. Mutants of human ACE2 differentially promote SARS-CoV and SARS-CoV-2 spike mediated infection. PLoS Pathog 2021;17:e1009715. [PMID: 34270613 DOI: 10.1371/journal.ppat.1009715] [Reference Citation Analysis]
43 Wong F, Ong J, Chai T. SARS-CoV-2 spike protein-, main protease- and papain-like-protease-targeting peptides from seed proteins following gastrointestinal digestion: An in silico study. Phytomedicine Plus 2021;1:100016. [DOI: 10.1016/j.phyplu.2020.100016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
44 Lim YS, Nguyen LP, Lee GH, Lee SG, Lyoo KS, Kim B, Hwang SB. Asunaprevir, a Potent Hepatitis C Virus Protease Inhibitor, Blocks SARS-CoV-2 Propagation. Mol Cells 2021;44:688-95. [PMID: 34518443 DOI: 10.14348/molcells.2021.0076] [Reference Citation Analysis]
45 Yang X, Lian X, Fu C, Wuchty S, Yang S, Zhang Z. HVIDB: a comprehensive database for human-virus protein-protein interactions. Brief Bioinform 2021;22:832-44. [PMID: 33515030 DOI: 10.1093/bib/bbaa425] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
46 Khelashvili G, Plante A, Doktorova M, Weinstein H. Ca2+-dependent mechanism of membrane insertion and destabilization by the SARS-CoV-2 fusion peptide. Biophys J 2021;120:1105-19. [PMID: 33631204 DOI: 10.1016/j.bpj.2021.02.023] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
47 Fernandez RA, Quimque MT, Notarte KI, Manzano JA, Pilapil DY 4th, de Leon VN, San Jose JJ, Villalobos O, Muralidharan NH, Gromiha MM, Brogi S, Macabeo APG. Myxobacterial depsipeptide chondramides interrupt SARS-CoV-2 entry by targeting its broad, cell tropic spike protein. J Biomol Struct Dyn 2021;:1-12. [PMID: 34463219 DOI: 10.1080/07391102.2021.1969281] [Reference Citation Analysis]
48 Jiang W, Wang J, Jiao S, Gu C, Xu W, Chen B, Wang R, Chen H, Xie Y, Wang A, Li G, Zeng D, Zhang J, Zhang M, Wang S, Wang M, Gui X. Characterization of MW06, a human monoclonal antibody with cross-neutralization activity against both SARS-CoV-2 and SARS-CoV. MAbs 2021;13:1953683. [PMID: 34313527 DOI: 10.1080/19420862.2021.1953683] [Reference Citation Analysis]
49 Saxena SK, Kumar S, Baxi P, Srivastava N, Puri B, Ratho RK. Chasing COVID-19 through SARS-CoV-2 spike glycoprotein. Virusdisease 2020;:1-9. [PMID: 33313362 DOI: 10.1007/s13337-020-00642-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
50 Johnson M, Wagstaffe HR, Gilmour KC, Mai AL, Lewis J, Hunt A, Sirr J, Bengt C, Grandjean L, Goldblatt D. Evaluation of a novel multiplexed assay for determining IgG levels and functional activity to SARS-CoV-2. J Clin Virol 2020;130:104572. [PMID: 32769024 DOI: 10.1016/j.jcv.2020.104572] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 17.5] [Reference Citation Analysis]
51 Kim Y, Gaudreault NN, Meekins DA, Perera KD, Bold D, Trujillo JD, Morozov I, McDowell CD, Chang KO, Richt JA. Effects of Spike Mutations in SARS-CoV-2 Variants of Concern on Human or Animal ACE2-Mediated Virus Entry and Neutralization. bioRxiv 2021:2021. [PMID: 34462749 DOI: 10.1101/2021.08.25.457627] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Naderi Sohi A, Kiani J, Arefian E, Khosrojerdi A, Fekrirad Z, Ghaemi S, Zim MK, Jalili A, Bostanshirin N, Soleimani M. Development of an mRNA-LNP Vaccine against SARS-CoV-2: Evaluation of Immune Response in Mouse and Rhesus Macaque. Vaccines (Basel) 2021;9:1007. [PMID: 34579244 DOI: 10.3390/vaccines9091007] [Reference Citation Analysis]
53 Guruprasad L. Human SARS CoV-2 spike protein mutations. Proteins 2021;89:569-76. [PMID: 33423311 DOI: 10.1002/prot.26042] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 21.0] [Reference Citation Analysis]
54 Trottein F, Sokol H. Potential Causes and Consequences of Gastrointestinal Disorders during a SARS-CoV-2 Infection. Cell Rep 2020;32:107915. [PMID: 32649864 DOI: 10.1016/j.celrep.2020.107915] [Cited by in Crossref: 55] [Cited by in F6Publishing: 39] [Article Influence: 27.5] [Reference Citation Analysis]
55 Oladunni FS, Park JG, Pino PA, Gonzalez O, Akhter A, Allué-Guardia A, Olmo-Fontánez A, Gautam S, Garcia-Vilanova A, Ye C, Chiem K, Headley C, Dwivedi V, Parodi LM, Alfson KJ, Staples HM, Schami A, Garcia JI, Whigham A, Platt RN 2nd, Gazi M, Martinez J, Chuba C, Earley S, Rodriguez OH, Mdaki SD, Kavelish KN, Escalona R, Hallam CRA, Christie C, Patterson JL, Anderson TJC, Carrion R Jr, Dick EJ Jr, Hall-Ursone S, Schlesinger LS, Alvarez X, Kaushal D, Giavedoni LD, Turner J, Martinez-Sobrido L, Torrelles JB. Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nat Commun 2020;11:6122. [PMID: 33257679 DOI: 10.1038/s41467-020-19891-7] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 32.5] [Reference Citation Analysis]
56 Khan S, Gomes J. Neuropathogenesis of SARS-CoV-2 infection. Elife 2020;9:e59136. [PMID: 32729463 DOI: 10.7554/eLife.59136] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
57 Koenig PA, Das H, Liu H, Kümmerer BM, Gohr FN, Jenster LM, Schiffelers LDJ, Tesfamariam YM, Uchima M, Wuerth JD, Gatterdam K, Ruetalo N, Christensen MH, Fandrey CI, Normann S, Tödtmann JMP, Pritzl S, Hanke L, Boos J, Yuan M, Zhu X, Schmid-Burgk JL, Kato H, Schindler M, Wilson IA, Geyer M, Ludwig KU, Hällberg BM, Wu NC, Schmidt FI. Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science 2021;371:eabe6230. [PMID: 33436526 DOI: 10.1126/science.abe6230] [Cited by in Crossref: 81] [Cited by in F6Publishing: 60] [Article Influence: 81.0] [Reference Citation Analysis]
58 Radzikowska U, Ding M, Tan G, Zhakparov D, Peng Y, Wawrzyniak P, Wang M, Li S, Morita H, Altunbulakli C, Reiger M, Neumann AU, Lunjani N, Traidl-Hoffmann C, Nadeau KC, O'Mahony L, Akdis C, Sokolowska M. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy 2020;75:2829-45. [PMID: 32496587 DOI: 10.1111/all.14429] [Cited by in Crossref: 166] [Cited by in F6Publishing: 170] [Article Influence: 83.0] [Reference Citation Analysis]
59 Pecora ND, Zand MS. Measuring the Serologic Response to Severe Acute Respiratory Syndrome Coronavirus 2: Methods and Meaning. Clin Lab Med 2020;40:603-14. [PMID: 33121625 DOI: 10.1016/j.cll.2020.08.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
60 Polycarpou A, Howard M, Farrar CA, Greenlaw R, Fanelli G, Wallis R, Klavinskis LS, Sacks S. Rationale for targeting complement in COVID-19. EMBO Mol Med 2020;12:e12642. [PMID: 32559343 DOI: 10.15252/emmm.202012642] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 21.0] [Reference Citation Analysis]
61 Li RT, Qin CF. Expression pattern and function of SARS-CoV-2 Receptor ACE2. Biosaf Health 2021. [PMID: 34466800 DOI: 10.1016/j.bsheal.2021.08.003] [Reference Citation Analysis]
62 Kazemi S, López-Muñoz AD, Hollý J, Jin L, Yewdell JW, Dolan BP. Variations in cell-surface ACE2 levels alter direct binding of SARS-CoV-2 Spike protein and viral infectivity: Implications for measuring Spike protein interactions with animal ACE2 orthologs. bioRxiv 2021:2021. [PMID: 34729559 DOI: 10.1101/2021.10.21.465386] [Reference Citation Analysis]
63 Jani V, Koulgi S, Uppuladinne VNM, Sonavane U, Joshi R. An insight into the inhibitory mechanism of phytochemicals and FDA-approved drugs on the ACE2-Spike complex of SARS-CoV-2 using computational methods. Chem Zvesti 2021;:1-24. [PMID: 33994655 DOI: 10.1007/s11696-021-01680-1] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Aimo A, Vergaro G, Passino C, Clerico A. Evaluation of pathophysiological relationships between renin-angiotensin and ACE-ACE2 systems in cardiovascular disorders: from theory to routine clinical practice in patients with heart failure. Crit Rev Clin Lab Sci 2021;:1-16. [PMID: 34196254 DOI: 10.1080/10408363.2021.1942782] [Reference Citation Analysis]
65 Wang D, Mai J, Zhou W, Yu W, Zhan Y, Wang N, Epstein ND, Yang Y. Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design. Vaccines (Basel) 2020;8:E355. [PMID: 32635180 DOI: 10.3390/vaccines8030355] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 12.0] [Reference Citation Analysis]
66 [DOI: 10.1101/2020.05.01.072652] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
67 Schoof M, Faust B, Saunders RA, Sangwan S, Rezelj V, Hoppe N, Boone M, Billesbølle CB, Puchades C, Azumaya CM, Kratochvil HT, Zimanyi M, Deshpande I, Liang J, Dickinson S, Nguyen HC, Chio CM, Merz GE, Thompson MC, Diwanji D, Schaefer K, Anand AA, Dobzinski N, Zha BS, Simoneau CR, Leon K, White KM, Chio US, Gupta M, Jin M, Li F, Liu Y, Zhang K, Bulkley D, Sun M, Smith AM, Rizo AN, Moss F, Brilot AF, Pourmal S, Trenker R, Pospiech T, Gupta S, Barsi-Rhyne B, Belyy V, Barile-Hill AW, Nock S, Liu Y, Krogan NJ, Ralston CY, Swaney DL, García-Sastre A, Ott M, Vignuzzi M, Walter P, Manglik A; QCRG Structural Biology Consortium. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science 2020;370:1473-9. [PMID: 33154106 DOI: 10.1126/science.abe3255] [Cited by in Crossref: 63] [Cited by in F6Publishing: 73] [Article Influence: 31.5] [Reference Citation Analysis]
68 Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, Yu F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther 2021;6:233. [PMID: 34117216 DOI: 10.1038/s41392-021-00653-w] [Reference Citation Analysis]
69 Mueller S. Rarely Recognized Antibody Diversification in Covid-19 Evolution to Counteract Advanced SARS-CoV-2 Evasion Strategies, and Implications for Prophylactic Treatment. Front Physiol 2021;12:624675. [PMID: 34413782 DOI: 10.3389/fphys.2021.624675] [Reference Citation Analysis]
70 McCallum M, Walls AC, Bowen JE, Corti D, Veesler D. Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation. Nat Struct Mol Biol 2020;27:942-9. [PMID: 32753755 DOI: 10.1038/s41594-020-0483-8] [Cited by in Crossref: 62] [Cited by in F6Publishing: 45] [Article Influence: 31.0] [Reference Citation Analysis]
71 Arya R, Kumari S, Pandey B, Mistry H, Bihani SC, Das A, Prashar V, Gupta GD, Panicker L, Kumar M. Structural insights into SARS-CoV-2 proteins. J Mol Biol 2021;433:166725. [PMID: 33245961 DOI: 10.1016/j.jmb.2020.11.024] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 15.0] [Reference Citation Analysis]
72 Kehinde IA, Egbeyemi A, Kaur M, Onyenaka C, Adebusuyi T, Olaleye OA. Inhibitory mechanism of clioquinol and its derivatives at the exopeptidase site of human angiotensin-converting enzyme-2 and receptor binding domain of SARS-CoV-2 viral spike. J Biomol Struct Dyn 2022;:1-10. [PMID: 35220925 DOI: 10.1080/07391102.2022.2043938] [Reference Citation Analysis]
73 Ravaioli S, Tebaldi M, Fonzi E, Angeli D, Mazza M, Nicolini F, Lucchesi A, Fanini F, Pirini F, Tumedei MM, Cerchione C, Viale P, Sambri V, Martinelli G, Bravaccini S. ACE2 and TMPRSS2 Potential Involvement in Genetic Susceptibility to SARS-COV-2 in Cancer Patients. Cell Transplant 2020;29:963689720968749. [PMID: 33108902 DOI: 10.1177/0963689720968749] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
74 Schuurs ZP, Hammond E, Elli S, Rudd TR, Mycroft-West CJ, Lima MA, Skidmore MA, Karlsson R, Chen YH, Bagdonaite I, Yang Z, Ahmed YA, Richard DJ, Turnbull J, Ferro V, Coombe DR, Gandhi NS. Evidence of a putative glycosaminoglycan binding site on the glycosylated SARS-CoV-2 spike protein N-terminal domain. Comput Struct Biotechnol J 2021;19:2806-18. [PMID: 33968333 DOI: 10.1016/j.csbj.2021.05.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
75 Galipeau Y, Greig M, Liu G, Driedger M, Langlois MA. Humoral Responses and Serological Assays in SARS-CoV-2 Infections. Front Immunol 2020;11:610688. [PMID: 33391281 DOI: 10.3389/fimmu.2020.610688] [Cited by in Crossref: 43] [Cited by in F6Publishing: 32] [Article Influence: 21.5] [Reference Citation Analysis]
76 Nassar A, Ibrahim IM, Amin FG, Magdy M, Elgharib AM, Azzam EB, Nasser F, Yousry K, Shamkh IM, Mahdy SM, Elfiky AA. A Review of Human Coronaviruses' Receptors: The Host-Cell Targets for the Crown Bearing Viruses. Molecules 2021;26:6455. [PMID: 34770863 DOI: 10.3390/molecules26216455] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Kumar V, Liu H, Wu C. Drug repurposing against SARS-CoV-2 receptor binding domain using ensemble-based virtual screening and molecular dynamics simulations. Comput Biol Med 2021;135:104634. [PMID: 34256255 DOI: 10.1016/j.compbiomed.2021.104634] [Reference Citation Analysis]
78 Dey T, Chatterjee S, Manna S, Nandy A, Basak SC. Identification and computational analysis of mutations in SARS-CoV-2. Comput Biol Med 2021;129:104166. [PMID: 33383528 DOI: 10.1016/j.compbiomed.2020.104166] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
79 [DOI: 10.1101/2020.05.13.20101345] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
80 Zeng X, Li L, Lin J, Li X, Liu B, Kong Y, Zeng S, Du J, Xiao H, Zhang T, Zhang S, Liu J. Isolation of a human monoclonal antibody specific for the receptor binding domain of SARS-CoV-2 using a competitive phage biopanning strategy. Antib Ther 2020;3:95-100. [PMID: 33912790 DOI: 10.1093/abt/tbaa008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 11.5] [Reference Citation Analysis]
81 Ren W, Lan J, Ju X, Gong M, Long Q, Zhu Z, Yu Y, Wu J, Zhong J, Zhang R, Fan S, Zhong G, Huang A, Wang X, Ding Q. Mutation Y453F in the spike protein of SARS-CoV-2 enhances interaction with the mink ACE2 receptor for host adaption. PLoS Pathog 2021;17:e1010053. [PMID: 34748603 DOI: 10.1371/journal.ppat.1010053] [Reference Citation Analysis]
82 Badeti S, Tseng HC, Romanienko P, Yehia G, Liu D. Development of a Novel Human CD147 Transgenic NSG Mouse Model to test SARS-CoV-2 Infection and Immune Responses. Res Sq 2021:rs. [PMID: 33851148 DOI: 10.21203/rs.3.rs-396257/v1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Fox SE, Heide RSV. COVID-19: The Heart of the Matter-Pathological Changes and a Proposed Mechanism. J Cardiovasc Pharmacol Ther 2021;26:217-24. [PMID: 33703938 DOI: 10.1177/1074248421995356] [Reference Citation Analysis]
84 Lassaunière R, Polacek C, Gram GJ, Frische A, Tingstedt JL, Krüger M, Dorner BG, Cook A, Brown R, Orekov T, Putmon-Taylor T, Campbell TA, Greenhouse J, Pessaint L, Andersen H, Lewis MG, Fomsgaard A. Preclinical evaluation of a candidate naked plasmid DNA vaccine against SARS-CoV-2. NPJ Vaccines 2021;6:156. [PMID: 34930909 DOI: 10.1038/s41541-021-00419-z] [Reference Citation Analysis]
85 Pan L, Huang P, Xie X, Xu J, Guo D, Jiang Y. Metabolic associated fatty liver disease increases the severity of COVID-19: A meta-analysis. Dig Liver Dis. 2021;53:153-157. [PMID: 33011088 DOI: 10.1016/j.dld.2020.09.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
86 Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM, Walsh RM Jr, Rits-Volloch S, Zhu H, Woosley AN, Yang W, Sliz P, Chen B. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science 2021;372:525-30. [PMID: 33727252 DOI: 10.1126/science.abf2303] [Cited by in Crossref: 53] [Cited by in F6Publishing: 40] [Article Influence: 53.0] [Reference Citation Analysis]
87 Biswas M, Sawajan N, Rungrotmongkol T, Sanachai K, Ershadian M, Sukasem C. Pharmacogenetics and Precision Medicine Approaches for the Improvement of COVID-19 Therapies. Front Pharmacol 2022;13:835136. [DOI: 10.3389/fphar.2022.835136] [Reference Citation Analysis]
88 Yu J, Chai P, Ge S, Fan X. Recent Understandings Toward Coronavirus Disease 2019 (COVID-19): From Bench to Bedside. Front Cell Dev Biol 2020;8:476. [PMID: 32582719 DOI: 10.3389/fcell.2020.00476] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
89 Saawarn B, Hait S. Occurrence, fate and removal of SARS-CoV-2 in wastewater: Current knowledge and future perspectives.J Environ Chem Eng. 2021;9:104870. [PMID: 33282675 DOI: 10.1016/j.jece.2020.104870] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
90 Verkhivker GM. Molecular Simulations and Network Modeling Reveal an Allosteric Signaling in the SARS-CoV-2 Spike Proteins. J Proteome Res 2020;19:4587-608. [PMID: 33006900 DOI: 10.1021/acs.jproteome.0c00654] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
91 Azinheira Nobrega Cruz N, Gonçalves de Oliveira LC, Tedesco Silva Junior H, Osmar Medina Pestana J, Casarini DE. Angiotensin-Converting Enzyme 2 in the Pathogenesis of Renal Abnormalities Observed in COVID-19 Patients. Front Physiol 2021;12:700220. [PMID: 34497535 DOI: 10.3389/fphys.2021.700220] [Reference Citation Analysis]
92 Piekos SN, Roper RT, Hwang YM, Sorensen T, Price ND, Hood L, Hadlock JJ. The effect of maternal SARS-CoV-2 infection timing on birth outcomes: a retrospective multicentre cohort study. The Lancet Digital Health 2022;4:e95-e104. [DOI: 10.1016/s2589-7500(21)00250-8] [Reference Citation Analysis]
93 Liu JZ, Lv HC, Fu YJ, Cui Q. Amomum tsao-ko essential oil, a Novel Anti-COVID-19 Omircon Spike Protein Natural Products: A Computational Study. Arab J Chem 2022;:103916. [PMID: 35462797 DOI: 10.1016/j.arabjc.2022.103916] [Reference Citation Analysis]
94 Kim C, Ryu DK, Lee J, Kim YI, Seo JM, Kim YG, Jeong JH, Kim M, Kim JI, Kim P, Bae JS, Shim EY, Lee MS, Kim MS, Noh H, Park GS, Park JS, Son D, An Y, Lee JN, Kwon KS, Lee JY, Lee H, Yang JS, Kim KC, Kim SS, Woo HM, Kim JW, Park MS, Yu KM, Kim SM, Kim EH, Park SJ, Jeong ST, Yu CH, Song Y, Gu SH, Oh H, Koo BS, Hong JJ, Ryu CM, Park WB, Oh MD, Choi YK, Lee SY. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat Commun 2021;12:288. [PMID: 33436577 DOI: 10.1038/s41467-020-20602-5] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 31.0] [Reference Citation Analysis]
95 Alfaleh MA, Zawawi A, Al-Amri SS, Hashem AM. David versus goliath: ACE2-Fc receptor traps as potential SARS-CoV-2 inhibitors. MAbs 2022;14:2057832. [PMID: 35380919 DOI: 10.1080/19420862.2022.2057832] [Reference Citation Analysis]
96 Liu W, Guan WJ, Zhong NS. Strategies and Advances in Combating COVID-19 in China. Engineering (Beijing) 2020;6:1076-84. [PMID: 33078078 DOI: 10.1016/j.eng.2020.10.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
97 Bhattarai A, Pawnikar S, Miao Y. Mechanism of ligand recognition by human ACE2 receptor. bioRxiv 2020:2020. [PMID: 33140043 DOI: 10.1101/2020.10.30.362749] [Reference Citation Analysis]
98 Dieterle ME, Haslwanter D, Bortz RH 3rd, Wirchnianski AS, Lasso G, Vergnolle O, Abbasi SA, Fels JM, Laudermilch E, Florez C, Mengotto A, Kimmel D, Malonis RJ, Georgiev G, Quiroz J, Barnhill J, Pirofski LA, Daily JP, Dye JM, Lai JR, Herbert AS, Chandran K, Jangra RK. A Replication-Competent Vesicular Stomatitis Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition. Cell Host Microbe 2020;28:486-496.e6. [PMID: 32738193 DOI: 10.1016/j.chom.2020.06.020] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 26.5] [Reference Citation Analysis]
99 Patiño-Galindo JÁ, Filip I, Chowdhury R, Maranas CD, Sorger PK, AlQuraishi M, Rabadan R. Recombination and lineage-specific mutations linked to the emergence of SARS-CoV-2. Genome Med 2021;13:124. [PMID: 34362430 DOI: 10.1186/s13073-021-00943-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
100 Li P, Guo R, Liu Y, Zhang Y, Hu J, Ou X, Mi D, Chen T, Mu Z, Han Y, Chen Z, Cui Z, Zhang L, Wang X, Wu Z, Wang J, Jin Q, Qian Z. The Rhinolophus affinis bat ACE2 and multiple animal orthologs are functional receptors for bat coronavirus RaTG13 and SARS-CoV-2. Sci Bull (Beijing) 2021;66:1215-27. [PMID: 33495713 DOI: 10.1016/j.scib.2021.01.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
101 Cao Y, Yang R, Wang W, Jiang S, Yang C, Liu N, Dai H, Lee I, Meng X, Yuan Z. Probing the Formation, Structure and Free Energy Relationships of M Protein Dimers of SARS-CoV-2. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.01.007] [Reference Citation Analysis]
102 Lee JH, Choi M, Jung Y, Lee SK, Lee CS, Kim J, Kim J, Kim NH, Kim BT, Kim HG. A novel rapid detection for SARS-CoV-2 spike 1 antigens using human angiotensin converting enzyme 2 (ACE2). Biosens Bioelectron 2021;171:112715. [PMID: 33099241 DOI: 10.1016/j.bios.2020.112715] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 14.0] [Reference Citation Analysis]
103 Lubin JH, Zardecki C, Dolan EM, Lu C, Shen Z, Dutta S, Westbrook JD, Hudson BP, Goodsell DS, Williams JK, Voigt M, Sarma V, Xie L, Venkatachalam T, Arnold S, Alvarado LHA, Catalfano K, Khan A, McCarthy E, Staggers S, Tinsley B, Trudeau A, Singh J, Whitmore L, Zheng H, Benedek M, Currier J, Dresel M, Duvvuru A, Dyszel B, Fingar E, Hennen EM, Kirsch M, Khan AA, Labrie-Cleary C, Laporte S, Lenkeit E, Martin K, Orellana M, de la Campa MO, Paredes I, Wheeler B, Rupert A, Sam A, See K, Zapata SS, Craig PA, Hall BL, Jiang J, Koeppe JR, Mills SA, Pikaart MJ, Roberts R, Bromberg Y, Hoyer JS, Duffy S, Tischfield J, Ruiz FX, Arnold E, Baum J, Sandberg J, Brannigan G, Khare SD, Burley SK. Evolution of the SARS-CoV-2 proteome in three dimensions (3D) during the first six months of the COVID-19 pandemic. bioRxiv 2020:2020. [PMID: 33299989 DOI: 10.1101/2020.12.01.406637] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
104 Dormoy V, Perotin JM, Gosset P, Maskos U, Polette M, Deslée G. Nicotinic receptors as SARS-CoV-2 spike co-receptors? Med Hypotheses 2022;158:110741. [PMID: 34924680 DOI: 10.1016/j.mehy.2021.110741] [Reference Citation Analysis]
105 Vianello A, Del Turco S, Babboni S, Silvestrini B, Ragusa R, Caselli C, Melani L, Fanucci L, Basta G. The Fight against COVID-19 on the Multi-Protease Front and Surroundings: Could an Early Therapeutic Approach with Repositioning Drugs Prevent the Disease Severity? Biomedicines 2021;9:710. [PMID: 34201505 DOI: 10.3390/biomedicines9070710] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
106 Tan TK, Rijal P, Rahikainen R, Keeble AH, Schimanski L, Hussain S, Harvey R, Hayes JWP, Edwards JC, McLean RK, Martini V, Pedrera M, Thakur N, Conceicao C, Dietrich I, Shelton H, Ludi A, Wilsden G, Browning C, Zagrajek AK, Bialy D, Bhat S, Stevenson-Leggett P, Hollinghurst P, Tully M, Moffat K, Chiu C, Waters R, Gray A, Azhar M, Mioulet V, Newman J, Asfor AS, Burman A, Crossley S, Hammond JA, Tchilian E, Charleston B, Bailey D, Tuthill TJ, Graham SP, Duyvesteyn HME, Malinauskas T, Huo J, Tree JA, Buttigieg KR, Owens RJ, Carroll MW, Daniels RS, McCauley JW, Stuart DI, Huang KA, Howarth M, Townsend AR. A COVID-19 vaccine candidate using SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding domain induces potent neutralising antibody responses. Nat Commun 2021;12:542. [PMID: 33483491 DOI: 10.1038/s41467-020-20654-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 25.0] [Reference Citation Analysis]
107 Zhang C, Wang Y, Zhu Y, Liu C, Gu C, Xu S, Wang Y, Zhou Y, Wang Y, Han W, Hong X, Yang Y, Zhang X, Wang T, Xu C, Hong Q, Wang S, Zhao Q, Qiao W, Zang J, Kong L, Wang F, Wang H, Qu D, Lavillette D, Tang H, Deng Q, Xie Y, Cong Y, Huang Z. Development and structural basis of a two-MAb cocktail for treating SARS-CoV-2 infections. Nat Commun 2021;12:264. [PMID: 33431876 DOI: 10.1038/s41467-020-20465-w] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 18.0] [Reference Citation Analysis]
108 Azad T, Singaravelu R, Brown EEF, Taha Z, Rezaei R, Arulanandam R, Boulton S, Diallo JS, Ilkow CS, Bell JC. SARS-CoV-2 S1 NanoBiT: A nanoluciferase complementation-based biosensor to rapidly probe SARS-CoV-2 receptor recognition. Biosens Bioelectron 2021;180:113122. [PMID: 33706157 DOI: 10.1016/j.bios.2021.113122] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
109 Whisenant J, Burgess K. Blocking Coronavirus 19 Infection via the SARS-CoV-2 Spike Protein: Initial Steps. ACS Med Chem Lett 2020;11:1076-8. [PMID: 32547694 DOI: 10.1021/acsmedchemlett.0c00233] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
110 Ren E, Liu C, Lv P, Wang J, Liu G. Genetically Engineered Cellular Membrane Vesicles as Tailorable Shells for Therapeutics. Adv Sci (Weinh) 2021;8:e2100460. [PMID: 34494387 DOI: 10.1002/advs.202100460] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
111 Bhattacharya R, Gupta AM, Mitra S, Mandal S, Biswas SR. A natural food preservative peptide nisin can interact with the SARS-CoV-2 spike protein receptor human ACE2. Virology 2021;552:107-11. [PMID: 33130382 DOI: 10.1016/j.virol.2020.10.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
112 Maouia A, Rebetz J, Kapur R, Semple JW. The Immune Nature of Platelets Revisited. Transfus Med Rev 2020;34:209-20. [PMID: 33051111 DOI: 10.1016/j.tmrv.2020.09.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
113 Ma C, Gong C. ACE2 models of frequently contacted animals provide clues of their SARS-CoV-2 S protein affinity and viral susceptibility. J Med Virol 2021;93:4469-79. [PMID: 33755203 DOI: 10.1002/jmv.26953] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
114 Lokhande KB, Banerjee T, Swamy KV, Ghosh P, Deshpande M. An in silico scientific basis for LL-37 as a therapeutic for Covid-19. Proteins 2021. [PMID: 34333809 DOI: 10.1002/prot.26198] [Reference Citation Analysis]
115 V K P, Rath SP, Abraham P. Computational designing of a peptide that potentially blocks the entry of SARS-CoV, SARS-CoV-2 and MERS-CoV. PLoS One 2021;16:e0251913. [PMID: 34003827 DOI: 10.1371/journal.pone.0251913] [Reference Citation Analysis]
116 Portakal SH, Kanat B, Sayan M, Berber B, Doluca O. A novel method for conserved sequence extraction with prospective mutation prediction for SARS-CoV-2 PCR primer design. J Virol Methods 2021;293:114146. [PMID: 33812944 DOI: 10.1016/j.jviromet.2021.114146] [Reference Citation Analysis]
117 Ortuso F, Mercatelli D, Guzzi PH, Giorgi FM. Structural genetics of circulating variants affecting the SARS-CoV-2 spike/human ACE2 complex. J Biomol Struct Dyn 2021;:1-11. [PMID: 33583326 DOI: 10.1080/07391102.2021.1886175] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
118 Rotondo JC, Martini F, Maritati M, Mazziotta C, Di Mauro G, Lanzillotti C, Barp N, Gallerani A, Tognon M, Contini C. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses 2021;13:1687. [PMID: 34578269 DOI: 10.3390/v13091687] [Cited by in Crossref: 6] [Article Influence: 6.0] [Reference Citation Analysis]
119 Yao H, Song Y, Chen Y, Wu N, Xu J, Sun C, Zhang J, Weng T, Zhang Z, Wu Z, Cheng L, Shi D, Lu X, Lei J, Crispin M, Shi Y, Li L, Li S. Molecular Architecture of the SARS-CoV-2 Virus. Cell 2020;183:730-738.e13. [PMID: 32979942 DOI: 10.1016/j.cell.2020.09.018] [Cited by in Crossref: 203] [Cited by in F6Publishing: 180] [Article Influence: 101.5] [Reference Citation Analysis]
120 Dugail I, Amri EZ, Vitale N. High prevalence for obesity in severe COVID-19: Possible links and perspectives towards patient stratification. Biochimie. 2020;179:257-265. [PMID: 32649962 DOI: 10.1016/j.biochi.2020.07.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
121 Al-Zaidan L, Mestiri S, Raza A, Merhi M, Inchakalody VP, Fernandes Q, Taib N, Uddin S, Dermime S. The expression of hACE2 receptor protein and its involvement in SARS-CoV-2 entry, pathogenesis, and its application as potential therapeutic target. Tumour Biol 2021;43:177-96. [PMID: 34420993 DOI: 10.3233/TUB-200084] [Reference Citation Analysis]
122 Banerjee R, Basak K, Ghosh A, Rajachandran V, Sureka K, Ganguly D, Chattopadhyay S. Spike protein mutational landscape in India during the complete lockdown phase: Could Muller's ratchet be a future game-changer for COVID-19? Infect Genet Evol 2021;92:104874. [PMID: 33905891 DOI: 10.1016/j.meegid.2021.104874] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
123 Cannalire R, Cerchia C, Beccari AR, Di Leva FS, Summa V. Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities. J Med Chem 2020. [PMID: 33186044 DOI: 10.1021/acs.jmedchem.0c01140] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 13.0] [Reference Citation Analysis]
124 Wang X, Bie L, Gao J. Structural Insights into the Cofactor Role of Heparin/Heparan Sulfate in Binding between the SARS-CoV-2 Spike Protein and Host Angiotensin-Converting Enzyme II. J Chem Inf Model . [DOI: 10.1021/acs.jcim.1c01484] [Reference Citation Analysis]
125 Cerutti G, Guo Y, Wang P, Nair MS, Wang M, Huang Y, Yu J, Liu L, Katsamba PS, Bahna F, Reddem ER, Kwong PD, Ho DD, Sheng Z, Shapiro L. Neutralizing antibody 5-7 defines a distinct site of vulnerability in SARS-CoV-2 spike N-terminal domain. Cell Rep 2021;37:109928. [PMID: 34706271 DOI: 10.1016/j.celrep.2021.109928] [Reference Citation Analysis]
126 Naidoo D, Kar P, Roy A, Mutanda T, Bwapwa J, Sen A, Anandraj A. Structural Insight into the Binding of Cyanovirin-N with the Spike Glycoprotein, Mpro and PLpro of SARS-CoV-2: Protein-Protein Interactions, Dynamics Simulations and Free Energy Calculations. Molecules 2021;26:5114. [PMID: 34500548 DOI: 10.3390/molecules26175114] [Reference Citation Analysis]
127 [DOI: 10.1101/2020.12.03.409318] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
128 Qiang X, Zhu S, Li J, Wang P, Tracey KJ, Wang H. Monoclonal Antibodies Capable of Binding SARS-CoV-2 Spike Protein Receptor Binding Motif Specifically Prevent GM-CSF Induction. bioRxiv 2020:2020. [PMID: 32908979 DOI: 10.1101/2020.09.04.280081] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
129 Hong J, Jhun H, Choi YO, Taitt AS, Bae S, Lee Y, Song CS, Yeom SC, Kim S. Structure of SARS-CoV-2 Spike Glycoprotein for Therapeutic and Preventive Target. Immune Netw 2021;21:e8. [PMID: 33728101 DOI: 10.4110/in.2021.21.e8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
130 Guruprasad K. Mutations in human SARS-CoV-2 spike proteins, potential drug binding and epitope sites for COVID-19 therapeutics development. Curr Res Struct Biol 2022;4:41-50. [PMID: 35156058 DOI: 10.1016/j.crstbi.2022.01.002] [Reference Citation Analysis]
131 Wu K, Choi A, Koch M, Elbashir S, Ma L, Lee D, Woods A, Henry C, Palandjian C, Hill A, Jani H, Quinones J, Nunna N, O'Connell S, McDermott AB, Falcone S, Narayanan E, Colpitts T, Bennett H, Corbett KS, Seder R, Graham BS, Stewart-Jones GBE, Carfi A, Edwards DK. Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice. Vaccine 2021;39:7394-400. [PMID: 34815117 DOI: 10.1016/j.vaccine.2021.11.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
132 Xu Y, Li Y. MicroRNA‑28‑3p inhibits angiotensin‑converting enzyme 2 ectodomain shedding in 293T cells treated with the spike protein of severe acute respiratory syndrome coronavirus 2 by targeting A disintegrin and metalloproteinase 17. Int J Mol Med 2021;48:189. [PMID: 34414454 DOI: 10.3892/ijmm.2021.5022] [Reference Citation Analysis]
133 Di Teodoro G, Valleriani F, Puglia I, Monaco F, Di Pancrazio C, Luciani M, Krasteva I, Petrini A, Marcacci M, D'Alterio N, Curini V, Iorio M, Migliorati G, Di Domenico M, Morelli D, Calistri P, Savini G, Decaro N, Holmes EC, Lorusso A. SARS-CoV-2 replicates in respiratory ex vivo organ cultures of domestic ruminant species. Vet Microbiol 2021;252:108933. [PMID: 33278734 DOI: 10.1016/j.vetmic.2020.108933] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
134 Cui D, Liu Y, Jiang X, Ding C, Poon LC, Wang H, Yang H. Single-cell RNA expression profiling of SARS-CoV-2-related ACE2 and TMPRSS2 in human trophectoderm and placenta. Ultrasound Obstet Gynecol 2021;57:248-56. [PMID: 32851697 DOI: 10.1002/uog.22186] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
135 Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R, Santulli G. Hypertension, Thrombosis, Kidney Failure, and Diabetes: Is COVID-19 an Endothelial Disease? J Clin Med. 2020;9. [PMID: 32403217 DOI: 10.3390/jcm9051417] [Cited by in Crossref: 185] [Cited by in F6Publishing: 191] [Article Influence: 92.5] [Reference Citation Analysis]
136 Kumar Barman R, Mukhopadhyay A, Maulik U, Das S. A network biology approach to identify crucial host targets for COVID-19. Methods 2022. [DOI: 10.1016/j.ymeth.2022.03.016] [Reference Citation Analysis]
137 Barrett CT, Neal HE, Edmonds K, Moncman CL, Thompson R, Branttie JM, Boggs KB, Wu CY, Leung DW, Dutch RE. Effect of clinical isolate or cleavage site mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell-cell fusion. J Biol Chem 2021;297:100902. [PMID: 34157282 DOI: 10.1016/j.jbc.2021.100902] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
138 Sheikh JA, Singh J, Singh H, Jamal S, Khubaib M, Kohli S, Dobrindt U, Rahman SA, Ehtesham NZ, Hasnain SE. Emerging genetic diversity among clinical isolates of SARS-CoV-2: Lessons for today. Infect Genet Evol 2020;84:104330. [PMID: 32335334 DOI: 10.1016/j.meegid.2020.104330] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 17.5] [Reference Citation Analysis]
139 Dogan M, Kozhaya L, Placek L, Gunter C, Yigit M, Hardy R, Plassmeyer M, Coatney P, Lillard K, Bukhari Z, Kleinberg M, Hayes C, Arditi M, Klapper E, Merin N, Liang BT, Gupta R, Alpan O, Unutmaz D. SARS-CoV-2 specific antibody and neutralization assays reveal the wide range of the humoral immune response to virus. Commun Biol 2021;4:129. [PMID: 33514825 DOI: 10.1038/s42003-021-01649-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 17.0] [Reference Citation Analysis]
140 Filipe HAL, Fiuza SM, Henriques CA, Antunes FE. Antiviral and antibacterial activity of hand sanitizer and surface disinfectant formulations. Int J Pharm 2021;609:121139. [PMID: 34592397 DOI: 10.1016/j.ijpharm.2021.121139] [Reference Citation Analysis]
141 Wu Y, Zhao S. Furin cleavage sites naturally occur in coronaviruses. Stem Cell Res 2020;50:102115. [PMID: 33340798 DOI: 10.1016/j.scr.2020.102115] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
142 Zhou L, Xu Z, Castiglione GM, Soiberman US, Eberhart CG, Duh EJ. ACE2 and TMPRSS2 are expressed on the human ocular surface, suggesting susceptibility to SARS-CoV-2 infection. Ocul Surf 2020;18:537-44. [PMID: 32544566 DOI: 10.1016/j.jtos.2020.06.007] [Cited by in Crossref: 89] [Cited by in F6Publishing: 98] [Article Influence: 44.5] [Reference Citation Analysis]
143 Fraguas Bringas C, Booth D. Identification of a SARS-like bat coronavirus that shares structural features with the spike glycoprotein receptor-binding domain of SARS-CoV-2. Access Microbiol 2020;2:acmi000166. [PMID: 33294769 DOI: 10.1099/acmi.0.000166] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
144 Ni S, Yang Q, Huang J, Zhou M, Wei L, Yang Y, Wen J, Mo W, Le W, Qi D, Jin L, Li B, Zhao Z, Du K. Constructing high-accuracy theoretical Raman spectra of SARS-CoV-2 spike proteins based on a large fragment method. Chemical Physics Letters 2022. [DOI: 10.1016/j.cplett.2022.139663] [Reference Citation Analysis]
145 Zebardast A, Hosseini P, Hasanzadeh A, Latifi T. The role of single-domain antibodies (or nanobodies) in SARS-CoV-2 neutralization. Mol Biol Rep 2021. [PMID: 34648139 DOI: 10.1007/s11033-021-06819-7] [Reference Citation Analysis]
146 Csekes E, Račková L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int J Mol Sci 2021;22:12641. [PMID: 34884444 DOI: 10.3390/ijms222312641] [Reference Citation Analysis]
147 Cao W, Dong C, Kim S, Hou D, Tai W, Du L, Im W, Zhang XF. Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction. Biophys J 2021;120:1011-9. [PMID: 33607086 DOI: 10.1016/j.bpj.2021.02.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
148 Ahammad I, Hossain MU, Rahman A, Chowdhury ZM, Bhattacharjee A, Das KC, Keya CA, Salimullah M. Wave-wise comparative genomic study for revealing the complete scenario and dynamic nature of COVID-19 pandemic in Bangladesh. PLoS One 2021;16:e0258019. [PMID: 34587212 DOI: 10.1371/journal.pone.0258019] [Reference Citation Analysis]
149 Dee K, Goldfarb DM, Haney J, Amat JAR, Herder V, Stewart M, Szemiel AM, Baguelin M, Murcia PR. Human Rhinovirus Infection Blocks Severe Acute Respiratory Syndrome Coronavirus 2 Replication Within the Respiratory Epithelium: Implications for COVID-19 Epidemiology. J Infect Dis 2021;224:31-8. [PMID: 33754149 DOI: 10.1093/infdis/jiab147] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 12.0] [Reference Citation Analysis]
150 Hozhabri H, Piceci Sparascio F, Sohrabi H, Mousavifar L, Roy R, Scribano D, De Luca A, Ambrosi C, Sarshar M. The Global Emergency of Novel Coronavirus (SARS-CoV-2): An Update of the Current Status and Forecasting. Int J Environ Res Public Health 2020;17:E5648. [PMID: 32764417 DOI: 10.3390/ijerph17165648] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
151 Kornhuber J, Hoertel N, Gulbins E. The acid sphingomyelinase/ceramide system in COVID-19. Mol Psychiatry 2021. [PMID: 34608263 DOI: 10.1038/s41380-021-01309-5] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
152 Selvaraj C, Dinesh DC, Panwar U, Abhirami R, Boura E, Singh SK. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19. J Biomol Struct Dyn 2021;39:4582-93. [PMID: 32567979 DOI: 10.1080/07391102.2020.1778535] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
153 Khatri I, Staal FJT, van Dongen JJM. Blocking of the High-Affinity Interaction-Synapse Between SARS-CoV-2 Spike and Human ACE2 Proteins Likely Requires Multiple High-Affinity Antibodies: An Immune Perspective. Front Immunol 2020;11:570018. [PMID: 33042151 DOI: 10.3389/fimmu.2020.570018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
154 Riggioni C, Comberiati P, Giovannini M, Agache I, Akdis M, Alves-Correia M, Antó JM, Arcolaci A, Azkur AK, Azkur D, Beken B, Boccabella C, Bousquet J, Breiteneder H, Carvalho D, De Las Vecillas L, Diamant Z, Eguiluz-Gracia I, Eiwegger T, Eyerich S, Fokkens W, Gao YD, Hannachi F, Johnston SL, Jutel M, Karavelia A, Klimek L, Moya B, Nadeau KC, O'Hehir R, O'Mahony L, Pfaar O, Sanak M, Schwarze J, Sokolowska M, Torres MJ, van de Veen W, van Zelm MC, Wang Y, Zhang L, Jiménez-Saiz R, Akdis CA. A compendium answering 150 questions on COVID-19 and SARS-CoV-2. Allergy 2020;75:2503-41. [PMID: 32535955 DOI: 10.1111/all.14449] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 20.5] [Reference Citation Analysis]
155 Rath SL, Padhi AK, Mandal N. Scanning the RBD-ACE2 molecular interactions in Omicron variant. Biochem Biophys Res Commun 2022;592:18-23. [PMID: 35007846 DOI: 10.1016/j.bbrc.2022.01.006] [Reference Citation Analysis]
156 Spratt AN, Kannan SR, Woods LT, Weisman GA, Quinn TP, Lorson CL, Sönnerborg A, Byrareddy SN, Singh K. Evolution, correlation, structural impact and dynamics of emerging SARS-CoV-2 variants. Comput Struct Biotechnol J 2021;19:3799-809. [PMID: 34188776 DOI: 10.1016/j.csbj.2021.06.037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
157 Widera M, Wilhelm A, Toptan T, Raffel JM, Kowarz E, Roesmann F, Grözinger F, Siemund AL, Luciano V, Külp M, Reis J, Bracharz S, Pallas C, Ciesek S, Marschalek R. Generation of a Sleeping Beauty Transposon-Based Cellular System for Rapid and Sensitive Screening for Compounds and Cellular Factors Limiting SARS-CoV-2 Replication. Front Microbiol 2021;12:701198. [PMID: 34394046 DOI: 10.3389/fmicb.2021.701198] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
158 Arantes PR, Saha A, Palermo G. Fighting COVID-19 Using Molecular Dynamics Simulations. ACS Cent Sci 2020;6:1654-6. [PMID: 33140032 DOI: 10.1021/acscentsci.0c01236] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 9.5] [Reference Citation Analysis]
159 Gómez SA, Rojas-Valencia N, Gómez S, Cappelli C, Restrepo A. The Role of Spike Protein Mutations in the Infectious Power of SARS-COV-2 Variants: A Molecular Interaction Perspective. Chembiochem 2021. [PMID: 34529328 DOI: 10.1002/cbic.202100393] [Reference Citation Analysis]
160 Lin S, Chen H, Ye F, Chen Z, Yang F, Zheng Y, Cao Y, Qiao J, Yang S, Lu G. Crystal structure of SARS-CoV-2 nsp10/nsp16 2'-O-methylase and its implication on antiviral drug design. Signal Transduct Target Ther 2020;5:131. [PMID: 32728018 DOI: 10.1038/s41392-020-00241-4] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 14.0] [Reference Citation Analysis]
161 Rasmi Y, Li X, Khan J, Ozer T, Choi JR. Emerging point-of-care biosensors for rapid diagnosis of COVID-19: current progress, challenges, and future prospects. Anal Bioanal Chem 2021;413:4137-59. [PMID: 34008124 DOI: 10.1007/s00216-021-03377-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
162 Jörrißen P, Schütz P, Weiand M, Vollenberg R, Schrempf IM, Ochs K, Frömmel C, Tepasse PR, Schmidt H, Zibert A. Antibody Response to SARS-CoV-2 Membrane Protein in Patients of the Acute and Convalescent Phase of COVID-19. Front Immunol 2021;12:679841. [PMID: 34421894 DOI: 10.3389/fimmu.2021.679841] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
163 Lee JH, Lee Y, Lee SK, Kim J, Lee CS, Kim NH, Kim HG. Versatile role of ACE2-based biosensors for detection of SARS-CoV-2 variants and neutralizing antibodies. Biosens Bioelectron 2022;203:114034. [PMID: 35114464 DOI: 10.1016/j.bios.2022.114034] [Reference Citation Analysis]
164 Brüssow H. The Novel Coronavirus - Latest Findings. Microb Biotechnol 2020;13:819-28. [PMID: 32363726 DOI: 10.1111/1751-7915.13592] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
165 Sun H, Su X, Huang L, Mu D, Qu Y. Research Progress on the Cardiac Injury from ACE2 Targeting in SARS-CoV-2 Infection. Biomolecules 2021;11:196. [PMID: 33573324 DOI: 10.3390/biom11020196] [Reference Citation Analysis]
166 Shi Z, Li X, Wang L, Sun Z, Zhang H, Chen X, Cui Q, Qiao H, Lan Z, Zhang X, Li X, Li L, Xu J, Gong R, Fan C, Geng Y. Structural basis of nanobodies neutralizing SARS-CoV-2 variants. Structure 2022:S0969-2126(22)00047-8. [PMID: 35276082 DOI: 10.1016/j.str.2022.02.011] [Reference Citation Analysis]
167 Yang W, Jin G. Origin-independent analysis links SARS-CoV-2 local genomes with COVID-19 incidence and mortality. Brief Bioinform 2021;22:905-13. [PMID: 32924062 DOI: 10.1093/bib/bbaa208] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
168 Saleem A, Akhtar MF, Haris M, Abdel-Daim MM. Recent updates on immunological, pharmacological, and alternative approaches to combat COVID-19. Inflammopharmacology 2021. [PMID: 34331179 DOI: 10.1007/s10787-021-00850-7] [Reference Citation Analysis]
169 Perico L, Benigni A, Remuzzi G. Angiotensin-converting enzyme 2: from a vasoactive peptide to the gatekeeper of a global pandemic. Curr Opin Nephrol Hypertens 2021;30:252-63. [PMID: 33395036 DOI: 10.1097/MNH.0000000000000692] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
170 Zhang Y, He X, Zhai J, Ji B, Man VH, Wang J. In silico binding profile characterization of SARS-CoV-2 spike protein and its mutants bound to human ACE2 receptor. Brief Bioinform 2021:bbab188. [PMID: 34013346 DOI: 10.1093/bib/bbab188] [Reference Citation Analysis]
171 Yang L, Li J, Guo S, Hou C, Liao C, Shi L, Ma X, Jiang S, Zheng B, Fang Y, Ye L, He X. SARS-CoV-2 Variants, RBD Mutations, Binding Affinity, and Antibody Escape. Int J Mol Sci 2021;22:12114. [PMID: 34829998 DOI: 10.3390/ijms222212114] [Reference Citation Analysis]
172 Unni S, Aouti S, Thiyagarajan S, Padmanabhan B. Identification of a repurposed drug as an inhibitor of Spike protein of human coronavirus SARS-CoV-2 by computational methods. J Biosci 2020;45:130. [PMID: 33184246 [PMID: 33184246 DOI: 10.1007/s12038-020-00102-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 6.5] [Reference Citation Analysis]
173 Awad IE, Abu-Saleh AAA, Sharma S, Yadav A, Poirier RA. High-throughput virtual screening of drug databanks for potential inhibitors of SARS-CoV-2 spike glycoprotein. J Biomol Struct Dyn 2020;:1-14. [PMID: 33103586 DOI: 10.1080/07391102.2020.1835721] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
174 Du S, Cao Y, Zhu Q, Yu P, Qi F, Wang G, Du X, Bao L, Deng W, Zhu H, Liu J, Nie J, Zheng Y, Liang H, Liu R, Gong S, Xu H, Yisimayi A, Lv Q, Wang B, He R, Han Y, Zhao W, Bai Y, Qu Y, Gao X, Ji C, Wang Q, Gao N, Huang W, Wang Y, Xie XS, Su XD, Xiao J, Qin C. Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy. Cell 2020;183:1013-1023.e13. [PMID: 32970990 DOI: 10.1016/j.cell.2020.09.035] [Cited by in Crossref: 91] [Cited by in F6Publishing: 77] [Article Influence: 45.5] [Reference Citation Analysis]
175 Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D, Rajah MM, Planchais C, Porrot F, Guivel-Benhassine F, Van der Werf S, Casartelli N, Mouquet H, Bruel T, Schwartz O. Syncytia formation by SARS-CoV-2-infected cells. EMBO J 2020;39:e106267. [PMID: 33051876 DOI: 10.15252/embj.2020106267] [Cited by in Crossref: 72] [Cited by in F6Publishing: 70] [Article Influence: 36.0] [Reference Citation Analysis]
176 Huang Q, Ji K, Tian S, Wang F, Huang B, Tong Z, Tan S, Hao J, Wang Q, Tan W, Gao GF, Yan J. A single-dose mRNA vaccine provides a long-term protection for hACE2 transgenic mice from SARS-CoV-2. Nat Commun 2021;12:776. [PMID: 33536425 DOI: 10.1038/s41467-021-21037-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
177 Emrani J, Ahmed M, Jeffers-Francis L, Teleha JC, Mowa N, Newman RH, Thomas MD. SARS-COV-2, infection, transmission, transcription, translation, proteins, and treatment: A review. Int J Biol Macromol 2021;193:1249-73. [PMID: 34756970 DOI: 10.1016/j.ijbiomac.2021.10.172] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
178 Francés-Monerris A, Hognon C, Miclot T, García-Iriepa C, Iriepa I, Terenzi A, Grandemange S, Barone G, Marazzi M, Monari A. Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches. J Proteome Res 2020;19:4291-315. [PMID: 33119313 DOI: 10.1021/acs.jproteome.0c00779] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
179 Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. Adv Exp Med Biol 2021;21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
180 Zhou T, Teng IT, Olia AS, Cerutti G, Gorman J, Nazzari A, Shi W, Tsybovsky Y, Wang L, Wang S, Zhang B, Zhang Y, Katsamba PS, Petrova Y, Banach BB, Fahad AS, Liu L, Lopez Acevedo SN, Madan B, de Souza MO, Pan X, Wang P, Wolfe JR, Yin M, Ho DD, Phung E, DiPiazza A, Chang L, Abiona O, Corbett KS, DeKosky BJ, Graham BS, Mascola JR, Misasi J, Ruckwardt T, Sullivan NJ, Shapiro L, Kwong PD. Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes. bioRxiv 2020:2020. [PMID: 32596696 DOI: 10.1101/2020.06.22.166033] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
181 Vadgama N, Kreymerman A, Campbell J, Shamardina O, Brugger C, Research Consortium GE, Deaconescu AM, Lee RT, Penkett CJ, Gifford CA, Mercola M, Nasir J, Karakikes I. SARS-CoV-2 Susceptibility and ACE2 Gene Variations Within Diverse Ethnic Backgrounds. Front Genet 2022;13:888025. [DOI: 10.3389/fgene.2022.888025] [Reference Citation Analysis]
182 Bonny V, Maillard A, Mousseaux C, Plaçais L, Richier Q. [COVID-19: Pathogenesis of a multi-faceted disease]. Rev Med Interne 2020;41:375-89. [PMID: 32507520 DOI: 10.1016/j.revmed.2020.05.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
183 Halder A, Anto A, Subramanyan V, Bhattacharyya M, Vishveshwara S, Vishveshwara S. Surveying the Side-Chain Network Approach to Protein Structure and Dynamics: The SARS-CoV-2 Spike Protein as an Illustrative Case. Front Mol Biosci 2020;7:596945. [PMID: 33392257 DOI: 10.3389/fmolb.2020.596945] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
184 Gupta GS. The Lactate and the Lactate Dehydrogenase in Inflammatory Diseases and Major Risk Factors in COVID-19 Patients. Inflammation 2022. [PMID: 35588340 DOI: 10.1007/s10753-022-01680-7] [Reference Citation Analysis]
185 Hua S, Yang Y, Zou D, Li J, Yan K, Xu Y, Jiang X, Rong X, Ye D. COVID-19 and metabolic comorbidities: An update on emerging evidences for optimal therapies. Biomed Pharmacother 2021;140:111685. [PMID: 34015585 DOI: 10.1016/j.biopha.2021.111685] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
186 Yi H, Wang J, Wang J, Lu Y, Zhang Y, Peng R, Lu J, Chen Z. The Emergence and Spread of Novel SARS-CoV-2 Variants. Front Public Health 2021;9:696664. [PMID: 34409009 DOI: 10.3389/fpubh.2021.696664] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
187 Morgello S. Coronaviruses and the central nervous system. J Neurovirol 2020;26:459-73. [PMID: 32737861 DOI: 10.1007/s13365-020-00868-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
188 Yildiz H, Alp HH, Ekin S, Arisoy A, Gunbatar H, Asker S, Cilingir BM, Sunnetcioglu A, Celikel M, Esen N, Bedirhanoglu S, Baykal ND, Haylu M. Analysis of endogenous oxidative damage markers and association with pulmonary involvement severity in patients with SARS-CoV-2 pneumonia. Infect Dis Now 2021;51:429-34. [PMID: 34146758 DOI: 10.1016/j.idnow.2021.06.302] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
189 Maiuolo J, Mollace R, Gliozzi M, Musolino V, Carresi C, Paone S, Scicchitano M, Macrì R, Nucera S, Bosco F, Scarano F, Zito MC, Ruga S, Tavernese A, Mollace V. The Contribution of Endothelial Dysfunction in Systemic Injury Subsequent to SARS-Cov-2 Infection. Int J Mol Sci 2020;21:E9309. [PMID: 33291346 DOI: 10.3390/ijms21239309] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
190 Roychoudhury S, Das A, Jha NK, Kesari KK, Roychoudhury S, Jha SK, Kosgi R, Choudhury AP, Lukac N, Madhu NR, Kumar D, Slama P. Viral pathogenesis of SARS-CoV-2 infection and male reproductive health. Open Biol 2021;11:200347. [PMID: 33465325 DOI: 10.1098/rsob.200347] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
191 Al-Zaqri N, Pooventhiran T, Alharthi FA, Bhattacharyya U, Thomas R. Structural investigations, quantum mechanical studies on proton and metal affinity and biological activity predictions of selpercatinib. J Mol Liq 2021;325:114765. [PMID: 33746318 DOI: 10.1016/j.molliq.2020.114765] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
192 Kealy L, Good-jacobson KL. Advances in understanding the formation and fate of B-cell memory in response to immunization or infection. Oxford Open Immunology 2021;2:iqab018. [DOI: 10.1093/oxfimm/iqab018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
193 Zhao S, Ran J, Han L. Exploring the Interaction between E484K and N501Y Substitutions of SARS-CoV-2 in Shaping the Transmission Advantage of COVID-19 in Brazil: A Modeling Study. Am J Trop Med Hyg 2021:tpmd210412. [PMID: 34583340 DOI: 10.4269/ajtmh.21-0412] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
194 Fell R, Potter JA, Yuille S, Salguero FJ, Watson R, Ngabo D, Gooch K, Hewson R, Howat D, Dowall S. Activity of a Carbohydrate-Binding Module Therapy, Neumifil, against SARS-CoV-2 Disease in a Hamster Model of Infection. Viruses 2022;14:976. [DOI: 10.3390/v14050976] [Reference Citation Analysis]
195 [DOI: 10.1101/2020.12.15.20248264] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
196 Fang W, Jiang J, Su L, Shu T, Liu H, Lai S, Ghiladi RA, Wang J. The role of NO in COVID-19 and potential therapeutic strategies. Free Radic Biol Med 2021;163:153-62. [PMID: 33347987 DOI: 10.1016/j.freeradbiomed.2020.12.008] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
197 Huang C, Jiang Y, Yan J. Comparative analyses of ACE2 and TMPRSS2 gene: Implications for the risk to which vertebrate animals are susceptible to SARS-CoV-2. J Med Virol 2021;93:5487-504. [PMID: 33974296 DOI: 10.1002/jmv.27073] [Reference Citation Analysis]
198 Sarto C, Florez-Rueda S, Arrar M, Hackenberger CPR, Lauster D, Di Lella S. Atomistic insight into the essential binding event of ACE2-derived peptides to the SARS-CoV-2 spike protein. Biol Chem 2022. [PMID: 35357791 DOI: 10.1515/hsz-2021-0426] [Reference Citation Analysis]
199 Li H, Zhao Y, Zhou L. Cutaneous manifestations in children with SARS-CoV-2 infection and/or COVID-19: what do we know after 10 months under this pandemic? Int J Dermatol 2021. [PMID: 34530491 DOI: 10.1111/ijd.15882] [Reference Citation Analysis]
200 Senapati S, Dash J, Sethi M, Chakraborty S. Bioengineered probiotics to control SARS-CoV-2 infection. RIO 2020;6:e54802. [DOI: 10.3897/rio.6.e54802] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
201 Zhang X, Chen L, Wang G, Chen L, Huang L, Cao Y, Chen X, Deng C, Chen X, Ke D, Qin Y, Chen B, Sun X. Investigation of SARS-CoV-2 on Ocular Surface of Coronavirus Disease 2019 Patients Using One-Step Reverse-Transcription Droplet Digital PCR. Infect Drug Resist 2021;14:5395-401. [PMID: 34938087 DOI: 10.2147/IDR.S335635] [Reference Citation Analysis]
202 Supekar NT, Shajahan A, Gleinich AS, Rouhani DS, Heiss C, Chapla DG, Moremen KW, Azadi P. Variable post-translational modifications of SARS-CoV-2 nucleocapsid protein. Glycobiology 2021:cwab044. [PMID: 33997890 DOI: 10.1093/glycob/cwab044] [Reference Citation Analysis]
203 Grudlewska-Buda K, Wiktorczyk-Kapischke N, Wałecka-Zacharska E, Kwiecińska-Piróg J, Buszko K, Leis K, Juszczuk K, Gospodarek-Komkowska E, Skowron K. SARS-CoV-2-Morphology, Transmission and Diagnosis during Pandemic, Review with Element of Meta-Analysis. J Clin Med 2021;10:1962. [PMID: 34063654 DOI: 10.3390/jcm10091962] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
204 Liu YM, Xie J, Chen MM, Zhang X, Cheng X, Li H, Zhou F, Qin JJ, Lei F, Chen Z, Lin L, Yang C, Mao W, Chen G, Lu H, Xia X, Wang D, Liao X, Yang J, Huang X, Zhang BH, Yuan Y, Cai J, Zhang XJ, Wang Y, Zhang X, She ZG, Li H. Kidney Function Indicators Predict Adverse Outcomes of COVID-19. Med (N Y) 2021;2:38-48.e2. [PMID: 33043313 DOI: 10.1016/j.medj.2020.09.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
205 Sekar PC, Srinivasan E, Chandrasekhar G, Paul DM, Sanjay G, Surya S, Kumar NAR, Rajasekaran R. Probing the competitive inhibitor efficacy of frog-skin alpha helical AMPs identified against ACE2 binding to SARS-CoV-2 S1 spike protein as therapeutic scaffold to prevent COVID-19. J Mol Model 2022;28. [DOI: 10.1007/s00894-022-05117-8] [Reference Citation Analysis]
206 Guruprasad L. Human coronavirus spike protein-host receptor recognition. Prog Biophys Mol Biol 2021;161:39-53. [PMID: 33137344 DOI: 10.1016/j.pbiomolbio.2020.10.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
207 Zhang P, Mendonca L, Howe A, Gilchrist J, Sun D, Knight M, Zanetti-Domingues L, Bateman B, Krebs AS, Chen L, Radecke J, Sheng Y, Li V, Ni T, Kounatidis I, Koronfel M, Szynkiewicz M, Harkiolaki M, Martin-Fernandez M, James W. Correlative Multi-scale Cryo-imaging Unveils SARS-CoV-2 Assembly and Egress. Res Sq 2021:rs. [PMID: 33501431 DOI: 10.21203/rs.3.rs-134794/v1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
208 Caniglia JL, Asuthkar S, Tsung AJ, Guda MR, Velpula KK. Immunopathology of galectin-3: an increasingly promising target in COVID-19. F1000Res 2020;9:1078. [PMID: 33082935 DOI: 10.12688/f1000research.25979.2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
209 Hong BS, Kim MR. Interplays between human microbiota and microRNAs in COVID-19 pathogenesis: a literature review. Phys Act Nutr 2021;25:1-7. [PMID: 34315200 DOI: 10.20463/pan.2021.0008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
210 Ghasemitarei M, Privat-Maldonado A, Yusupov M, Rahnama S, Bogaerts A, Ejtehadi MR. Effect of Cysteine Oxidation in SARS-CoV-2 Receptor-Binding Domain on Its Interaction with Two Cell Receptors: Insights from Atomistic Simulations. J Chem Inf Model 2021. [PMID: 34965734 DOI: 10.1021/acs.jcim.1c00853] [Reference Citation Analysis]
211 Lin C, Li Y, Zhang Y, Liu Z, Mu X, Gu C, Liu J, Li Y, Li G, Chen J. Ceftazidime is a potential drug to inhibit SARS-CoV-2 infection in vitro by blocking spike protein-ACE2 interaction. Signal Transduct Target Ther 2021;6:198. [PMID: 34006835 DOI: 10.1038/s41392-021-00619-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
212 Aguilar-Pineda JA, Albaghdadi M, Jiang W, Vera-Lopez KJ, Nieto-Montesinos R, Alvarez KLF, Davila Del-Carpio G, Gómez B, Lindsay ME, Malhotra R, Lino Cardenas CL. Structural and Functional Analysis of Female Sex Hormones against SARS-CoV-2 Cell Entry. Int J Mol Sci 2021;22:11508. [PMID: 34768939 DOI: 10.3390/ijms222111508] [Reference Citation Analysis]
213 [DOI: 10.1101/2020.05.12.20098160] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
214 Wang Q, Wang L, Zhang Y, Zhang X, Zhang L, Shang W, Bai F. Probing the Allosteric Inhibition Mechanism of a Spike Protein Using Molecular Dynamics Simulations and Active Compound Identifications. J Med Chem 2021. [PMID: 34415156 DOI: 10.1021/acs.jmedchem.1c00320] [Reference Citation Analysis]
215 Paggiaro AO, Carvalho VF, Gemperli R. Effect of different human tissue processing techniques on SARS-CoV-2 inactivation-review. Cell Tissue Bank 2021;22:1-10. [PMID: 33033963 DOI: 10.1007/s10561-020-09869-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
216 Mandal N, Padhi AK, Rath SL. Molecular insights into the differential dynamics of SARS-CoV-2 variants of concern. Journal of Molecular Graphics and Modelling 2022. [DOI: 10.1016/j.jmgm.2022.108194] [Reference Citation Analysis]
217 Fecchi K, Anticoli S, Peruzzu D, Iessi E, Gagliardi MC, Matarrese P, Ruggieri A. Coronavirus Interplay With Lipid Rafts and Autophagy Unveils Promising Therapeutic Targets. Front Microbiol 2020;11:1821. [PMID: 32849425 DOI: 10.3389/fmicb.2020.01821] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 13.5] [Reference Citation Analysis]
218 Zhang YN, Zhang Y, Su S, Zhu HY, Xu W, Wang L, Wu M, Chen K, Yu FQ, Xi TK, Zhou Q, Xie YH, Qin X, Ge H, Lu L, Qing J, Fang GM. Neutralizing SARS-CoV-2 by dimeric side chain-to-side chain cross-linked ACE2 peptide mimetics. Chem Commun (Camb) 2022. [PMID: 35040445 DOI: 10.1039/d1cc06301d] [Reference Citation Analysis]
219 Verkhivker G. Coevolution, Dynamics and Allostery Conspire in Shaping Cooperative Binding and Signal Transmission of the SARS-CoV-2 Spike Protein with Human Angiotensin-Converting Enzyme 2. Int J Mol Sci 2020;21:E8268. [PMID: 33158276 DOI: 10.3390/ijms21218268] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
220 Mann JK, Ndung'u T. The potential of lactoferrin, ovotransferrin and lysozyme as antiviral and immune-modulating agents in COVID-19. Future Virology 2020;15:609-24. [DOI: 10.2217/fvl-2020-0170] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 5.5] [Reference Citation Analysis]
221 Alsalme A, Pooventhiran T, Al-Zaqri N, Rao DJ, Rao SS, Thomas R. Modelling the structural and reactivity landscapes of tucatinib with special reference to its wavefunction-dependent properties and screening for potential antiviral activity. J Mol Model 2020;26:341. [PMID: 33200284 DOI: 10.1007/s00894-020-04603-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
222 De Masi L, Argenio MA, Giordano D, Facchiano A. Molecular Aspects of Spike–ACE2 Interaction. Encyclopedia 2022;2:96-108. [DOI: 10.3390/encyclopedia2010007] [Reference Citation Analysis]
223 Liu J, Bodnar BH, Meng F, Khan AI, Wang X, Saribas S, Wang T, Lohani SC, Wang P, Wei Z, Luo J, Zhou L, Wu J, Luo G, Li Q, Hu W, Ho W. Epigallocatechin gallate from green tea effectively blocks infection of SARS-CoV-2 and new variants by inhibiting spike binding to ACE2 receptor. Cell Biosci 2021;11:168. [PMID: 34461999 DOI: 10.1186/s13578-021-00680-8] [Reference Citation Analysis]
224 Ye F, Zhao J, Xu P, Liu X, Yu J, Shangguan W, Liu J, Luo X, Li C, Ying T, Wang J, Yu B, Wang P. Synthetic Homogeneous Glycoforms of the SARS-CoV-2 Spike Receptor-Binding Domain Reveals Different Binding Profiles of Monoclonal Antibodies. Angew Chem Int Ed Engl 2021;60:12904-10. [PMID: 33709491 DOI: 10.1002/anie.202100543] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
225 Xu Y, Yang X, Bian H, Xia M. Metabolic dysfunction associated fatty liver disease and coronavirus disease 2019: clinical relationship and current management. Lipids Health Dis 2021;20:126. [PMID: 34602072 DOI: 10.1186/s12944-021-01564-z] [Reference Citation Analysis]
226 Khattab AR, Teleb M. In silico discovery of non-psychoactive scaffolds in Cannabis halting SARS-CoV-2 host entry and replication machinery. Future Virology. [DOI: 10.2217/fvl-2021-0309] [Reference Citation Analysis]
227 Awad N, Mohamed RH, Ghoneim NI, Elmehrath AO, El-Badri N. Immunoinformatics approach of epitope prediction for SARS-CoV-2. J Genet Eng Biotechnol 2022;20:60. [PMID: 35441904 DOI: 10.1186/s43141-022-00344-1] [Reference Citation Analysis]
228 Karpenko LI, Rudometov AP, Sharabrin SV, Shcherbakov DN, Borgoyakova MB, Bazhan SI, Volosnikova EA, Rudometova NB, Orlova LA, Pyshnaya IA, Zaitsev BN, Volkova NV, Azaev MS, Zaykovskaya AV, Pyankov OV, Ilyichev AA. Delivery of mRNA Vaccine against SARS-CoV-2 Using a Polyglucin:Spermidine Conjugate. Vaccines (Basel) 2021;9:76. [PMID: 33494530 DOI: 10.3390/vaccines9020076] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
229 Huang SW, Wang SF. SARS-CoV-2 Entry Related Viral and Host Genetic Variations: Implications on COVID-19 Severity, Immune Escape, and Infectivity. Int J Mol Sci 2021;22:3060. [PMID: 33802729 DOI: 10.3390/ijms22063060] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
230 Adrielle Dos Santos L, Filho PGG, Silva AMF, Santos JVG, Santos DS, Aquino MM, de Jesus RM, Almeida MLD, da Silva JS, Altmann DM, Boyton RJ, Alves Dos Santos C, Santos CNO, Alves JC, Santos IL, Magalhães LS, Belitardo EMMA, Rocha DJPG, Almeida JPP, Pacheco LGC, Aguiar ERGR, Campos GS, Sardi SI, Carvalho RH, de Jesus AR, Rezende KF, de Almeida RP. Recurrent COVID-19 including evidence of reinfection and enhanced severity in thirty Brazilian healthcare workers. J Infect 2021;82:399-406. [PMID: 33589297 DOI: 10.1016/j.jinf.2021.01.020] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 23.0] [Reference Citation Analysis]
231 Isaac-Lam MF. Molecular modeling of the interaction of ligands with ACE2-SARS-CoV-2 spike protein complex. In Silico Pharmacol 2021;9:55. [PMID: 34631362 DOI: 10.1007/s40203-021-00114-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
232 Zhou L, Xu Z, Castiglione GM, Soiberman US, Eberhart CG, Duh EJ. ACE2 and TMPRSS2 are expressed on the human ocular surface, suggesting susceptibility to SARS-CoV-2 infection. bioRxiv 2020:2020. [PMID: 32511393 DOI: 10.1101/2020.05.09.086165] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 7.5] [Reference Citation Analysis]
233 Olotu FA, Omolabi KF, Soliman MES. Leaving no stone unturned: Allosteric targeting of SARS-CoV-2 spike protein at putative druggable sites disrupts human angiotensin-converting enzyme interactions at the receptor binding domain. Inform Med Unlocked 2020;21:100451. [PMID: 33083517 DOI: 10.1016/j.imu.2020.100451] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
234 Hosoki K, Chakraborty A, Sur S. Molecular mechanisms and epidemiology of COVID-19 from an allergist's perspective. J Allergy Clin Immunol 2020;146:285-99. [PMID: 32624257 DOI: 10.1016/j.jaci.2020.05.033] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
235 Mitra P. Inhibiting fusion with cellular membrane system: therapeutic options to prevent severe acute respiratory syndrome coronavirus-2 infection. Am J Physiol Cell Physiol 2020;319:C500-9. [PMID: 32687406 DOI: 10.1152/ajpcell.00260.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
236 Lv L, Zhang L. Host proviral and antiviral factors for SARS-CoV-2. Virus Genes 2021. [PMID: 34510331 DOI: 10.1007/s11262-021-01869-2] [Reference Citation Analysis]
237 Low-Gan J, Huang R, Kelley A, Jenkins GW, McGregor D, Smider VV. Diversity of ACE2 and its interaction with SARS-CoV-2 receptor binding domain. Biochem J 2021;478:3671-84. [PMID: 34558627 DOI: 10.1042/BCJ20200908] [Reference Citation Analysis]
238 Manti S, Parisi GF, Papale M, Mulè E, Aloisio D, Rotolo N, Leonardi S. Looking beyond pulmonary disease in COVID-19: A lesson from patients with cystic fibrosis. Med Hypotheses 2021;147:110481. [PMID: 33421691 DOI: 10.1016/j.mehy.2020.110481] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
239 Stasi A, Castellano G, Ranieri E, Infante B, Stallone G, Gesualdo L, Netti GS. SARS-CoV-2 and Viral Sepsis: Immune Dysfunction and Implications in Kidney Failure. J Clin Med 2020;9:E4057. [PMID: 33334050 DOI: 10.3390/jcm9124057] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
240 Borocci S, Cerchia C, Grottesi A, Sanna N, Prandi IG, Abid N, Beccari AR, Chillemi G, Talarico C. Altered Local Interactions and Long-Range Communications in UK Variant (B.1.1.7) Spike Glycoprotein. Int J Mol Sci 2021;22:5464. [PMID: 34067272 DOI: 10.3390/ijms22115464] [Reference Citation Analysis]
241 Ma S, Li H, Yang J, Yu K. Molecular simulation studies of the interactions between the human/pangolin/cat/bat ACE2 and the receptor binding domain of the SARS-CoV-2 spike protein. Biochimie 2021;187:1-13. [PMID: 33984400 DOI: 10.1016/j.biochi.2021.05.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
242 Masaud SM, Szasz O, Szasz AM, Ejaz H, Anwar RA, Szasz A. A Potential Bioelectromagnetic Method to Slow Down the Progression and Prevent the Development of Ultimate Pulmonary Fibrosis by COVID-19. Front Immunol 2020;11:556335. [PMID: 33343561 DOI: 10.3389/fimmu.2020.556335] [Reference Citation Analysis]
243 Zhang H, Quek K, Chen R, Chen J, Chen B. Expression of the SAR2-Cov-2 receptor ACE2 reveals the susceptibility of COVID-19 in non-small cell lung cancer. J Cancer 2020;11:5289-92. [PMID: 32742475 DOI: 10.7150/jca.49462] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
244 Norman A, Franck C, Christie M, Hawkins PME, Patel K, Ashhurst AS, Aggarwal A, Low JKK, Siddiquee R, Ashley CL, Steain M, Triccas JA, Turville S, Mackay JP, Passioura T, Payne RJ. Discovery of Cyclic Peptide Ligands to the SARS-CoV-2 Spike Protein Using mRNA Display. ACS Cent Sci 2021;7:1001-8. [PMID: 34230894 DOI: 10.1021/acscentsci.0c01708] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
245 Wang H, Wu X, Zhang X, Hou X, Liang T, Wang D, Teng F, Dai J, Duan H, Guo S, Li Y, Yu X. SARS-CoV-2 Proteome Microarray for Mapping COVID-19 Antibody Interactions at Amino Acid Resolution. ACS Cent Sci 2020;6:2238-49. [PMID: 33372199 DOI: 10.1021/acscentsci.0c00742] [Cited by in Crossref: 55] [Cited by in F6Publishing: 36] [Article Influence: 27.5] [Reference Citation Analysis]
246 Magalhaes GS, Rodrigues-Machado MDG, Motta-Santos D, Campagnole-Santos MJ, Santos RAS. Activation of Ang-(1-7)/Mas Receptor Is a Possible Strategy to Treat Coronavirus (SARS-CoV-2) Infection. Front Physiol 2020;11:730. [PMID: 32636762 DOI: 10.3389/fphys.2020.00730] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
247 Tao K, Tzou PL, Nouhin J, Bonilla H, Jagannathan P, Shafer RW. SARS-CoV-2 Antiviral Therapy. Clin Microbiol Rev 2021;:e0010921. [PMID: 34319150 DOI: 10.1128/CMR.00109-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
248 Alharthy A, Balhamar A, Faqihi F, Nasim N, Noor AF, Alqahtani SA, Memish ZA, Karakitsos D. Rare case of COVID-19 presenting as acute abdomen and sepsis. New Microbes New Infect 2020;38:100818. [PMID: 33224507 DOI: 10.1016/j.nmni.2020.100818] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
249 Abu-saleh AAA, Yadav A, Poirier RA. Accelerating the discovery of the beyond rule of five compounds that have high affinities toward SARS-CoV-2 spike RBD. Journal of Biomolecular Structure and Dynamics. [DOI: 10.1080/07391102.2022.2036640] [Reference Citation Analysis]
250 Mahmoud Salehi Khesht A, Karpisheh V, Qubais Saeed B, Olegovna Zekiy A, Yapanto LM, Nabi Afjadi M, Aksoun M, Nasr Esfahani M, Aghakhani F, Movahed M, Joshi N, Abbaszadeh-Goudarzi K, Hallaj S, Ahmadi M, Dolati S, Mahmoodpoor A, Hashemi V, Jadidi-Niaragh F. Different T cell related immunological profiles in COVID-19 patients compared to healthy controls. Int Immunopharmacol 2021;97:107828. [PMID: 34091116 DOI: 10.1016/j.intimp.2021.107828] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
251 Gao J, Mei H, Sun J, Li H, Huang Y, Tang Y, Duan L, Liu D, Pang Y, Wang Q, Gao Y, Song K, Zhao J, Zhang C, Liu J. Neuropilin-1-Mediated SARS-CoV-2 Infection in Bone Marrow-Derived Macrophages Inhibits Osteoclast Differentiation. Adv Biol (Weinh) 2022;:e2200007. [PMID: 35195371 DOI: 10.1002/adbi.202200007] [Reference Citation Analysis]
252 Gervasoni S, Vistoli G, Talarico C, Manelfi C, Beccari AR, Studer G, Tauriello G, Waterhouse AM, Schwede T, Pedretti A. A Comprehensive Mapping of the Druggable Cavities within the SARS-CoV-2 Therapeutically Relevant Proteins by Combining Pocket and Docking Searches as Implemented in Pockets 2.0. Int J Mol Sci 2020;21:E5152. [PMID: 32708196 DOI: 10.3390/ijms21145152] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
253 Villoutreix BO, Calvez V, Marcelin AG, Khatib AM. In Silico Investigation of the New UK (B.1.1.7) and South African (501Y.V2) SARS-CoV-2 Variants with a Focus at the ACE2-Spike RBD Interface. Int J Mol Sci 2021;22:1695. [PMID: 33567580 DOI: 10.3390/ijms22041695] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 22.0] [Reference Citation Analysis]
254 Timmer BJJ, Mooibroek TJ. Intermolecular π-π Stacking Interactions Made Visible. J Chem Educ 2021;98:540-5. [PMID: 33583952 DOI: 10.1021/acs.jchemed.0c01252] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
255 Petrović T, Lauc G, Trbojević-Akmačić I. The Importance of Glycosylation in COVID-19 Infection. Adv Exp Med Biol 2021;1325:239-64. [PMID: 34495539 DOI: 10.1007/978-3-030-70115-4_12] [Reference Citation Analysis]
256 Skubacz K, Hildebrandt R, Zgórska A, Dyduch Z, Samolej K, Smolinski A. Transport of Aerosols in Underground Mine Workings in Terms of SARS-CoV-2 Virus Threat. Molecules 2021;26:3501. [PMID: 34201360 DOI: 10.3390/molecules26123501] [Reference Citation Analysis]
257 Deleers M, Breiman A, Daubie V, Maggetto C, Barreau I, Besse T, Clémenceau B, Ruvoën-Clouet N, Fils JF, Maillart E, Doyen V, Mahadeb B, Jani JC, Van der Linden P, Cannie MM, Hayef N, Corazza F, Le Pendu J, El Kenz H. Covid-19 and blood groups: ABO antibody levels may also matter. Int J Infect Dis 2021;104:242-9. [PMID: 33326874 DOI: 10.1016/j.ijid.2020.12.025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
258 Vijayakumar BG, Ramesh D, Joji A, Jayachandra Prakasan J, Kannan T. In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. Eur J Pharmacol 2020;886:173448. [PMID: 32768503 DOI: 10.1016/j.ejphar.2020.173448] [Cited by in Crossref: 31] [Cited by in F6Publishing: 20] [Article Influence: 15.5] [Reference Citation Analysis]
259 López-Cortés A, Guevara-Ramírez P, Kyriakidis NC, Barba-Ostria C, León Cáceres Á, Guerrero S, Ortiz-Prado E, Munteanu CR, Tejera E, Cevallos-Robalino D, Gómez-Jaramillo AM, Simbaña-Rivera K, Granizo-Martínez A, Pérez-M G, Moreno S, García-Cárdenas JM, Zambrano AK, Pérez-Castillo Y, Cabrera-Andrade A, Puig San Andrés L, Proaño-Castro C, Bautista J, Quevedo A, Varela N, Quiñones LA, Paz-Y-Miño C. In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19. Front Pharmacol 2021;12:598925. [PMID: 33716737 DOI: 10.3389/fphar.2021.598925] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
260 Afzal A, Iqbal N, Feroz S, Ali A, Ehsan MA, Khan SA, Rehman A. Rapid antibody diagnostics for SARS-CoV-2 adaptive immune response. Anal Methods 2021;13:4019-37. [PMID: 34555136 DOI: 10.1039/d1ay00888a] [Reference Citation Analysis]
261 Yazbeck R, Jaenisch SE, Abbott CA. Dipeptidyl peptidase 4 inhibitors: Applications in innate immunity? Biochem Pharmacol 2021;188:114517. [PMID: 33722535 DOI: 10.1016/j.bcp.2021.114517] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
262 Faisal S, Badshah SL, Kubra B, Sharaf M, Emwas AH, Jaremko M, Abdalla M. Computational Study of SARS-CoV-2 RNA Dependent RNA Polymerase Allosteric Site Inhibition. Molecules 2021;27:223. [PMID: 35011458 DOI: 10.3390/molecules27010223] [Reference Citation Analysis]
263 Verkhivker GM, Agajanian S, Oztas D, Gupta G. Computational analysis of protein stability and allosteric interaction networks in distinct conformational forms of the SARS-CoV-2 spike D614G mutant: reconciling functional mechanisms through allosteric model of spike regulation. J Biomol Struct Dyn 2021;:1-18. [PMID: 34060425 DOI: 10.1080/07391102.2021.1933594] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
264 Bao Y, Ling Y, Chen YY, Tian D, Zhao GP, Zhang XH, Hang H, Li Y, Su B, Lu HZ, Xu J, Wang Y. Dynamic anti-spike protein antibody profiles in COVID-19 patients. Int J Infect Dis 2021;103:540-8. [PMID: 33310028 DOI: 10.1016/j.ijid.2020.12.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
265 Laws M, Surani YM, Hasan MM, Chen Y, Jin P, Al-Adhami T, Chowdhury M, Imran A, Psaltis I, Jamshidi S, Nahar KS, Rahman KM. Current Trends and Future Approaches in Small-Molecule Therapeutics for COVID-19. Curr Med Chem 2021;28:3803-24. [PMID: 32693756 DOI: 10.2174/0929867327666200721161840] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
266 Pitakbut T, Nguyen GN, Kayser O. Activity of THC, CBD, and CBN on Human ACE2 and SARS-CoV1/2 Main Protease to Understand Antiviral Defense Mechanism. Planta Med 2021. [PMID: 34638139 DOI: 10.1055/a-1581-3707] [Reference Citation Analysis]
267 Chen C, Boorla VS, Banerjee D, Chowdhury R, Cavener VS, Nissly RH, Gontu A, Boyle NR, Vandegrift K, Nair MS, Kuchipudi SV, Maranas CD. Computational prediction of the effect of amino acid changes on the binding affinity between SARS-CoV-2 spike RBD and human ACE2. Proc Natl Acad Sci U S A 2021;118:e2106480118. [PMID: 34588290 DOI: 10.1073/pnas.2106480118] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
268 Bell BN, Powell AE, Rodriguez C, Cochran JR, Kim PS. Neutralizing antibodies targeting the SARS-CoV-2 receptor binding domain isolated from a naïve human antibody library. Protein Sci 2021;30:716-27. [PMID: 33586288 DOI: 10.1002/pro.4044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
269 Lubin JH, Zardecki C, Dolan EM, Lu C, Shen Z, Dutta S, Westbrook JD, Hudson BP, Goodsell DS, Williams JK, Voigt M, Sarma V, Xie L, Venkatachalam T, Arnold S, Alfaro Alvarado LH, Catalfano K, Khan A, McCarthy E, Staggers S, Tinsley B, Trudeau A, Singh J, Whitmore L, Zheng H, Benedek M, Currier J, Dresel M, Duvvuru A, Dyszel B, Fingar E, Hennen EM, Kirsch M, Khan AA, Labrie-Cleary C, Laporte S, Lenkeit E, Martin K, Orellana M, Ortiz-Alvarez de la Campa M, Paredes I, Wheeler B, Rupert A, Sam A, See K, Soto Zapata S, Craig PA, Hall BL, Jiang J, Koeppe JR, Mills SA, Pikaart MJ, Roberts R, Bromberg Y, Hoyer JS, Duffy S, Tischfield J, Ruiz FX, Arnold E, Baum J, Sandberg J, Brannigan G, Khare SD, Burley SK. Evolution of the SARS-CoV-2 proteome in three dimensions (3D) during the first 6 months of the COVID-19 pandemic. Proteins 2021. [PMID: 34580920 DOI: 10.1002/prot.26250] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
270 Casalino L, Gaieb Z, Goldsmith JA, Hjorth CK, Dommer AC, Harbison AM, Fogarty CA, Barros EP, Taylor BC, McLellan JS, Fadda E, Amaro RE. Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein. ACS Cent Sci 2020;6:1722-34. [PMID: 33140034 DOI: 10.1021/acscentsci.0c01056] [Cited by in Crossref: 224] [Cited by in F6Publishing: 169] [Article Influence: 112.0] [Reference Citation Analysis]
271 Wang L, Xiang Y. Spike Glycoprotein-Mediated Entry of SARS Coronaviruses. Viruses 2020;12:E1289. [PMID: 33187074 DOI: 10.3390/v12111289] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
272 Spinello A, Saltalamacchia A, Borišek J, Magistrato A. Allosteric Cross-Talk among Spike's Receptor-Binding Domain Mutations of the SARS-CoV-2 South African Variant Triggers an Effective Hijacking of Human Cell Receptor. J Phys Chem Lett 2021;12:5987-93. [PMID: 34161095 DOI: 10.1021/acs.jpclett.1c01415] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
273 Rodrigues JPGLM, Barrera-Vilarmau S, M C Teixeira J, Sorokina M, Seckel E, Kastritis PL, Levitt M. Insights on cross-species transmission of SARS-CoV-2 from structural modeling. PLoS Comput Biol 2020;16:e1008449. [PMID: 33270653 DOI: 10.1371/journal.pcbi.1008449] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
274 Xu R, Shi M, Li J, Song P, Li N. Construction of SARS-CoV-2 Virus-Like Particles by Mammalian Expression System. Front Bioeng Biotechnol 2020;8:862. [PMID: 32850726 DOI: 10.3389/fbioe.2020.00862] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 11.5] [Reference Citation Analysis]
275 Ahmadirad N, Ghasemi Z. COVID-19 and Central Nervous System: Entry Routes And. Basic Clin Neurosci 2020;11:217-24. [PMID: 32855781 DOI: 10.32598/bcn.11.covid19.2360.1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
276 Peng S, Cao F, Xia Y, Gao X, Dai L, Yan J, Ma G. Particulate Alum via Pickering Emulsion for an Enhanced COVID‐19 Vaccine Adjuvant. Adv Mater 2020;32:2004210. [DOI: 10.1002/adma.202004210] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
277 Kurniawan E, Krihariyani D. Working goal of Brazilein sappan wood as a candidate for SARS-coV-2 antivirus drug against spike (S) glycoprotein, papain-like proteinase, and main protease: In silico study. J Adv Pharm Technol Res 2021;12:298-304. [PMID: 34345611 DOI: 10.4103/japtr.JAPTR_222_21] [Reference Citation Analysis]
278 Jeong H, Choi YM, Seo H, Kim BJ. A Novel DNA Vaccine Against SARS-CoV-2 Encoding a Chimeric Protein of Its Receptor-Binding Domain (RBD) Fused to the Amino-Terminal Region of Hepatitis B Virus preS1 With a W4P Mutation. Front Immunol 2021;12:637654. [PMID: 33732258 DOI: 10.3389/fimmu.2021.637654] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
279 Rando HM, MacLean AL, Lee AJ, Lordan R, Ray S, Bansal V, Skelly AN, Sell E, Dziak JJ, Shinholster L, D'Agostino McGowan L, Ben Guebila M, Wellhausen N, Knyazev S, Boca SM, Capone S, Qi Y, Park Y, Mai D, Sun Y, Boerckel JD, Brueffer C, Byrd JB, Kamil JP, Wang J, Velazquez R, Szeto GL, Barton JP, Goel RR, Mangul S, Lubiana T, Gitter A, Greene CS; COVID-19 Review Consortium Vikas Bansal, John P. Barton, Simina M. Boca, Joel D. Boerckel, Christian Brueffer, James Brian Byrd, Stephen Capone, Shikta Das, Anna Ada Dattoli, John J. Dziak, Jeffrey M. Field, Soumita Ghosh, Anthony Gitter, Rishi Raj Goel, Casey S. Greene, Marouen Ben Guebila, Daniel S. Himmelstein, Fengling Hu, Nafisa M. Jadavji, Jeremy P. Kamil, Sergey Knyazev, Likhitha Kolla, Alexandra J. Lee, Ronan Lordan, Tiago Lubiana, Temitayo Lukan, Adam L. MacLean, David Mai, Serghei Mangul, David Manheim, Lucy D’Agostino McGowan, Amruta Naik, YoSon Park, Dimitri Perrin, Yanjun Qi, Diane N. Rafizadeh, Bharath Ramsundar, Halie M. Rando, Sandipan Ray, Michael P. Robson, Vincent Rubinetti, Elizabeth Sell, Lamonica Shinholster, Ashwin N. Skelly, Yuchen Sun, Yusha Sun, Gregory L. Szeto, Ryan Velazquez, Jinhui Wang, Nils Wellhausen, . Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through Analysis of Viral Genomics and Structure. mSystems 2021;6:e0009521. [PMID: 34698547 DOI: 10.1128/mSystems.00095-21] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
280 Huo J, Zhao Y, Ren J, Zhou D, Duyvesteyn HME, Ginn HM, Carrique L, Malinauskas T, Ruza RR, Shah PNM, Tan TK, Rijal P, Coombes N, Bewley KR, Tree JA, Radecke J, Paterson NG, Supasa P, Mongkolsapaya J, Screaton GR, Carroll M, Townsend A, Fry EE, Owens RJ, Stuart DI. Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike. Cell Host Microbe 2020;28:445-454.e6. [PMID: 32585135 DOI: 10.1016/j.chom.2020.06.010] [Cited by in Crossref: 123] [Cited by in F6Publishing: 113] [Article Influence: 61.5] [Reference Citation Analysis]
281 Zhuo LS, Wang MS, Yang JF, Xu HC, Huang W, Shang LQ, Yang GF. Insights into SARS-CoV-2: Medicinal Chemistry Approaches to Combat Its Structural and Functional Biology. Top Curr Chem (Cham) 2021;379:23. [PMID: 33886017 DOI: 10.1007/s41061-021-00335-9] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
282 Hurlburt NK, Seydoux E, Wan YH, Edara VV, Stuart AB, Feng J, Suthar MS, McGuire AT, Stamatatos L, Pancera M. Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation. Nat Commun 2020;11:5413. [PMID: 33110068 DOI: 10.1038/s41467-020-19231-9] [Cited by in Crossref: 59] [Cited by in F6Publishing: 71] [Article Influence: 29.5] [Reference Citation Analysis]
283 Sorice M, Misasi R, Riitano G, Manganelli V, Martellucci S, Longo A, Garofalo T, Mattei V. Targeting Lipid Rafts as a Strategy Against Coronavirus. Front Cell Dev Biol 2020;8:618296. [PMID: 33614627 DOI: 10.3389/fcell.2020.618296] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
284 D'Ippolito RA, Drew MR, Mehalko J, Snead K, Wall V, Putman Z, Esposito D, DeHart CJ. Refining the N-Termini of the SARS-CoV-2 Spike Protein and Its Discrete Receptor-Binding Domain. J Proteome Res 2021. [PMID: 34379411 DOI: 10.1021/acs.jproteome.1c00349] [Reference Citation Analysis]
285 Das JK, Roy S. A study on non-synonymous mutational patterns in structural proteins of SARS-CoV-2. Genome 2021;64:665-78. [PMID: 33788636 DOI: 10.1139/gen-2020-0157] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
286 Barros EP, Casalino L, Gaieb Z, Dommer AC, Wang Y, Fallon L, Raguette L, Belfon K, Simmerling C, Amaro RE. The flexibility of ACE2 in the context of SARS-CoV-2 infection. Biophys J 2021;120:1072-84. [PMID: 33189680 DOI: 10.1016/j.bpj.2020.10.036] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 16.0] [Reference Citation Analysis]
287 Han KY, Qiao Q, Zhu YQ, Chen XG, Kang XX, Zhang GF, Cai XC, Du Y, Jin J, Di RM, Yang CX, Zhang FX, Xu YJ. Atrial Arrhythmias in Patients with Severe COVID-19. Cardiol Res Pract 2021;2021:8874450. [PMID: 33777449 DOI: 10.1155/2021/8874450] [Reference Citation Analysis]
288 Lega S, Naviglio S, Volpi S, Tommasini A. Recent Insight into SARS-CoV2 Immunopathology and Rationale for Potential Treatment and Preventive Strategies in COVID-19. Vaccines (Basel) 2020;8:E224. [PMID: 32423059 DOI: 10.3390/vaccines8020224] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 14.0] [Reference Citation Analysis]
289 Liu H, Wilson IA. Protective neutralizing epitopes in SARS‐CoV‐2. Immunological Reviews. [DOI: 10.1111/imr.13084] [Reference Citation Analysis]
290 Malladi SK, Patel UR, Rajmani RS, Singh R, Pandey S, Kumar S, Khaleeq S, van Vuren PJ, Riddell S, Goldie S, Gayathri S, Chakraborty D, Kalita P, Pramanick I, Agarwal N, Reddy P, Girish N, Upadhyaya A, Khan MS, Kanjo K, Bhat M, Mani S, Bhattacharyya S, Siddiqui S, Tyagi A, Jha S, Pandey R, Tripathi S, Dutta S, McAuley AJ, Singanallur NB, Vasan SS, Ringe RP, Varadarajan R. Immunogenicity and Protective Efficacy of a Highly Thermotolerant, Trimeric SARS-CoV-2 Receptor Binding Domain Derivative. ACS Infect Dis 2021;7:2546-64. [PMID: 34260218 DOI: 10.1021/acsinfecdis.1c00276] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
291 Obukhov AG, Stevens BR, Prasad R, Li Calzi S, Boulton ME, Raizada MK, Oudit GY, Grant MB. SARS-CoV-2 Infections and ACE2: Clinical Outcomes Linked With Increased Morbidity and Mortality in Individuals With Diabetes. Diabetes. 2020;69:1875-1886. [PMID: 32669391 DOI: 10.2337/dbi20-0019] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 13.5] [Reference Citation Analysis]
292 Alai S, Gujar N, Joshi M, Gautam M, Gairola S. Pan-India novel coronavirus SARS-CoV-2 genomics and global diversity analysis in spike protein. Heliyon 2021;7:e06564. [PMID: 33758785 DOI: 10.1016/j.heliyon.2021.e06564] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
293 Zhang Y, Qin P, Tian L, Yan J, Zhou Y. The role of mediator complex subunit 19 in human diseases. Exp Biol Med (Maywood) 2021;246:1681-7. [PMID: 34038190 DOI: 10.1177/15353702211011701] [Reference Citation Analysis]
294 Wang Y, Xu C, Wang Y, Hong Q, Zhang C, Li Z, Xu S, Zuo Q, Liu C, Huang Z, Cong Y. Conformational dynamics of the Beta and Kappa SARS-CoV-2 spike proteins and their complexes with ACE2 receptor revealed by cryo-EM. Nat Commun 2021;12:7345. [PMID: 34930910 DOI: 10.1038/s41467-021-27350-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
295 Li J, Du P, Yang L, Zhang J, Song C, Chen D, Song Y, Ding N, Hua M, Han K, Song R, Xie W, Chen Z, Wang X, Liu J, Xu Y, Gao G, Wang Q, Pu L, Di L, Li J, Yue J, Han J, Zhao X, Yan Y, Yu F, Wu AR, Zhang F, Gao YQ, Huang Y, Wang J, Zeng H, Chen C. Two-step fitness selection for intra-host variations in SARS-CoV-2. Cell Rep 2022;38:110205. [PMID: 34982968 DOI: 10.1016/j.celrep.2021.110205] [Reference Citation Analysis]
296 Melin AD, Orkin JD, Janiak MC, Valenzuela A, Kuderna L, Marrone F 3rd, Ramangason H, Horvath JE, Roos C, Kitchener AC, Khor CC, Lim WK, Lee JGH, Tan P, Umapathy G, Raveendran M, Harris RA, Gut I, Gut M, Lizano E, Nadler T, Zinner D, Johnson SE, Jarvis ED, Fedrigo O, Wu D, Zhang G, Farh KK, Rogers J, Marques-Bonet T, Navarro A, Juan D, Arora PS, Higham JP. Variation in predicted COVID-19 risk among lemurs and lorises. bioRxiv 2021:2021. [PMID: 33564767 DOI: 10.1101/2021.02.03.429540] [Reference Citation Analysis]
297 Xiang Y, Nambulli S, Xiao Z, Liu H, Sang Z, Duprex WP, Schneidman-Duhovny D, Zhang C, Shi Y. Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science 2020;370:1479-84. [PMID: 33154108 DOI: 10.1126/science.abe4747] [Cited by in Crossref: 52] [Cited by in F6Publishing: 57] [Article Influence: 26.0] [Reference Citation Analysis]
298 Yu J, Qiao S, Guo R, Wang X. Cryo-EM structures of HKU2 and SADS-CoV spike glycoproteins provide insights into coronavirus evolution. Nat Commun 2020;11:3070. [PMID: 32555182 DOI: 10.1038/s41467-020-16876-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
299 Bloise E, Zhang J, Nakpu J, Hamada H, Dunk CE, Li S, Imperio GE, Nadeem L, Kibschull M, Lye P, Matthews SG, Lye SJ. Expression of severe acute respiratory syndrome coronavirus 2 cell entry genes, angiotensin-converting enzyme 2 and transmembrane protease serine 2, in the placenta across gestation and at the maternal-fetal interface in pregnancies complicated by preterm birth or preeclampsia. Am J Obstet Gynecol 2021;224:298.e1-8. [PMID: 32853537 DOI: 10.1016/j.ajog.2020.08.055] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
300 Xu C, Wang Y, Liu C, Zhang C, Han W, Hong X, Wang Y, Hong Q, Wang S, Zhao Q, Wang Y, Yang Y, Chen K, Zheng W, Kong L, Wang F, Zuo Q, Huang Z, Cong Y. Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM. Sci Adv 2021;7:eabe5575. [PMID: 33277323 DOI: 10.1126/sciadv.abe5575] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 50.0] [Reference Citation Analysis]
301 Alsoussi WB, Turner JS, Case JB, Zhao H, Schmitz AJ, Zhou JQ, Chen RE, Lei T, Rizk AA, McIntire KM, Winkler ES, Fox JM, Kafai NM, Thackray LB, Hassan AO, Amanat F, Krammer F, Watson CT, Kleinstein SH, Fremont DH, Diamond MS, Ellebedy AH. A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. J Immunol 2020;205:915-22. [PMID: 32591393 DOI: 10.4049/jimmunol.2000583] [Cited by in Crossref: 97] [Cited by in F6Publishing: 94] [Article Influence: 48.5] [Reference Citation Analysis]
302 Dobaño C, Santano R, Jiménez A, Vidal M, Chi J, Rodrigo Melero N, Popovic M, López-Aladid R, Fernández-Barat L, Tortajada M, Carmona-Torre F, Reina G, Torres A, Mayor A, Carolis C, García-Basteiro AL, Aguilar R, Moncunill G, Izquierdo L. Immunogenicity and crossreactivity of antibodies to the nucleocapsid protein of SARS-CoV-2: utility and limitations in seroprevalence and immunity studies. Transl Res 2021;232:60-74. [PMID: 33582244 DOI: 10.1016/j.trsl.2021.02.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
303 Park C, Ko FC. The Science of Frailty: Sex Differences. Clin Geriatr Med 2021;37:625-38. [PMID: 34600727 DOI: 10.1016/j.cger.2021.05.008] [Reference Citation Analysis]
304 Shukla SP, Cho KB, Rustagi V, Gao X, Fu X, Zhang SX, Guo B, Udugamasooriya DG. "Molecular Masks" for ACE2 to Effectively and Safely Block SARS-CoV-2 Virus Entry. Int J Mol Sci 2021;22:8963. [PMID: 34445669 DOI: 10.3390/ijms22168963] [Reference Citation Analysis]
305 Alvarado W, Perez-lemus GR, Menéndez CA, Byléhn F, de Pablo JJ. Molecular characterization of COVID-19 therapeutics: luteolin as an allosteric modulator of the spike protein of SARS-CoV-2. Mol Syst Des Eng 2022;7:58-66. [DOI: 10.1039/d1me00119a] [Reference Citation Analysis]
306 Yuan S, Jiang SC, Zhang ZW, Fu YF, Hu J, Li ZL. The Role of Alveolar Edema in COVID-19. Cells 2021;10:1897. [PMID: 34440665 DOI: 10.3390/cells10081897] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
307 Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding CV 3rd, Kwon DH, Singh T, Tilton JC, Tsai EJ, Tucker NR, Barnard J, Loscalzo J. COVID-19 and Cardiovascular Disease: From Bench to Bedside. Circ Res 2021;128:1214-36. [PMID: 33856918 DOI: 10.1161/CIRCRESAHA.121.317997] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
308 Murillo F, Ramos G, Del Pozo JL, Valdez LM, Zagaceta J. SARS-CoV-2 Infection with Associated Rhabdomyolysis and Probable Myocarditis. Eur J Case Rep Intern Med 2020;7:001867. [PMID: 32908841 DOI: 10.12890/2020_001867] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
309 Amendola A, Garoffolo G, Songia P, Nardacci R, Ferrari S, Bernava G, Canzano P, Myasoedova V, Colavita F, Castilletti C, Sberna G, Capobianchi MR, Piacentini M, Agrifoglio M, Colombo GI, Poggio P, Pesce M. Human cardiosphere-derived stromal cells exposed to SARS-CoV-2 evolve into hyper-inflammatory/pro-fibrotic phenotype and produce infective viral particles depending on the levels of ACE2 receptor expression. Cardiovasc Res 2021;117:1557-66. [PMID: 33705542 DOI: 10.1093/cvr/cvab082] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
310 Malladi SK, Singh R, Pandey S, Gayathri S, Kanjo K, Ahmed S, Khan MS, Kalita P, Girish N, Upadhyaya A, Reddy P, Pramanick I, Bhasin M, Mani S, Bhattacharyya S, Joseph J, Thankamani K, Raj VS, Dutta S, Singh R, Nadig G, Varadarajan R. Design of a highly thermotolerant, immunogenic SARS-CoV-2 spike fragment. J Biol Chem 2021;296:100025. [PMID: 33154165 DOI: 10.1074/jbc.RA120.016284] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
311 Yan Q, He P, Huang X, Luo K, Zhang Y, Yi H, Wang Q, Li F, Hou R, Fan X, Li P, Liu X, Liang H, Deng Y, Chen Z, Chen Y, Mo X, Feng L, Xiong X, Li S, Han J, Qu L, Niu X, Chen L. Germline IGHV3-53-encoded RBD-targeting neutralizing antibodies are commonly present in the antibody repertoires of COVID-19 patients. Emerg Microbes Infect 2021;10:1097-111. [PMID: 33944697 DOI: 10.1080/22221751.2021.1925594] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
312 Mehrabadi ME, Hemmati R, Tashakor A, Homaei A, Yousefzadeh M, Hemati K, Hosseinkhani S. Induced dysregulation of ACE2 by SARS-CoV-2 plays a key role in COVID-19 severity. Biomed Pharmacother 2021;137:111363. [PMID: 33582450 DOI: 10.1016/j.biopha.2021.111363] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
313 Samavati L, Uhal BD. ACE2, Much More Than Just a Receptor for SARS-COV-2. Front Cell Infect Microbiol 2020;10:317. [PMID: 32582574 DOI: 10.3389/fcimb.2020.00317] [Cited by in Crossref: 75] [Cited by in F6Publishing: 79] [Article Influence: 37.5] [Reference Citation Analysis]
314 Gyebi GA, Ogunyemi OM, Ibrahim IM, Ogunro OB, Adegunloye AP, Afolabi SO. SARS-CoV-2 host cell entry: an in silico investigation of potential inhibitory roles of terpenoids. J Genet Eng Biotechnol 2021;19:113. [PMID: 34351542 DOI: 10.1186/s43141-021-00209-z] [Reference Citation Analysis]
315 Kornguth SE, Hawley RJ. Autoimmune Processes Involved in Organ System Failure Following Infection with SARS-CoV-2. Adv Exp Med Biol 2021;1318:355-68. [PMID: 33973189 DOI: 10.1007/978-3-030-63761-3_21] [Reference Citation Analysis]
316 Wang Y, Tang CY, Wan XF. Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal Bioanal Chem 2021. [PMID: 34905077 DOI: 10.1007/s00216-021-03806-6] [Reference Citation Analysis]
317 Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, Bikdeli B, Ahluwalia N, Ausiello JC, Wan EY, Freedberg DE, Kirtane AJ, Parikh SA, Maurer MS, Nordvig AS, Accili D, Bathon JM, Mohan S, Bauer KA, Leon MB, Krumholz HM, Uriel N, Mehra MR, Elkind MSV, Stone GW, Schwartz A, Ho DD, Bilezikian JP, Landry DW. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26:1017-1032. [PMID: 32651579 DOI: 10.1038/s41591-020-0968-3] [Cited by in Crossref: 770] [Cited by in F6Publishing: 675] [Article Influence: 385.0] [Reference Citation Analysis]
318 Amruta N, Chastain WH, Paz M, Solch RJ, Murray-Brown IC, Befeler JB, Gressett TE, Longo MT, Engler-Chiurazzi EB, Bix G. SARS-CoV-2 mediated neuroinflammation and the impact of COVID-19 in neurological disorders. Cytokine Growth Factor Rev 2021;58:1-15. [PMID: 33674185 DOI: 10.1016/j.cytogfr.2021.02.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
319 Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, Malyutin AG, Sharaf NG, Huey-Tubman KE, Lee YE, Robbiani DF, Nussenzweig MC, West AP, Bjorkman PJ. Structural classification of neutralizing antibodies against the SARS-CoV-2 spike receptor-binding domain suggests vaccine and therapeutic strategies. bioRxiv 2020:2020. [PMID: 32869026 DOI: 10.1101/2020.08.30.273920] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
320 Lippi G, Mattiuzzi C, Bovo C, Plebani M. Current laboratory diagnostics of coronavirus disease 2019 (COVID-19). Acta Biomed 2020;91:137-45. [PMID: 32420937 DOI: 10.23750/abm.v91i2.9548] [Cited by in F6Publishing: 23] [Reference Citation Analysis]
321 Arif A, Ansari S, Ahsan H, Mahmood R, Khan FH. An overview of Covid-19 pandemic: immunology and pharmacology. J Immunoassay Immunochem 2021;:1-20. [PMID: 33788668 DOI: 10.1080/15321819.2021.1904414] [Reference Citation Analysis]
322 López-Cortés GI, Palacios-Pérez M, Zamudio GS, Veledíaz HF, Ortega E, José MV. Neutral evolution test of the spike protein of SARS-CoV-2 and its implications in the binding to ACE2. Sci Rep 2021;11:18847. [PMID: 34552110 DOI: 10.1038/s41598-021-96950-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
323 Knížatová N, Massányi M, Roychoudhury S, Guha P, Greifová H, Tokárová K, Jambor T, Massányi P, Lukáč N. Is there impact of the SARS-CoV-2 pandemic on steroidogenesis and fertility? Physiol Res 2021;70:S161-75. [PMID: 34913350 DOI: 10.33549/physiolres.934756] [Reference Citation Analysis]
324 Hong X, He J, Li P, Chen J, Zou B, Li Z, Jia Y, Liu Y, Yang L, Li J. Evidence of SARS-CoV-2 infection in gallbladder and aggravating cholecystitis to septic shock: a case report. Ann Transl Med 2021;9:1631. [PMID: 34926675 DOI: 10.21037/atm-21-4778] [Reference Citation Analysis]
325 Jackson CB, Zhang L, Farzan M, Choe H. Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochem Biophys Res Commun 2021;538:108-15. [PMID: 33220921 DOI: 10.1016/j.bbrc.2020.11.026] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 10.5] [Reference Citation Analysis]
326 Zuo Z, Wu T, Pan L, Zuo C, Hu Y, Luo X, Jiang L, Xia Z, Xiao X, Liu J, Ye M, Deng M. Modalities and Mechanisms of Treatment for Coronavirus Disease 2019. Front Pharmacol 2020;11:583914. [PMID: 33643033 DOI: 10.3389/fphar.2020.583914] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
327 Kuznetsov A, Arukuusk P, Härk H, Juronen E, Ustav M, Langel Ü, Järv J. ACE2 Peptide Fragment Interaction with Different S1 Protein Sites. Int J Pept Res Ther 2022;28:7. [PMID: 34867130 DOI: 10.1007/s10989-021-10324-7] [Reference Citation Analysis]
328 Shaheen A. Can ketone bodies inactivate coronavirus spike protein? The potential of biocidal agents against SARS-CoV-2. Bioessays 2021;43:e2000312. [PMID: 33857328 DOI: 10.1002/bies.202000312] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
329 Liscano Y, Oñate-Garzón J, Ocampo-Ibáñez ID. In Silico Discovery of Antimicrobial Peptides as an Alternative to Control SARS-CoV-2. Molecules 2020;25:E5535. [PMID: 33255849 DOI: 10.3390/molecules25235535] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
330 Carino A, Moraca F, Fiorillo B, Marchianò S, Sepe V, Biagioli M, Finamore C, Bozza S, Francisci D, Distrutti E, Catalanotti B, Zampella A, Fiorucci S. Hijacking SARS-CoV-2/ACE2 Receptor Interaction by Natural and Semi-synthetic Steroidal Agents Acting on Functional Pockets on the Receptor Binding Domain. Front Chem 2020;8:572885. [PMID: 33195060 DOI: 10.3389/fchem.2020.572885] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 10.0] [Reference Citation Analysis]
331 Linsky TW, Vergara R, Codina N, Nelson JW, Walker MJ, Su W, Barnes CO, Hsiang TY, Esser-Nobis K, Yu K, Reneer ZB, Hou YJ, Priya T, Mitsumoto M, Pong A, Lau UY, Mason ML, Chen J, Chen A, Berrocal T, Peng H, Clairmont NS, Castellanos J, Lin YR, Josephson-Day A, Baric RS, Fuller DH, Walkey CD, Ross TM, Swanson R, Bjorkman PJ, Gale M Jr, Blancas-Mejia LM, Yen HL, Silva DA. De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science 2020;370:1208-14. [PMID: 33154107 DOI: 10.1126/science.abe0075] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 26.5] [Reference Citation Analysis]
332 Zhai X, Sun J, Yan Z, Zhang J, Zhao J, Zhao Z, Gao Q, He WT, Veit M, Su S. Comparison of Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Binding to ACE2 Receptors from Human, Pets, Farm Animals, and Putative Intermediate Hosts. J Virol 2020;94:e00831-20. [PMID: 32404529 DOI: 10.1128/JVI.00831-20] [Cited by in Crossref: 68] [Cited by in F6Publishing: 48] [Article Influence: 34.0] [Reference Citation Analysis]
333 Kaniyala Melanthota S, Banik S, Chakraborty I, Pallen S, Gopal D, Chakrabarti S, Mazumder N. Elucidating the microscopic and computational techniques to study the structure and pathology of SARS-CoVs. Microsc Res Tech 2020;83:1623-38. [PMID: 32770582 DOI: 10.1002/jemt.23551] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
334 Vallée A. Cannabidiol and SARS-CoV-2 Infection. Front Immunol 2022;13:870787. [DOI: 10.3389/fimmu.2022.870787] [Reference Citation Analysis]
335 Souza PFN, Mesquita FP, Amaral JL, Landim PGC, Lima KRP, Costa MB, Farias IR, Lima LB, Montenegro RC. The human pandemic coronaviruses on the show: The spike glycoprotein as the main actor in the coronaviruses play. Int J Biol Macromol 2021;179:1-19. [PMID: 33667553 DOI: 10.1016/j.ijbiomac.2021.02.203] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
336 Persoons L, Vanderlinden E, Vangeel L, Wang X, Do NDT, Foo SC, Leyssen P, Neyts J, Jochmans D, Schols D, De Jonghe S. Broad spectrum anti-coronavirus activity of a series of anti-malaria quinoline analogues. Antiviral Res 2021;193:105127. [PMID: 34217752 DOI: 10.1016/j.antiviral.2021.105127] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
337 Yu CY, Chan KG, Yean CY, Ang GY. Nucleic Acid-Based Diagnostic Tests for the Detection SARS-CoV-2: An Update. Diagnostics (Basel) 2021;11:53. [PMID: 33401392 DOI: 10.3390/diagnostics11010053] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
338 Pozdnyakova V, Weber B, Cheng S, Ebinger JE. Review of Immunologic Manifestations of COVID-19 Infection and Vaccination. Cardiology Clinics 2022. [DOI: 10.1016/j.ccl.2022.03.006] [Reference Citation Analysis]
339 Amaral-Machado L, Oliveira WN, Rodrigues VM, Albuquerque NA, Alencar ÉN, Egito EST. Could natural products modulate early inflammatory responses, preventing acute respiratory distress syndrome in COVID-19-confirmed patients? Biomed Pharmacother 2021;134:111143. [PMID: 33360048 DOI: 10.1016/j.biopha.2020.111143] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
340 Wolfe M, Webb S, Chushak Y, Krabacher R, Liu Y, Swami N, Harbaugh S, Chávez J. A high-throughput pipeline for design and selection of peptides targeting the SARS-Cov-2 Spike protein. Sci Rep 2021;11:21768. [PMID: 34741099 DOI: 10.1038/s41598-021-01225-2] [Reference Citation Analysis]
341 Farrag MA, Amer HM, Bhat R, Hamed ME, Aziz IM, Mubarak A, Dawoud TM, Almalki SG, Alghofaili F, Alnemare AK, Al-Baradi RS, Alosaimi B, Alturaiki W. SARS-CoV-2: An Overview of Virus Genetics, Transmission, and Immunopathogenesis. Int J Environ Res Public Health 2021;18:6312. [PMID: 34200934 DOI: 10.3390/ijerph18126312] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
342 Kaseb AO, Mohamed YI, Malek AE, Raad II, Altameemi L, Li D, Kaseb OA, Kaseb SA, Selim A, Ma Q. The Impact of Angiotensin-Converting Enzyme 2 (ACE2) Expression on the Incidence and Severity of COVID-19 Infection. Pathogens 2021;10:379. [PMID: 33809851 DOI: 10.3390/pathogens10030379] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
343 Li T, Huang T, Guo C, Wang A, Shi X, Mo X, Lu Q, Sun J, Hui T, Tian G, Wang L, Yang J. Genomic variation, origin tracing, and vaccine development of SARS-CoV-2: A systematic review. Innovation (N Y) 2021;2:100116. [PMID: 33997827 DOI: 10.1016/j.xinn.2021.100116] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
344 van Breemen RB, Muchiri RN, Bates TA, Weinstein JB, Leier HC, Farley S, Tafesse FG. Cannabinoids Block Cellular Entry of SARS-CoV-2 and the Emerging Variants. J Nat Prod 2022. [PMID: 35007072 DOI: 10.1021/acs.jnatprod.1c00946] [Reference Citation Analysis]
345 Hou X, Zhang Z, Gao J, Wang Y. SARS-CoV-2 spike protein N501Y mutation causes differential species transmissibility and antibody sensitivity: a molecular dynamics and alchemical free energy study. Mol Syst Des Eng 2021;6:964-74. [DOI: 10.1039/d1me00086a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
346 Muhseen ZT, Hameed AR, Al-Hasani HMH, Tahir Ul Qamar M, Li G. Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: Integrated computational approach. J Mol Liq 2020;320:114493. [PMID: 33041407 DOI: 10.1016/j.molliq.2020.114493] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
347 Petit L, Vernès L, Cadoret JP. Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. J Appl Phycol 2021;:1-24. [PMID: 33776210 DOI: 10.1007/s10811-021-02372-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
348 Fuentes-Prior P. Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection. J Biol Chem 2021;296:100135. [PMID: 33268377 DOI: 10.1074/jbc.REV120.015980] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
349 Rajagopal K, Keller SP, Akkanti B, Bime C, Loyalka P, Cheema FH, Zwischenberger JB, El Banayosy A, Pappalardo F, Slaughter MS, Slepian MJ. Advanced Pulmonary and Cardiac Support of COVID-19 Patients: Emerging Recommendations From ASAIO-a Living Working Document. Circ Heart Fail 2020;13:e007175. [PMID: 32357074 DOI: 10.1161/CIRCHEARTFAILURE.120.007175] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 9.5] [Reference Citation Analysis]
350 Dai J, Teng X, Jin S, Wu Y. The Antiviral Roles of Hydrogen Sulfide by Blocking the Interaction between SARS-CoV-2 and Its Potential Cell Surface Receptors. Oxid Med Cell Longev 2021;2021:7866992. [PMID: 34497683 DOI: 10.1155/2021/7866992] [Reference Citation Analysis]
351 Samanta J, Gupta R, Singh MP, Patnaik I, Kumar A, Kochhar R. Coronavirus disease 2019 and the pancreas. Pancreatology. 2020;20:1567-1575. [PMID: 33250089 DOI: 10.1016/j.pan.2020.10.035] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
352 Lizardo-thiebaud MJ, Cervantes-alvarez E, Limon-de la Rosa N, Tejeda-dominguez F, Palacios-jimenez M, Méndez-guerrero O, Delaye-martinez M, Rodriguez-alvarez F, Romero-morales B, Liu W, Huang CA, Kershenobich D, Navarro-alvarez N. Direct or Collateral Liver Damage in SARS-CoV-2–Infected Patients. Semin Liver Dis 2020;40:321-30. [DOI: 10.1055/s-0040-1715108] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
353 Yiangou L, Davis RP, Mummery CL. Using Cardiovascular Cells from Human Pluripotent Stem Cells for COVID-19 Research: Why the Heart Fails. Stem Cell Reports. 2021;16:385-397. [PMID: 33306986 DOI: 10.1016/j.stemcr.2020.11.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
354 Zhang HL, Li YM, Sun J, Zhang YY, Wang TY, Sun MX, Wang MH, Yang YL, Hu XL, Tang YD, Zhao J, Cai X. Evaluating angiotensin-converting enzyme 2-mediated SARS-CoV-2 entry across species. J Biol Chem 2021;296:100435. [PMID: 33610551 DOI: 10.1016/j.jbc.2021.100435] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
355 Aljindan RY, Al-Subaie AM, Al-Ohali AI, Kumar D T, Doss C GP, Kamaraj B. Investigation of nonsynonymous mutations in the spike protein of SARS-CoV-2 and its interaction with the ACE2 receptor by molecular docking and MM/GBSA approach. Comput Biol Med 2021;135:104654. [PMID: 34346317 DOI: 10.1016/j.compbiomed.2021.104654] [Reference Citation Analysis]
356 Han Y, McReynolds KD, Král P. Retrained Generic Antibodies Can Recognize SARS-CoV-2. J Phys Chem Lett 2021;12:1438-42. [PMID: 33523655 DOI: 10.1021/acs.jpclett.0c03615] [Reference Citation Analysis]
357 Yang M, Li J, Huang Z, Li H, Wang Y, Wang X, Kang S, Huang X, Wu C, Liu T, Jia Z, Liang J, Yuan X, He S, Chen X, Zhou Z, Chen Q, Liu S, Li J, Zheng H, Liu X, Li K, Yao X, Lang B, Liu L, Liao HX, Chen S. Structural Basis of a Human Neutralizing Antibody Specific to the SARS-CoV-2 Spike Protein Receptor-Binding Domain. Microbiol Spectr 2021;9:e0135221. [PMID: 34643438 DOI: 10.1128/Spectrum.01352-21] [Reference Citation Analysis]
358 Jafarzadeh A, Jafarzadeh S, Nozari P, Mokhtari P, Nemati M. Lymphopenia an important immunological abnormality in patients with COVID-19: Possible mechanisms. Scand J Immunol 2021;93:e12967. [PMID: 32875598 DOI: 10.1111/sji.12967] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
359 Alsobaie S. Understanding the Molecular Biology of SARS-CoV-2 and the COVID-19 Pandemic: A Review. Infect Drug Resist 2021;14:2259-68. [PMID: 34163190 DOI: 10.2147/IDR.S306441] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
360 Zhang J, Chen B. Fighting SARS-CoV-2 with structural biology methods. Nat Methods 2022. [PMID: 35396469 DOI: 10.1038/s41592-022-01448-9] [Reference Citation Analysis]
361 Seyedpour S, Khodaei B, Loghman AH, Seyedpour N, Kisomi MF, Balibegloo M, Nezamabadi SS, Gholami B, Saghazadeh A, Rezaei N. Targeted therapy strategies against SARS-CoV-2 cell entry mechanisms: A systematic review of in vitro and in vivo studies. J Cell Physiol 2021;236:2364-92. [PMID: 32901936 DOI: 10.1002/jcp.30032] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
362 Salazar E, Perez KK, Ashraf M, Chen J, Castillo B, Christensen PA, Eubank T, Bernard DW, Eagar TN, Long SW, Subedi S, Olsen RJ, Leveque C, Schwartz MR, Dey M, Chavez-East C, Rogers J, Shehabeldin A, Joseph D, Williams G, Thomas K, Masud F, Talley C, Dlouhy KG, Lopez BV, Hampton C, Lavinder J, Gollihar JD, Maranhao AC, Ippolito GC, Saavedra MO, Cantu CC, Yerramilli P, Pruitt L, Musser JM. Treatment of Coronavirus Disease 2019 (COVID-19) Patients with Convalescent Plasma. Am J Pathol 2020;190:1680-90. [PMID: 32473109 DOI: 10.1016/j.ajpath.2020.05.014] [Cited by in Crossref: 126] [Cited by in F6Publishing: 123] [Article Influence: 63.0] [Reference Citation Analysis]
363 Dogan M, Kozhaya L, Placek L, Gunter CL, Yigit M, Hardy R, Plassmeyer M, Coatney P, Lillard K, Bukhari Z, Kleinberg M, Hayes C, Arditi M, Klapper E, Merin N, Liang BT, Gupta R, Alpan O, Unutmaz D. Novel SARS-CoV-2 specific antibody and neutralization assays reveal wide range of humoral immune response during COVID-19. medRxiv 2020:2020. [PMID: 32676617 DOI: 10.1101/2020.07.07.20148106] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 7.5] [Reference Citation Analysis]
364 Moharana M, Das A, Sahu SN, Pattanayak SK, Khan F. Evaluation of binding performance of bioactive compounds against main protease and mutant model spike receptor binding domain of SARS-CoV-2: Docking, ADMET properties and molecular dynamics simulation study. Journal of the Indian Chemical Society 2022;99:100417. [DOI: 10.1016/j.jics.2022.100417] [Reference Citation Analysis]
365 Gómez SA, Rojas-Valencia N, Gómez S, Egidi F, Cappelli C, Restrepo A. Binding of SARS-CoV-2 to Cell Receptors: A Tale of Molecular Evolution. Chembiochem 2021;22:724-32. [PMID: 32986926 DOI: 10.1002/cbic.202000618] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
366 Piyush R, Rajarshi K, Chatterjee A, Khan R, Ray S. Nucleic acid-based therapy for coronavirus disease 2019. Heliyon 2020;6:e05007. [PMID: 32984620 DOI: 10.1016/j.heliyon.2020.e05007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
367 Rotondi M, Coperchini F, Ricci G, Denegri M, Croce L, Ngnitejeu ST, Villani L, Magri F, Latrofa F, Chiovato L. Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis. J Endocrinol Invest 2021;44:1085-90. [PMID: 33025553 DOI: 10.1007/s40618-020-01436-w] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 14.0] [Reference Citation Analysis]
368 Gencer S, Lacy M, Atzler D, van der Vorst EPC, Döring Y, Weber C. Immunoinflammatory, Thrombohaemostatic, and Cardiovascular Mechanisms in COVID-19. Thromb Haemost 2020;120:1629-41. [PMID: 33124029 DOI: 10.1055/s-0040-1718735] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
369 Bregnhøj M, Roeters SJ, Chatterley AS, Madzharova F, Mertig R, Pedersen JS, Weidner T. Structure and Orientation of the SARS-Coronavirus-2 Spike Protein at Air-Water Interfaces. J Phys Chem B 2022. [PMID: 35477296 DOI: 10.1021/acs.jpcb.2c01272] [Reference Citation Analysis]
370 Wang X, Yang C, Sun Y, Sui X, Zhu T, Wang Q, Wang S, Yang J, Yang W, Liu F, Zhang M, Wang Y, Luo Y. A novel screening strategy of anti-SARS-CoV-2 drugs via blocking interaction between Spike RBD and ACE2. Environ Int 2021;147:106361. [PMID: 33401173 DOI: 10.1016/j.envint.2020.106361] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
371 Tsabouri S, Makis A, Kosmeri C, Siomou E. Risk Factors for Severity in Children with Coronavirus Disease 2019: A Comprehensive Literature Review. Pediatr Clin North Am 2021;68:321-38. [PMID: 33228941 DOI: 10.1016/j.pcl.2020.07.014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
372 Shoemaker RH, Panettieri RA Jr, Libutti SK, Hochster HS, Watts NR, Wingfield PT, Starkl P, Pimenov L, Gawish R, Hladik A, Knapp S, Boring D, White JM, Lawrence Q, Boone J, Marshall JD, Matthews RL, Cholewa BD, Richig JW, Chen BT, McCormick DL, Gugensberger R, Höller S, Penninger JM, Wirnsberger G. Development of a novel, pan-variant aerosol intervention for COVID-19. bioRxiv 2021:2021. [PMID: 34545364 DOI: 10.1101/2021.09.14.459961] [Reference Citation Analysis]
373 Paris KA, Santiago U, Camacho CJ. On the molecular mechanism of SARS-CoV-2 retention in the upper respiratory tract. bioRxiv 2020:2020. [PMID: 32766592 DOI: 10.1101/2020.07.29.227389] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
374 Taka E, Yilmaz SZ, Golcuk M, Kilinc C, Aktas U, Yildiz A, Gur M. Critical Interactions Between the SARS-CoV-2 Spike Glycoprotein and the Human ACE2 Receptor. J Phys Chem B 2021;125:5537-48. [PMID: 33979162 DOI: 10.1021/acs.jpcb.1c02048] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
375 Dehelean CA, Lazureanu V, Coricovac D, Mioc M, Oancea R, Marcovici I, Pinzaru I, Soica C, Tsatsakis AM, Cretu O. SARS-CoV-2: Repurposed Drugs and Novel Therapeutic Approaches-Insights into Chemical Structure-Biological Activity and Toxicological Screening. J Clin Med 2020;9:E2084. [PMID: 32630746 DOI: 10.3390/jcm9072084] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
376 Ridgway H, Chasapis CT, Kelaidonis K, Ligielli I, Moore GJ, Gadanec LK, Zulli A, Apostolopoulos V, Mavromoustakos T, Matsoukas JM. Understanding the Driving Forces That Trigger Mutations in SARS-CoV-2: Mutational Energetics and the Role of Arginine Blockers in COVID-19 Therapy. Viruses 2022;14:1029. [DOI: 10.3390/v14051029] [Reference Citation Analysis]
377 Al-Sehemi AG, Olotu FA, Dev S, Pannipara M, Soliman ME, Carradori S, Mathew B. Natural Products Database Screening for the Discovery of Naturally Occurring SARS-Cov-2 Spike Glycoprotein Blockers. ChemistrySelect 2020;5:13309-17. [PMID: 33363254 DOI: 10.1002/slct.202003349] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
378 Villena J, Kitazawa H. The Modulation of Mucosal Antiviral Immunity by Immunobiotics: Could They Offer Any Benefit in the SARS-CoV-2 Pandemic? Front Physiol 2020;11:699. [PMID: 32670091 DOI: 10.3389/fphys.2020.00699] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
379 Higuchi Y, Suzuki T, Arimori T, Ikemura N, Mihara E, Kirita Y, Ohgitani E, Mazda O, Motooka D, Nakamura S, Sakai Y, Itoh Y, Sugihara F, Matsuura Y, Matoba S, Okamoto T, Takagi J, Hoshino A. Engineered ACE2 receptor therapy overcomes mutational escape of SARS-CoV-2. Nat Commun 2021;12:3802. [PMID: 34155214 DOI: 10.1038/s41467-021-24013-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
380 [DOI: 10.1101/2020.09.14.295956] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
381 Chen H, Kang Y, Duan M, Hou T. Regulation Mechanism for the Binding between the SARS-CoV-2 Spike Protein and Host Angiotensin-Converting Enzyme II. J Phys Chem Lett 2021;12:6252-61. [PMID: 34196550 DOI: 10.1021/acs.jpclett.1c01548] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
382 Liu X, Wei L, Xu F, Zhao F, Huang Y, Fan Z, Mei S, Hu Y, Zhai L, Guo J, Zheng A, Cen S, Liang C, Guo F. SARS-CoV-2 spike protein-induced cell fusion activates the cGAS-STING pathway and the interferon response. Sci Signal 2022;15:eabg8744. [PMID: 35412852 DOI: 10.1126/scisignal.abg8744] [Reference Citation Analysis]
383 Hatmal MM, Alshaer W, Al-Hatamleh MAI, Hatmal M, Smadi O, Taha MO, Oweida AJ, Boer JC, Mohamud R, Plebanski M. Comprehensive Structural and Molecular Comparison of Spike Proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and Their Interactions with ACE2. Cells 2020;9:E2638. [PMID: 33302501 DOI: 10.3390/cells9122638] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
384 Stevens CS, Oguntuyo KY, Lee B. Proteases and variants: context matters for SARS-CoV-2 entry assays. Curr Opin Virol 2021;50:49-58. [PMID: 34365113 DOI: 10.1016/j.coviro.2021.07.004] [Reference Citation Analysis]
385 Al-Karmalawy AA, Dahab MA, Metwaly AM, Elhady SS, Elkaeed EB, Eissa IH, Darwish KM. Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of ACEIs Against SARS-CoV-2 Targeting the hACE2 Receptor. Front Chem 2021;9:661230. [PMID: 34017819 DOI: 10.3389/fchem.2021.661230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
386 Lake DF, Roeder AJ, Kaleta E, Jasbi P, Pfeffer K, Koelbela C, Periasamy S, Kuzmina N, Bukreyev A, Grys TE, Wu L, Mills JR, McAulay K, Gonzalez-Moa M, Seit-Nebi A, Svarovsky S. Development of a rapid point-of-care test that measures neutralizing antibodies to SARS-CoV-2. J Clin Virol 2021;145:105024. [PMID: 34781240 DOI: 10.1016/j.jcv.2021.105024] [Reference Citation Analysis]
387 Cerutti G, Guo Y, Zhou T, Gorman J, Lee M, Rapp M, Reddem ER, Yu J, Bahna F, Bimela J, Huang Y, Katsamba PS, Liu L, Nair MS, Rawi R, Olia AS, Wang P, Zhang B, Chuang GY, Ho DD, Sheng Z, Kwong PD, Shapiro L. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host Microbe 2021;29:819-833.e7. [PMID: 33789084 DOI: 10.1016/j.chom.2021.03.005] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 56.0] [Reference Citation Analysis]
388 Senapati S, Banerjee P, Bhagavatula S, Kushwaha PP, Kumar S. Contributions of human ACE2 and TMPRSS2 in determining host–pathogen interaction of COVID-19. J Genet 2021;100. [DOI: 10.1007/s12041-021-01262-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
389 Albini A, Calabrone L, Carlini V, Benedetto N, Lombardo M, Bruno A, Noonan DM. Preliminary Evidence for IL-10-Induced ACE2 mRNA Expression in Lung-Derived and Endothelial Cells: Implications for SARS-Cov-2 ARDS Pathogenesis. Front Immunol 2021;12:718136. [PMID: 34646263 DOI: 10.3389/fimmu.2021.718136] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
390 Mallis P, Michalopoulos E, Chatzistamatiou T, Stavropoulos-Giokas C. Mesenchymal stromal cells as potential immunomodulatory players in severe acute respiratory distress syndrome induced by SARS-CoV-2 infection. World J Stem Cells 2020; 12(8): 731-751 [PMID: 32952855 DOI: 10.4252/wjsc.v12.i8.731] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
391 Wang X, Lin S, Tang RW, Lee HC, Chan H, Choi SS, Leung KW, Webb SE, Miller AL, Tsim KW. Polygoni multiflori radix extracts inhibit SARS-CoV-2 pseudovirus entry in HEK293T cells and zebrafish larvae. Phytomedicine 2022;102:154154. [DOI: 10.1016/j.phymed.2022.154154] [Reference Citation Analysis]
392 Vashi Y, Jagrit V, Kumar S. Understanding the B and T cell epitopes of spike protein of severe acute respiratory syndrome coronavirus-2: A computational way to predict the immunogens. Infect Genet Evol 2020;84:104382. [PMID: 32473352 DOI: 10.1016/j.meegid.2020.104382] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
393 Budhraja A, Pandey S, Kannan S, Verma CS, Venkatraman P. The polybasic insert, the RBD of the SARS-CoV-2 spike protein, and the feline coronavirus - evolved or yet to evolve. Biochem Biophys Rep 2021;25:100907. [PMID: 33521335 DOI: 10.1016/j.bbrep.2021.100907] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
394 Mahboubi Mehrabani M, Karvandi MS, Maafi P, Doroudian M. Neurological complications associated with Covid-19; molecular mechanisms and therapeutic approaches. Rev Med Virol 2022;:e2334. [PMID: 35138001 DOI: 10.1002/rmv.2334] [Reference Citation Analysis]
395 Gupta R, Sagar P, Priyadarshi N, Kaul S, Sandhir R, Rishi V, Singhal NK. Nanotechnology-Based Approaches for the Detection of SARS-CoV-2. Front Nanotechnol 2020;2:589832. [DOI: 10.3389/fnano.2020.589832] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
396 Sevenich M, Thul E, Lakomek N, Klünemann T, Schubert M, Bertoglio F, van den Heuvel J, Petzsch P, Mohrlüder J, Willbold D. Phage Display-Derived Compounds Displace hACE2 from Its Complex with SARS-CoV-2 Spike Protein. Biomedicines 2022;10:441. [DOI: 10.3390/biomedicines10020441] [Reference Citation Analysis]
397 Fallon L, Belfon KAA, Raguette L, Wang Y, Stepanenko D, Cuomo A, Guerra J, Budhan S, Varghese S, Corbo CP, Rizzo RC, Simmerling C. Free Energy Landscapes from SARS-CoV-2 Spike Glycoprotein Simulations Suggest that RBD Opening Can Be Modulated via Interactions in an Allosteric Pocket. J Am Chem Soc 2021;143:11349-60. [PMID: 34270232 DOI: 10.1021/jacs.1c00556] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
398 Huerta-Miranda GA, García-García WI, Vidal-Limon A, Miranda-Hernández M. Use of simplified models for theoretical prediction of the interactions between available antibodies and the receptor-binding domain of SARS-CoV-2 spike protein. J Biomol Struct Dyn 2021;:1-10. [PMID: 34935602 DOI: 10.1080/07391102.2021.2019123] [Reference Citation Analysis]
399 Suleman M, Yousafi Q, Ali J, Ali SS, Hussain Z, Ali S, Waseem M, Iqbal A, Ahmad S, Khan A, Wang Y, Wei DQ. Bioinformatics analysis of the differences in the binding profile of the wild-type and mutants of the SARS-CoV-2 spike protein variants with the ACE2 receptor. Comput Biol Med 2021;138:104936. [PMID: 34655895 DOI: 10.1016/j.compbiomed.2021.104936] [Reference Citation Analysis]
400 Pique-Regi R, Romero R, Tarca AL, Luca F, Xu Y, Alazizi A, Leng Y, Hsu CD, Gomez-Lopez N. Does the human placenta express the canonical cell entry mediators for SARS-CoV-2? Elife 2020;9:e58716. [PMID: 32662421 DOI: 10.7554/eLife.58716] [Cited by in Crossref: 82] [Cited by in F6Publishing: 54] [Article Influence: 41.0] [Reference Citation Analysis]
401 Yan R, Wang R, Ju B, Yu J, Zhang Y, Liu N, Wang J, Zhang Q, Chen P, Zhou B, Li Y, Shen Y, Zhang S, Tian L, Guo Y, Xia L, Zhong X, Cheng L, Ge X, Zhao J, Wang HW, Wang X, Zhang Z, Zhang L, Zhou Q. Structural basis for bivalent binding and inhibition of SARS-CoV-2 infection by human potent neutralizing antibodies. Cell Res 2021;31:517-25. [PMID: 33731853 DOI: 10.1038/s41422-021-00487-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
402 Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, Zhao C, Zhang Q, Liu H, Nie L, Qin H, Wang M, Lu Q, Li X, Sun Q, Liu J, Zhang L, Li X, Huang W, Wang Y. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell 2020;182:1284-1294.e9. [PMID: 32730807 DOI: 10.1016/j.cell.2020.07.012] [Cited by in Crossref: 544] [Cited by in F6Publishing: 478] [Article Influence: 272.0] [Reference Citation Analysis]
403 Sun G, Xue L, He Q, Zhao Y, Xu W, Wang Z. Structural insights into SARS-CoV-2 infection and therapeutics development. Stem Cell Res 2021;52:102219. [PMID: 33550140 DOI: 10.1016/j.scr.2021.102219] [Reference Citation Analysis]
404 Wu L, Chen Q, Liu K, Wang J, Han P, Zhang Y, Hu Y, Meng Y, Pan X, Qiao C, Tian S, Du P, Song H, Shi W, Qi J, Wang HW, Yan J, Gao GF, Wang Q. Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell Discov 2020;6:68. [PMID: 33020722 DOI: 10.1038/s41421-020-00210-9] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 16.0] [Reference Citation Analysis]
405 Yao M, Er Saw P, Jiang S. Coronavirus Pneumonia and Pulmonary Thromboembolism. BIO Integration 2021;1:178-84. [DOI: 10.15212/bioi-2020-0030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
406 Ma Y, Hu Y, Xia B, Du P, Wu L, Liang M, Chen Q, Yan H, Gao GF, Wang Q, Wang J. Machine Learning Approach Effectively Predicts Binding Between SARS-CoV-2 Spike and ACE2 Across Mammalian Species - Worldwide, 2021. China CDC Wkly 2021;3:967-72. [PMID: 34804629 DOI: 10.46234/ccdcw2021.235] [Reference Citation Analysis]
407 Zaidi AK, Dehgani-Mobaraki P. The mechanisms of action of ivermectin against SARS-CoV-2-an extensive review. J Antibiot (Tokyo) 2021. [PMID: 34931048 DOI: 10.1038/s41429-021-00491-6] [Reference Citation Analysis]
408 Hassler L, Wysocki J, Gelarden I, Tomatsidou A, Gula H, Nicoleascu V, Randall G, Henkin J, Yeldandi A, Batlle D. A novel soluble ACE2 protein totally protects from lethal disease caused by SARS-CoV-2 infection. bioRxiv 2021:2021. [PMID: 33758841 DOI: 10.1101/2021.03.12.435191] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
409 Kucher AN, Babushkina NP, Sleptcov AA, Nazarenko MS. Genetic Control of Human Infection with SARS-CoV-2. Russ J Genet 2021;57:627-41. [PMID: 34248311 DOI: 10.1134/S1022795421050057] [Reference Citation Analysis]
410 Gül Ş. In silico drug repositioning against human NRP1 to block SARS-CoV-2 host entry. Turk J Biol 2021;45:442-58. [PMID: 34803446 DOI: 10.3906/biy-2012-52] [Reference Citation Analysis]
411 Lanza K, Perez LG, Costa LB, Cordeiro TM, Palmeira VA, Ribeiro VT, Simões E Silva AC. Covid-19: the renin-angiotensin system imbalance hypothesis. Clin Sci (Lond) 2020;134:1259-64. [PMID: 32507883 DOI: 10.1042/CS20200492] [Cited by in Crossref: 33] [Cited by in F6Publishing: 17] [Article Influence: 16.5] [Reference Citation Analysis]
412 de Oliveira AB Jr, Contessoto VG, Hassan A, Byju S, Wang A, Wang Y, Dodero-Rojas E, Mohanty U, Noel JK, Onuchic JN, Whitford PC. SMOG 2 and OpenSMOG: Extending the limits of structure-based models. Protein Sci 2021. [PMID: 34655449 DOI: 10.1002/pro.4209] [Reference Citation Analysis]
413 Karamloo F, König R. SARS-CoV-2 immunogenicity at the crossroads. Allergy 2020;75:1822-4. [PMID: 32401346 DOI: 10.1111/all.14360] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
414 Liu D, Zeng X, Ding Z, Lv F, Mehta JL, Wang X. Adverse Cardiovascular Effects of Anti-COVID-19 Drugs. Front Pharmacol 2021;12:699949. [PMID: 34512335 DOI: 10.3389/fphar.2021.699949] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
415 Wulandari L, Hamidah B, Pakpahan C, Damayanti NS, Kurniati ND, Adiatmaja CO, Wigianita MR, Soedarsono, Husada D, Tinduh D, Prakoeswa CRS, Endaryanto A, Puspaningsih NNT, Mori Y, Lusida MI, Shimizu K, Oceandy D. Initial study on TMPRSS2 p.Val160Met genetic variant in COVID-19 patients. Hum Genomics 2021;15:29. [PMID: 34001248 DOI: 10.1186/s40246-021-00330-7] [Reference Citation Analysis]
416 Hayashi T, Konishi I. Noneffect of SARS-CoV-2 spike glycoprotein Y217N mutation on affinity between the virus and ACE2. J Biol Chem 2021;296:100725. [PMID: 34237902 DOI: 10.1016/j.jbc.2021.100725] [Reference Citation Analysis]
417 Suthar MS, Zimmerman MG, Kauffman RC, Mantus G, Linderman SL, Hudson WH, Vanderheiden A, Nyhoff L, Davis CW, Adekunle O, Affer M, Sherman M, Reynolds S, Verkerke HP, Alter DN, Guarner J, Bryksin J, Horwath MC, Arthur CM, Saakadze N, Smith GH, Edupuganti S, Scherer EM, Hellmeister K, Cheng A, Morales JA, Neish AS, Stowell SR, Frank F, Ortlund E, Anderson EJ, Menachery VD, Rouphael N, Mehta AK, Stephens DS, Ahmed R, Roback JD, Wrammert J. Rapid Generation of Neutralizing Antibody Responses in COVID-19 Patients. Cell Rep Med 2020;1:100040. [PMID: 32835303 DOI: 10.1016/j.xcrm.2020.100040] [Cited by in Crossref: 146] [Cited by in F6Publishing: 150] [Article Influence: 73.0] [Reference Citation Analysis]
418 Olaleye OA, Kaur M, Onyenaka C, Adebusuyi T. Discovery of Clioquinol and Analogues as Novel Inhibitors of Severe Acute Respiratory Syndrome Coronavirus 2 Infection, ACE2 and ACE2 - Spike Protein Interaction In Vitro. bioRxiv 2020:2020. [PMID: 32817951 DOI: 10.1101/2020.08.14.250480] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
419 Wholey WY, Yoda ST, Cheng W. Site-Specific and Stable Conjugation of the SARS-CoV-2 Receptor-Binding Domain to Liposomes in the Absence of Any Other Adjuvants Elicits Potent Neutralizing Antibodies in BALB/c Mice. Bioconjug Chem 2021. [PMID: 34775749 DOI: 10.1021/acs.bioconjchem.1c00463] [Reference Citation Analysis]
420 Cheng MH, Krieger JM, Banerjee A, Xiang Y, Kaynak B, Shi Y, Arditi M, Bahar I. Impact of new variants on SARS-CoV-2 infectivity and neutralization: A molecular assessment of the alterations in the spike-host protein interactions. iScience 2022;25:103939. [PMID: 35194576 DOI: 10.1016/j.isci.2022.103939] [Reference Citation Analysis]
421 Ye F, Lin X, Chen Z, Yang F, Lin S, Yang J, Chen H, Sun H, Wang L, Wen A, Zhang X, Dai Y, Cao Y, Yang J, Shen G, Yang L, Li J, Wang Z, Wang W, Wei X, Lu G. S19W, T27W, and N330Y mutations in ACE2 enhance SARS-CoV-2 S-RBD binding toward both wild-type and antibody-resistant viruses and its molecular basis. Signal Transduct Target Ther 2021;6:343. [PMID: 34531369 DOI: 10.1038/s41392-021-00756-4] [Reference Citation Analysis]
422 Bordea IR, Xhajanka E, Candrea S, Bran S, Onișor F, Inchingolo AD, Malcangi G, Pham VH, Inchingolo AM, Scarano A, Lorusso F, Isacco CG, Aityan SK, Ballini A, Dipalma G, Inchingolo F. Coronavirus (SARS-CoV-2) Pandemic: Future Challenges for Dental Practitioners. Microorganisms 2020;8:E1704. [PMID: 33142764 DOI: 10.3390/microorganisms8111704] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 9.5] [Reference Citation Analysis]
423 Chen TF, Chang YC, Hsiao Y, Lee KH, Hsiao YC, Lin YH, Tu YE, Huang HC, Chen CY, Juan HF. DockCoV2: a drug database against SARS-CoV-2. Nucleic Acids Res 2021;49:D1152-9. [PMID: 33035337 DOI: 10.1093/nar/gkaa861] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
424 [DOI: 10.1101/2020.05.03.075473] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
425 Khiali S, Khani E, B Rouy S, Entezari-Maleki T. Comprehensive review on molnupiravir in COVID-19: a novel promising antiviral to combat the pandemic. Future Microbiol 2022. [PMID: 35199608 DOI: 10.2217/fmb-2021-0252] [Reference Citation Analysis]
426 Sharma P, Shanavas A. Natural derivatives with dual binding potential against SARS-CoV-2 main protease and human ACE2 possess low oral bioavailability: a brief computational analysis. J Biomol Struct Dyn 2021;39:5819-30. [PMID: 32691697 DOI: 10.1080/07391102.2020.1794970] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
427 Melin AD, Orkin JD, Janiak MC, Valenzuela A, Kuderna L, Marrone F 3rd, Ramangason H, Horvath JE, Roos C, Kitchener AC, Khor CC, Lim WK, Lee JGH, Tan P, Umapathy G, Raveendran M, Alan Harris R, Gut I, Gut M, Lizano E, Nadler T, Zinner D, Le MD, Manu S, Rabarivola CJ, Zaramody A, Andriaholinirina N, Johnson SE, Jarvis ED, Fedrigo O, Wu D, Zhang G, Farh KK, Rogers J, Marques-Bonet T, Navarro A, Juan D, Arora PS, Higham JP. Variation in predicted COVID-19 risk among lemurs and lorises. Am J Primatol 2021;83:e23255. [PMID: 33792947 DOI: 10.1002/ajp.23255] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
428 Rodriguez JH. Attractive and repulsive residue fragments at the interface of SARS-CoV-2 and hACE2. Sci Rep 2021;11:12567. [PMID: 34131210 DOI: 10.1038/s41598-021-91877-x] [Reference Citation Analysis]
429 García-escobar A, Vera-vera S, Jurado-román A, Jiménez-valero S, Galeote G, Moreno R. Calcium Signaling Pathway Is Involved in the Shedding of ACE2 Catalytic Ectodomain: New Insights for Clinical and Therapeutic Applications of ACE2 for COVID-19. Biomolecules 2022;12:76. [DOI: 10.3390/biom12010076] [Reference Citation Analysis]
430 Abbasi AZ, Kiyani DA, Hamid SM, Saalim M, Fahim A, Jalal N. Spiking dependence of SARS-CoV-2 pathogenicity on TMPRSS2. J Med Virol 2021;93:4205-18. [PMID: 33638460 DOI: 10.1002/jmv.26911] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
431 Hakim MS. SARS-CoV-2, Covid-19, and the debunking of conspiracy theories. Rev Med Virol 2021;:e2222. [PMID: 33586302 DOI: 10.1002/rmv.2222] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
432 Timmers LFSM, Peixoto JV, Ducati RG, Bachega JFR, de Mattos Pereira L, Caceres RA, Majolo F, da Silva GL, Anton DB, Dellagostin OA, Henriques JAP, Xavier LL, Goettert MI, Laufer S. SARS-CoV-2 mutations in Brazil: from genomics to putative clinical conditions. Sci Rep 2021;11:11998. [PMID: 34099808 DOI: 10.1038/s41598-021-91585-6] [Reference Citation Analysis]
433 Kongsuphol P, Jia H, Cheng HL, Gu Y, Shunmuganathan BD, Chen MW, Lim SM, Ng SY, Tambyah PA, Nasir H, Gao X, Tay D, Kim S, Gupta R, Qian X, Kozma MM, Purushotorman K, Mcbee ME, Macary PA, Sikes HD, Preiser PR. A rapid simple point-of-care assay for the detection of SARS-CoV-2 neutralizing antibodies. Commun Med 2021;1. [DOI: 10.1038/s43856-021-00045-9] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
434 Umar S, Palasiewicz K, Meyer A, Kumar P, Prabhakar BS, Volin MV, Rahat R, Al-Awqati M, Chang HJ, Zomorrodi RK, Rehman J, Shahrara S. Inhibition of IRAK4 dysregulates SARS-CoV-2 spike protein-induced macrophage inflammatory and glycolytic reprogramming. Cell Mol Life Sci 2022;79:301. [PMID: 35588018 DOI: 10.1007/s00018-022-04329-8] [Reference Citation Analysis]
435 Wu ZL, Ertelt JM. Fluorescent glycan fingerprinting of SARS2 spike proteins. Sci Rep 2021;11:20428. [PMID: 34650101 DOI: 10.1038/s41598-021-98919-4] [Reference Citation Analysis]
436 Moreira RA, Guzman HV, Boopathi S, Baker JL, Poma AB. Characterization of Structural and Energetic Differences between Conformations of the SARS-CoV-2 Spike Protein. Materials (Basel) 2020;13:E5362. [PMID: 33255977 DOI: 10.3390/ma13235362] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 13.5] [Reference Citation Analysis]
437 Wu Y, Liu Y, Gulbins E, Grassmé H. The Anti-Infectious Role of Sphingosine in Microbial Diseases. Cells 2021;10:1105. [PMID: 34064516 DOI: 10.3390/cells10051105] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
438 Choudhary V, Gupta A, Sharma R, Parmar HS. Therapeutically effective covalent spike protein inhibitors in treatment of SARS-CoV-2. J Proteins Proteom 2021;:1-14. [PMID: 34539131 DOI: 10.1007/s42485-021-00074-x] [Reference Citation Analysis]
439 Wang Y, Liu M, Gao J. Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proc Natl Acad Sci U S A 2020;117:13967-74. [PMID: 32503918 DOI: 10.1073/pnas.2008209117] [Cited by in Crossref: 138] [Cited by in F6Publishing: 122] [Article Influence: 69.0] [Reference Citation Analysis]
440 Mooibroek TJ, Scheiner S, Valkenier H. Molecular Recognition. Chemphyschem 2021;22:433-4. [PMID: 33576554 DOI: 10.1002/cphc.202100056] [Reference Citation Analysis]
441 Costa CF, Barbosa AJ, Dias AMG, Roque ACA. Native, engineered and de novo designed ligands targeting the SARS-CoV-2 spike protein. Biotechnology Advances 2022. [DOI: 10.1016/j.biotechadv.2022.107986] [Reference Citation Analysis]
442 Minamikawa T, Koma T, Suzuki A, Nagamatsu K, Yasui T, Yasutomo K, Nomaguchi M. Inactivation of SARS-CoV-2 by deep ultraviolet light emitting diode: A review. Jpn J Appl Phys 2021;60:090501. [DOI: 10.35848/1347-4065/ac19d1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
443 Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov J, Neufeldt CJ, Cerikan B, Lu JM, Peukes J, Xiong X, Kräusslich HG, Scheres SHW, Bartenschlager R, Briggs JAG. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 2020;588:498-502. [PMID: 32805734 DOI: 10.1038/s41586-020-2665-2] [Cited by in Crossref: 248] [Cited by in F6Publishing: 240] [Article Influence: 124.0] [Reference Citation Analysis]
444 Patil VS, Hupparage VB, Malgi AP, Deshpande SH, Patil SA, Mallapur SP. Dual inhibition of COVID-19 spike glycoprotein and main protease 3CLpro by Withanone from Withania somnifera. Chin Herb Med 2021;13:359-69. [PMID: 34188665 DOI: 10.1016/j.chmed.2021.06.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
445 Kate Gadanec L, Qaradakhi T, Renee McSweeney K, Ashiana Ali B, Zulli A, Apostolopoulos V. Dual targeting of Toll-like receptor 4 and angiotensin-converting enzyme 2: a proposed approach to SARS-CoV-2 treatment. Future Microbiol 2021;16:205-9. [PMID: 33569984 DOI: 10.2217/fmb-2021-0018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
446 Taha BA, Al-Jubouri Q, Al Mashhadany Y, Zan MSDB, Bakar AAA, Fadhel MM, Arsad N. Photonics enabled intelligence system to identify SARS-CoV 2 mutations. Appl Microbiol Biotechnol 2022. [PMID: 35484414 DOI: 10.1007/s00253-022-11930-1] [Reference Citation Analysis]
447 Toraih EA, Sedhom JA, Dokunmu TM, Hussein MH, Ruiz EML, Muthusamy K, Zerfaoui M, Kandil E. Hidden in plain sight: The effects of BCG vaccination in the COVID-19 pandemic. J Med Virol 2021;93:1950-66. [PMID: 33289122 DOI: 10.1002/jmv.26707] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
448 Shi Y, Qian H, Rao P, Mu D, Liu Y, Liu G, Lin Z. Bioinspired membrane-based nanomodulators for immunotherapy of autoimmune and infectious diseases. Acta Pharmaceutica Sinica B 2022;12:1126-47. [DOI: 10.1016/j.apsb.2021.09.025] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
449 Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM Jr, Rawson S, Rits-Volloch S, Chen B. Distinct conformational states of SARS-CoV-2 spike protein. Science 2020;369:1586-92. [PMID: 32694201 DOI: 10.1126/science.abd4251] [Cited by in Crossref: 342] [Cited by in F6Publishing: 274] [Article Influence: 171.0] [Reference Citation Analysis]
450 Ohashi H, Watashi K, Saso W, Shionoya K, Iwanami S, Hirokawa T, Shirai T, Kanaya S, Ito Y, Kim KS, Nomura T, Suzuki T, Nishioka K, Ando S, Ejima K, Koizumi Y, Tanaka T, Aoki S, Kuramochi K, Suzuki T, Hashiguchi T, Maenaka K, Matano T, Muramatsu M, Saijo M, Aihara K, Iwami S, Takeda M, McKeating JA, Wakita T. Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. iScience 2021;24:102367. [PMID: 33817567 DOI: 10.1016/j.isci.2021.102367] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
451 Capponi S, Wang S, Navarro EJ, Bianco S. AI-driven prediction of SARS-CoV-2 variant binding trends from atomistic simulations. Eur Phys J E Soft Matter 2021;44:123. [PMID: 34613523 DOI: 10.1140/epje/s10189-021-00119-5] [Reference Citation Analysis]
452 [DOI: 10.1101/2020.06.05.135921] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
453 Peng R, Wu LA, Wang Q, Qi J, Gao GF. Cell entry by SARS-CoV-2. Trends Biochem Sci 2021:S0968-0004(21)00118-3. [PMID: 34187722 DOI: 10.1016/j.tibs.2021.06.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
454 Fred SM, Kuivanen S, Ugurlu H, Casarotto PC, Levanov L, Saksela K, Vapalahti O, Castrén E. Antidepressant and Antipsychotic Drugs Reduce Viral Infection by SARS-CoV-2 and Fluoxetine Shows Antiviral Activity Against the Novel Variants in vitro. Front Pharmacol 2022;12:755600. [DOI: 10.3389/fphar.2021.755600] [Reference Citation Analysis]
455 Afaghi P, Lapolla MA, Ghandi K. Percutaneous microwave ablation applications for liver tumors: recommendations for COVID-19 patients. Heliyon 2021;7:e06454. [PMID: 33748501 DOI: 10.1016/j.heliyon.2021.e06454] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
456 Marhaeny HD, Widyawaruyanti A, Widiandani T, Fuad Hafid A, Wahyuni TS. Phyllanthin and hypophyllanthin, the isolated compounds of Phyllanthus niruri inhibit protein receptor of corona virus (COVID-19) through in silico approach. J Basic Clin Physiol Pharmacol 2021;32:809-15. [PMID: 34214339 DOI: 10.1515/jbcpp-2020-0473] [Reference Citation Analysis]
457 Sarver DC, Wong GW. Obesity alters Ace2 and Tmprss2 expression in lung, trachea, and esophagus in a sex-dependent manner: Implications for COVID-19. bioRxiv 2020:2020. [PMID: 33083805 DOI: 10.1101/2020.10.13.337907] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
458 Diabasana Z, Perotin JM, Belgacemi R, Ancel J, Mulette P, Delepine G, Gosset P, Maskos U, Polette M, Deslée G, Dormoy V. Nicotinic Receptor Subunits Atlas in the Adult Human Lung. Int J Mol Sci 2020;21:E7446. [PMID: 33050277 DOI: 10.3390/ijms21207446] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
459 Silva Andrade B, Ghosh P, Barh D, Tiwari S, José Santana Silva R, Rodrigues de Assis Soares W, Silva Melo T, Santos Freitas A, González-Grande P, Sousa Palmeira L, Carlos Junior Alcantara L, Giovanetti M, Góes-Neto A, Ariston de Carvalho Azevedo V. Computational screening for potential drug candidates against the SARS-CoV-2 main protease. F1000Res 2020;9:ISCB Comm J-514. [PMID: 33447372 DOI: 10.12688/f1000research.23829.2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
460 Bagwe PV, Bagwe PV, Ponugoti SS, Joshi SV. Peptide-Based Vaccines and Therapeutics for COVID-19. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10397-y] [Reference Citation Analysis]
461 Barros EP, Casalino L, Gaieb Z, Dommer AC, Wang Y, Fallon L, Raguette L, Belfon K, Simmerling C, Amaro RE. The flexibility of ACE2 in the context of SARS-CoV-2 infection. bioRxiv 2020:2020. [PMID: 32995769 DOI: 10.1101/2020.09.16.300459] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
462 Lara-Ureña N, García-Domínguez M. Relevance of BET Family Proteins in SARS-CoV-2 Infection. Biomolecules 2021;11:1126. [PMID: 34439792 DOI: 10.3390/biom11081126] [Reference Citation Analysis]
463 Devi KP, Pourkarim MR, Thijssen M, Sureda A, Khayatkashani M, Cismaru CA, Neagoe IB, Habtemariam S, Razmjouei S, Khayat Kashani HR. A perspective on the applications of furin inhibitors for the treatment of SARS-CoV-2. Pharmacol Rep 2022. [PMID: 35031970 DOI: 10.1007/s43440-021-00344-x] [Reference Citation Analysis]
464 van Dam PA, Huizing M, Mestach G, Dierckxsens S, Tjalma W, Trinh XB, Papadimitriou K, Altintas S, Vermorken J, Vulsteke C, Janssens A, Berneman Z, Prenen H, Meuris L, Vanden Berghe W, Smits E, Peeters M. SARS-CoV-2 and cancer: Are they really partners in crime? Cancer Treat Rev 2020;89:102068. [PMID: 32731090 DOI: 10.1016/j.ctrv.2020.102068] [Cited by in Crossref: 32] [Cited by in F6Publishing: 21] [Article Influence: 16.0] [Reference Citation Analysis]
465 Wysocki J, Ye M, Hassler L, Gupta AK, Wang Y, Nicoleascu V, Randall G, Wertheim JA, Batlle D. A Novel Soluble ACE2 Variant with Prolonged Duration of Action Neutralizes SARS-CoV-2 Infection in Human Kidney Organoids. J Am Soc Nephrol 2021:ASN. [PMID: 33526471 DOI: 10.1681/ASN.2020101537] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 12.0] [Reference Citation Analysis]
466 Sallard E, Halloy J, Casane D, Decroly E, van Helden J. Tracing the origins of SARS-COV-2 in coronavirus phylogenies: a review. Environ Chem Lett 2021;:1-17. [PMID: 33558807 DOI: 10.1007/s10311-020-01151-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 14.0] [Reference Citation Analysis]
467 Giordano D, De Masi L, Argenio MA, Facchiano A. Structural Dissection of Viral Spike-Protein Binding of SARS-CoV-2 and SARS-CoV-1 to the Human Angiotensin-Converting Enzyme 2 (ACE2) as Cellular Receptor. Biomedicines 2021;9:1038. [PMID: 34440241 DOI: 10.3390/biomedicines9081038] [Reference Citation Analysis]
468 Batiha O, Al-Deeb T, Al-Zoubi E, Alsharu E. Impact of COVID-19 and other viruses on reproductive health. Andrologia 2020;52:e13791. [PMID: 32790205 DOI: 10.1111/and.13791] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
469 Godinho PIC, Soengas RG, Silva VLM. Therapeutic Potential of Glycosyl Flavonoids as Anti-Coronaviral Agents. Pharmaceuticals (Basel) 2021;14:546. [PMID: 34200456 DOI: 10.3390/ph14060546] [Reference Citation Analysis]
470 Jyotisha, Singh S, Qureshi IA. Multi-epitope vaccine against SARS-CoV-2 applying immunoinformatics and molecular dynamics simulation approaches. J Biomol Struct Dyn 2020;:1-17. [PMID: 33164664 DOI: 10.1080/07391102.2020.1844060] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
471 Yan F, Gao F. EK1 with dual Q1004E/N1006I mutation: a promising fusion inhibitor for the HR1 domain of SARS-CoV-2. J Infect 2021:S0163-4453(21)00644-7. [PMID: 34953899 DOI: 10.1016/j.jinf.2021.12.022] [Reference Citation Analysis]
472 Bhullar KS, Drews SJ, Wu J. Translating bioactive peptides for COVID-19 therapy. Eur J Pharmacol 2021;890:173661. [PMID: 33098835 DOI: 10.1016/j.ejphar.2020.173661] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
473 Youk J, Kim T, Evans KV, Jeong YI, Hur Y, Hong SP, Kim JH, Yi K, Kim SY, Na KJ, Bleazard T, Kim HM, Fellows M, Mahbubani KT, Saeb-Parsy K, Kim SY, Kim YT, Koh GY, Choi BS, Ju YS, Lee JH. Three-Dimensional Human Alveolar Stem Cell Culture Models Reveal Infection Response to SARS-CoV-2. Cell Stem Cell 2020;27:905-919.e10. [PMID: 33142113 DOI: 10.1016/j.stem.2020.10.004] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 27.5] [Reference Citation Analysis]
474 Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022;7:94. [PMID: 35322018 DOI: 10.1038/s41392-022-00950-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
475 Li A, Zhao K, Zhang B, Hua R, Fang Y, Jiang W, Zhang J, Hui L, Zheng Y, Li Y, Zhu C, Wang PH, Peng K, Xia Y. SARS-CoV-2 NSP12 Protein Is Not an Interferon-β Antagonist. J Virol 2021;95:e0074721. [PMID: 34133897 DOI: 10.1128/JVI.00747-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
476 Dodero-Rojas E, Onuchic JN, Whitford PC. Sterically confined rearrangements of SARS-CoV-2 Spike protein control cell invasion. Elife 2021;10:e70362. [PMID: 34463614 DOI: 10.7554/eLife.70362] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
477 Dos Santos VP, Rodrigues A, Dutra G, Bastos L, Mariano D, Mendonça JG, Lobo YJG, Mendes E, Maia G, Machado KDS, Werhli AV, Rocha G, de Lima LHF, de Melo-Minardi R. E-Volve: understanding the impact of mutations in SARS-CoV-2 variants spike protein on antibodies and ACE2 affinity through patterns of chemical interactions at protein interfaces. PeerJ 2022;10:e13099. [PMID: 35341044 DOI: 10.7717/peerj.13099] [Reference Citation Analysis]
478 Rahman MM, Masum MHU, Wajed S, Talukder A. A comprehensive review on COVID-19 vaccines: development, effectiveness, adverse effects, distribution and challenges. VirusDis . [DOI: 10.1007/s13337-022-00755-1] [Reference Citation Analysis]
479 Hati S, Bhattacharyya S. Impact of Thiol-Disulfide Balance on the Binding of Covid-19 Spike Protein with Angiotensin-Converting Enzyme 2 Receptor. ACS Omega 2020;5:16292-8. [PMID: 32656452 DOI: 10.1021/acsomega.0c02125] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 22.0] [Reference Citation Analysis]
480 Custódio TF, Das H, Sheward DJ, Hanke L, Pazicky S, Pieprzyk J, Sorgenfrei M, Schroer MA, Gruzinov AY, Jeffries CM, Graewert MA, Svergun DI, Dobrev N, Remans K, Seeger MA, McInerney GM, Murrell B, Hällberg BM, Löw C. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nat Commun 2020;11:5588. [PMID: 33149112 DOI: 10.1038/s41467-020-19204-y] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 20.5] [Reference Citation Analysis]
481 Calcagnile M, Forgez P, Iannelli A, Bucci C, Alifano M, Alifano P. Molecular docking simulation reveals ACE2 polymorphisms that may increase the affinity of ACE2 with the SARS-CoV-2 Spike protein. Biochimie 2021;180:143-8. [PMID: 33181224 DOI: 10.1016/j.biochi.2020.11.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
482 Shah M, Ahmad B, Choi S, Woo HG. Mutations in the SARS-CoV-2 spike RBD are responsible for stronger ACE2 binding and poor anti-SARS-CoV mAbs cross-neutralization. Comput Struct Biotechnol J. 2020;18:3402-3414. [PMID: 33200028 DOI: 10.1016/j.csbj.2020.11.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
483 Dharmadhikari T, Yadav R, Dastager S, Dharne M. Translating SARS-CoV-2 wastewater-based epidemiology for prioritizing mass vaccination: a strategic overview. Environ Sci Pollut Res Int 2021;28:42975-80. [PMID: 34212322 DOI: 10.1007/s11356-021-15169-7] [Reference Citation Analysis]
484 Verkhivker GM, Agajanian S, Oztas DY, Gupta G. Atomistic Simulations and In Silico Mutational Profiling of Protein Stability and Binding in the SARS-CoV-2 Spike Protein Complexes with Nanobodies: Molecular Determinants of Mutational Escape Mechanisms. ACS Omega 2021;6:26354-71. [PMID: 34660995 DOI: 10.1021/acsomega.1c03558] [Reference Citation Analysis]
485 Mei M, Tan X. Current Strategies of Antiviral Drug Discovery for COVID-19. Front Mol Biosci 2021;8:671263. [PMID: 34055887 DOI: 10.3389/fmolb.2021.671263] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
486 Kim S, Liu Y, Lei Z, Dicker J, Cao Y, Zhang XF, Im W. Differential Interactions Between Human ACE2 and Spike RBD of SARS-CoV-2 Variants of Concern. bioRxiv 2021:2021. [PMID: 34341794 DOI: 10.1101/2021.07.23.453598] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
487 Yang X, Liu L, Hao Y, So E, Emami SS, Zhang D, Gong Y, Sheth PM, Wang Y. A Bioluminescent Biosensor for Quantifying the Interaction of SARS-CoV-2 and Its Receptor ACE2 in Cells and In Vitro. Viruses 2021;13:1055. [PMID: 34199601 DOI: 10.3390/v13061055] [Reference Citation Analysis]
488 Razi O, Tartibian B, Laher I, Govindasamy K, Zamani N, Rocha-rodrigues S, Suzuki K, Zouhal H. Multimodal Benefits of Exercise in Patients With Multiple Sclerosis and COVID-19. Front Physiol 2022;13:783251. [DOI: 10.3389/fphys.2022.783251] [Reference Citation Analysis]
489 Teng S, Sobitan A, Rhoades R, Liu D, Tang Q. Systemic effects of missense mutations on SARS-CoV-2 spike glycoprotein stability and receptor-binding affinity. Brief Bioinform 2021;22:1239-53. [PMID: 33006605 DOI: 10.1093/bib/bbaa233] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 15.0] [Reference Citation Analysis]
490 Zhong J, Rösch EL, Viereck T, Schilling M, Ludwig F. Toward Rapid and Sensitive Detection of SARS-CoV-2 with Functionalized Magnetic Nanoparticles. ACS Sens 2021;6:976-84. [PMID: 33496572 DOI: 10.1021/acssensors.0c02160] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 11.0] [Reference Citation Analysis]
491 Gavor E, Choong YK, Er SY, Sivaraman H, Sivaraman J. Structural Basis of SARS-CoV-2 and SARS-CoV Antibody Interactions. Trends Immunol 2020;41:1006-22. [PMID: 33041212 DOI: 10.1016/j.it.2020.09.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 13.0] [Reference Citation Analysis]
492 Giofrè SV, Napoli E, Iraci N, Speciale A, Cimino F, Muscarà C, Molonia MS, Ruberto G, Saija A. Interaction of selected terpenoids with two SARS-CoV-2 key therapeutic targets: An in silico study through molecular docking and dynamics simulations. Comput Biol Med 2021;134:104538. [PMID: 34116362 DOI: 10.1016/j.compbiomed.2021.104538] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
493 Iannarella R, Lattanzi C, Cannata G, Argentiero A, Neglia C, Fainardi V, Pisi G, Esposito S. Coronavirus infections in children: from SARS and MERS to COVID-19, a narrative review of epidemiological and clinical features. Acta Biomed 2020;91:e2020032. [PMID: 32921726 DOI: 10.23750/abm.v91i3.10294] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
494 Davidson AM, Wysocki J, Batlle D. Interaction of SARS-CoV-2 and Other Coronavirus With ACE (Angiotensin-Converting Enzyme)-2 as Their Main Receptor: Therapeutic Implications. Hypertension 2020;76:1339-49. [PMID: 32851855 DOI: 10.1161/HYPERTENSIONAHA.120.15256] [Cited by in Crossref: 51] [Cited by in F6Publishing: 32] [Article Influence: 25.5] [Reference Citation Analysis]
495 [DOI: 10.1101/2020.09.04.282558] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
496 Akisawa K, Hatada R, Okuwaki K, Mochizuki Y, Fukuzawa K, Komeiji Y, Tanaka S. Interaction analyses of SARS-CoV-2 spike protein based on fragment molecular orbital calculations. RSC Adv 2021;11:3272-9. [DOI: 10.1039/d0ra09555a] [Cited by in Crossref: 9] [Article Influence: 9.0] [Reference Citation Analysis]
497 Oliva R, Shaikh AR, Petta A, Vangone A, Cavallo L. D936Y and Other Mutations in the Fusion Core of the SARS-CoV-2 Spike Protein Heptad Repeat 1: Frequency, Geographical Distribution, and Structural Effect. Molecules 2021;26:2622. [PMID: 33946306 DOI: 10.3390/molecules26092622] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
498 Jung F, Krüger-Genge A, Franke RP, Hufert F, Küpper JH. COVID-19 and the endothelium. Clin Hemorheol Microcirc 2020;75:7-11. [PMID: 32568187 DOI: 10.3233/CH-209007] [Cited by in Crossref: 35] [Cited by in F6Publishing: 17] [Article Influence: 17.5] [Reference Citation Analysis]
499 Gao R, Zu W, Liu Y, Li J, Li Z, Wen Y, Wang H, Yuan J, Cheng L, Zhang S, Zhang Y, Zhang S, Liu W, Lan X, Liu L, Li F, Zhang Z. Quasispecies of SARS-CoV-2 revealed by single nucleotide polymorphisms (SNPs) analysis. Virulence 2021;12:1209-26. [PMID: 34030593 DOI: 10.1080/21505594.2021.1911477] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
500 Chakraborty S. Evolutionary and structural analysis elucidates mutations on SARS-CoV2 spike protein with altered human ACE2 binding affinity. Biochem Biophys Res Commun 2021;534:374-80. [PMID: 33272568 DOI: 10.1016/j.bbrc.2020.11.075] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
501 Haghani M, Varamini P. Temporal evolution, most influential studies and sleeping beauties of the coronavirus literature. Scientometrics 2021;:1-46. [PMID: 34188334 DOI: 10.1007/s11192-021-04036-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
502 Nathan N, Prevost B, Sileo C, Richard N, Berdah L, Thouvenin G, Aubertin G, Lecarpentier T, Schnuriger A, Jegard J, Guellec I, Taytard J, Corvol H. The Wide Spectrum of COVID-19 Clinical Presentation in Children. J Clin Med 2020;9:E2950. [PMID: 32932612 DOI: 10.3390/jcm9092950] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
503 Ferreira G, Santander A, Savio F, Guirado M, Sobrevia L, Nicolson GL. SARS-CoV-2, Zika viruses and mycoplasma: Structure, pathogenesis and some treatment options in these emerging viral and bacterial infectious diseases. Biochim Biophys Acta Mol Basis Dis 2021;1867:166264. [PMID: 34481867 DOI: 10.1016/j.bbadis.2021.166264] [Reference Citation Analysis]
504 Aliee H, Massip F, Qi C, Stella de Biase M, van Nijnatten JL, Kersten ETG, Kermani NZ, Khuder B, Vonk JM, Vermeulen RCH, Neighbors M, Tew GW, Grimbaldeston M, Ten Hacken NHT, Hu S, Guo Y, Zhang X, Sun K, Hiemstra PS, Ponder BA, Makela MJ, Malmstrom K, Rintoul RC, Reyfman PA, Theis FJ, Brandsma CA, Adcock I, Timens W, Xu CJ, van den Berge M, Schwarz RF, Koppelman GH, Nawijn MC, Faiz A. Determinants of SARS-CoV-2 receptor gene expression in upper and lower airways. medRxiv 2020:2020. [PMID: 32909007 DOI: 10.1101/2020.08.31.20169946] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
505 Kalashnyk O, Lykhmus O, Izmailov M, Koval L, Komisarenko S, Skok M. SARS-Cov-2 spike protein fragment 674-685 protects mitochondria from releasing cytochrome c in response to apoptogenic influence. Biochem Biophys Res Commun 2021;561:14-8. [PMID: 34000512 DOI: 10.1016/j.bbrc.2021.05.018] [Reference Citation Analysis]
506 Srivastav AK, Jaiswal J, Kumar U. In silico bioprospecting of antiviral compounds from marine fungi and mushroom for rapid development of nutraceuticals against SARS-CoV-2. J Biomol Struct Dyn 2021;:1-12. [PMID: 34971338 DOI: 10.1080/07391102.2021.2023048] [Reference Citation Analysis]
507 Morens DM, Taubenberger JK, Fauci AS. A Centenary Tale of Two Pandemics: The 1918 Influenza Pandemic and COVID-19, Part I. Am J Public Health 2021;111:1086-94. [PMID: 33950739 DOI: 10.2105/AJPH.2021.306310] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
508 Roy C, Mandal SM, Mondal SK, Mukherjee S, Mapder T, Ghosh W, Chakraborty R. Trends of mutation accumulation across global SARS-CoV-2 genomes: Implications for the evolution of the novel coronavirus. Genomics 2020;112:5331-42. [PMID: 33161087 DOI: 10.1016/j.ygeno.2020.11.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
509 Wei R, Zhou B, Li S, Zhong D, Li B, Qin J, Zhao L, Qin L, Hu J, Wang J, Yang S, Zhao J, Meng S. Plasma gp96 is a Novel Predictive Biomarker for Severe COVID-19. Microbiol Spectr 2021;9:e0059721. [PMID: 34817280 DOI: 10.1128/Spectrum.00597-21] [Reference Citation Analysis]
510 Celik I, Erol M, Duzgun Z. In silico evaluation of potential inhibitory activity of remdesivir, favipiravir, ribavirin and galidesivir active forms on SARS-CoV-2 RNA polymerase. Mol Divers 2021. [PMID: 33765239 DOI: 10.1007/s11030-021-10215-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
511 Russell RL, Pelka P, Mark BL. Frontrunners in the race to develop a SARS-CoV-2 vaccine. Can J Microbiol 2021;67:189-212. [PMID: 33264067 DOI: 10.1139/cjm-2020-0465] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
512 Mobini S, Chizari M, Mafakher L, Rismani E, Rismani E. Structure-based study of immune receptors as eligible binding targets of coronavirus SARS-CoV-2 spike protein. J Mol Graph Model 2021;108:107997. [PMID: 34343818 DOI: 10.1016/j.jmgm.2021.107997] [Reference Citation Analysis]
513 Sung HD, Kim N, Lee Y, Lee EJ. Protein-Based Nanoparticle Vaccines for SARS-CoV-2. Int J Mol Sci 2021;22:13445. [PMID: 34948241 DOI: 10.3390/ijms222413445] [Reference Citation Analysis]
514 Ghorbani M, Brooks BR, Klauda JB. Exploring dynamics and network analysis of spike glycoprotein of SARS-COV-2. Biophys J 2021;120:2902-13. [PMID: 33705760 DOI: 10.1016/j.bpj.2021.02.047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
515 Yesudhas D, Srivastava A, Gromiha MM. COVID-19 outbreak: history, mechanism, transmission, structural studies and therapeutics. Infection 2021;49:199-213. [PMID: 32886331 DOI: 10.1007/s15010-020-01516-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
516 Moutal A, Martin LF, Boinon L, Gomez K, Ran D, Zhou Y, Stratton HJ, Cai S, Luo S, Gonzalez KB, Perez-Miller S, Patwardhan A, Ibrahim MM, Khanna R. SARS-CoV-2 spike protein co-opts VEGF-A/neuropilin-1 receptor signaling to induce analgesia. Pain 2021;162:243-52. [PMID: 33009246 DOI: 10.1097/j.pain.0000000000002097] [Cited by in Crossref: 28] [Cited by in F6Publishing: 34] [Article Influence: 14.0] [Reference Citation Analysis]
517 Natarajan P, Kanchi M, Gunaseelan V, Sigamani A, Harmon J, Belani K. Coronavirus and Homo Sapiens. Journal of Cardiac Critical Care TSS. [DOI: 10.1055/s-0040-1716634] [Reference Citation Analysis]
518 Guimond SE, Mycroft-west CJ, Gandhi NS, Tree JA, Le TT, Spalluto CM, Humbert MV, Buttigieg KR, Coombes N, Elmore MJ, Wand M, Nyström K, Said J, Setoh YX, Amarilla AA, Modhiran N, Sng JDJ, Chhabra M, Young PR, Rawle DJ, Lima MA, Yates EA, Karlsson R, Miller RL, Chen Y, Bagdonaite I, Yang Z, Stewart J, Nguyen D, Laidlaw S, Hammond E, Dredge K, Wilkinson TMA, Watterson D, Khromykh AA, Suhrbier A, Carroll MW, Trybala E, Bergström T, Ferro V, Skidmore MA, Turnbull JE. Synthetic Heparan Sulfate Mimetic Pixatimod (PG545) Potently Inhibits SARS-CoV-2 by Disrupting the Spike–ACE2 Interaction. ACS Cent Sci . [DOI: 10.1021/acscentsci.1c01293] [Reference Citation Analysis]
519 Wirnsberger G, Monteil V, Eaton B, Postnikova E, Murphy M, Braunsfeld B, Crozier I, Kricek F, Niederhöfer J, Schwarzböck A, Breid H, Sanchez Jimenez A, Bugajska-Schretter A, Dohnal A, Ruf C, Gugenberger R, Hagelkruys A, Montserrat N, Holbrook MR, Oostenbrink C, Shoemaker RH, Mirazimi A, Penninger JM. Clinical grade ACE2 as a universal agent to block SARS-CoV-2 variants. bioRxiv 2021:2021. [PMID: 34545368 DOI: 10.1101/2021.09.10.459744] [Reference Citation Analysis]
520 Sallard E, Halloy J, Casane D, van Helden J, Decroly É. [Tracing the origins of SARS-COV-2 in coronavirus phylogenies]. Med Sci (Paris) 2020;36:783-96. [PMID: 32773024 DOI: 10.1051/medsci/2020123] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
521 Kanimozhi G, Pradhapsingh B, Singh Pawar C, Khan HA, Alrokayan SH, Prasad NR. SARS-CoV-2: Pathogenesis, Molecular Targets and Experimental Models. Front Pharmacol 2021;12:638334. [PMID: 33967772 DOI: 10.3389/fphar.2021.638334] [Reference Citation Analysis]
522 Guo L, Yao Z, Yang L, Zhang H, Qi Y, Gou L, Xi W, Liu D, Zhang L, Cheng Y, Wang X, Rong M, Chen H, Kong MG. Plasma-activated water: An alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection. Chem Eng J 2021;421:127742. [PMID: 33235538 DOI: 10.1016/j.cej.2020.127742] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
523 Dakal TC. Antigenic sites in SARS-CoV-2 spike RBD show molecular similarity with pathogenic antigenic determinants and harbors peptides for vaccine development. Immunobiology 2021;226:152091. [PMID: 34303920 DOI: 10.1016/j.imbio.2021.152091] [Reference Citation Analysis]
524 Conceicao C, Thakur N, Human S, Kelly JT, Logan L, Bialy D, Bhat S, Stevenson-Leggett P, Zagrajek AK, Hollinghurst P, Varga M, Tsirigoti C, Tully M, Chiu C, Moffat K, Silesian AP, Hammond JA, Maier HJ, Bickerton E, Shelton H, Dietrich I, Graham SC, Bailey D. The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol 2020;18:e3001016. [PMID: 33347434 DOI: 10.1371/journal.pbio.3001016] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 23.5] [Reference Citation Analysis]
525 Behloul N, Baha S, Guo Y, Yang Z, Shi R, Meng J. In silico identification of strong binders of the SARS-CoV-2 receptor-binding domain. Eur J Pharmacol 2021;890:173701. [PMID: 33130279 DOI: 10.1016/j.ejphar.2020.173701] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
526 Ahmad J, Jiang J, Boyd LF, Zeher A, Huang R, Xia D, Natarajan K, Margulies DH. Structures of synthetic nanobody-SARS-CoV-2 receptor-binding domain complexes reveal distinct sites of interaction. J Biol Chem 2021;297:101202. [PMID: 34537245 DOI: 10.1016/j.jbc.2021.101202] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
527 Achar A, Ghosh C. COVID-19-Associated Neurological Disorders: The Potential Route of CNS Invasion and Blood-Brain Relevance. Cells 2020;9:E2360. [PMID: 33120941 DOI: 10.3390/cells9112360] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
528 Javed B. Bioactive Virus-Mimicking Nanovesicles From Dendrimersomes: A Novel Approach to Understanding SARS-CoV-2 Host-Interactions to Better Design Therapeutics. Front Mol Biosci 2020;7:188. [PMID: 32974384 DOI: 10.3389/fmolb.2020.00188] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
529 Sanches PRS, Charlie-Silva I, Braz HLB, Bittar C, Freitas Calmon M, Rahal P, Cilli EM. Recent advances in SARS-CoV-2 Spike protein and RBD mutations comparison between new variants Alpha (B.1.1.7, United Kingdom), Beta (B.1.351, South Africa), Gamma (P.1, Brazil) and Delta (B.1.617.2, India). J Virus Erad 2021;7:100054. [PMID: 34548928 DOI: 10.1016/j.jve.2021.100054] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
530 Liu D, Wu F, Cen Y, Ye L, Shi X, Huang Y, Fang S, Ma L. Comparative research on nucleocapsid and spike glycoprotein as the rapid immunodetection targets of COVID-19 and establishment of immunoassay strips. Mol Immunol 2021;131:6-12. [PMID: 33450670 DOI: 10.1016/j.molimm.2021.01.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
531 Ahsan MA, Liu Y, Feng C, Zhou Y, Ma G, Bai Y, Chen M. Bioinformatics resources facilitate understanding and harnessing clinical research of SARS-CoV-2. Brief Bioinform 2021;22:714-25. [PMID: 33432321 DOI: 10.1093/bib/bbaa416] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
532 Yang Q, Hughes TA, Kelkar A, Yu X, Cheng K, Park S, Huang WC, Lovell JF, Neelamegham S. Inhibition of SARS-CoV-2 viral entry upon blocking N- and O-glycan elaboration. Elife 2020;9:e61552. [PMID: 33103998 DOI: 10.7554/eLife.61552] [Cited by in Crossref: 43] [Cited by in F6Publishing: 24] [Article Influence: 21.5] [Reference Citation Analysis]
533 Attri P, Koga K, Shiratani M. Possible impact of plasma oxidation on the structure of the C-terminal domain of SARS-CoV-2 spike protein: a computational study. Appl Phys Express 2021;14:027002. [DOI: 10.35848/1882-0786/abd717] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
534 Soares CD, Mosqueda-Taylor A, Hernandez-Guerrero JC, de Carvalho MGF, de Almeida OP. Immunohistochemical expression of angiotensin-converting enzyme 2 in minor salivary glands during SARS-CoV-2 infection. J Med Virol 2021;93:1905-6. [PMID: 33300137 DOI: 10.1002/jmv.26723] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
535 Sarkar N, Thakur A, Ghadge J, Rath SL. Computational studies reveal Fluorine based quinolines to be potent inhibitors for proteins involved in SARS-CoV-2 assembly. J Fluor Chem 2021;250:109865. [PMID: 34393265 DOI: 10.1016/j.jfluchem.2021.109865] [Reference Citation Analysis]
536 Saied EM, El-Maradny YA, Osman AA, Darwish AMG, Abo Nahas HH, Niedbała G, Piekutowska M, Abdel-Rahman MA, Balbool BA, Abdel-Azeem AM. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Pharmaceutics 2021;13:1759. [PMID: 34834174 DOI: 10.3390/pharmaceutics13111759] [Reference Citation Analysis]
537 Feng Q, Li L, Wang X. Identifying Pathways and Networks Associated With the SARS-CoV-2 Cell Receptor ACE2 Based on Gene Expression Profiles in Normal and SARS-CoV-2-Infected Human Tissues. Front Mol Biosci 2020;7:568954. [PMID: 33195414 DOI: 10.3389/fmolb.2020.568954] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
538 Walls AC, Miranda MC, Schäfer A, Pham MN, Greaney A, Arunachalam PS, Navarro MJ, Tortorici MA, Rogers K, O'Connor MA, Shirreff L, Ferrell DE, Bowen J, Brunette N, Kepl E, Zepeda SK, Starr T, Hsieh CL, Fiala B, Wrenn S, Pettie D, Sydeman C, Sprouse KR, Johnson M, Blackstone A, Ravichandran R, Ogohara C, Carter L, Tilles SW, Rappuoli R, Leist SR, Martinez DR, Clark M, Tisch R, O'Hagan DT, Van Der Most R, Van Voorhis WC, Corti D, McLellan JS, Kleanthous H, Sheahan TP, Smith KD, Fuller DH, Villinger F, Bloom J, Pulendran B, Baric RS, King NP, Veesler D. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell 2021;184:5432-5447.e16. [PMID: 34619077 DOI: 10.1016/j.cell.2021.09.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
539 Kaur A, Chopra M, Bhushan M, Gupta S, Kumari P H, Sivagurunathan N, Shukla N, Rajagopal S, Bhalothia P, Sharma P, Naravula J, Suravajhala R, Gupta A, Abbasi BA, Goswami P, Singh H, Narang R, Polavarapu R, Medicherla KM, Valadi J, Kumar S A, Chaubey G, Singh KK, Bandapalli OR, Kavi Kishor PB, Suravajhala P. The Omic Insights on Unfolding Saga of COVID-19. Front Immunol 2021;12:724914. [PMID: 34745097 DOI: 10.3389/fimmu.2021.724914] [Reference Citation Analysis]
540 Kim JK, Ryu SW, Kim JS, Jung BK. Performance evaluation of four rapid antibody tests for the detection of severe acute respiratory syndrome coronavirus 2. J Clin Lab Anal 2022;:e24374. [PMID: 35446996 DOI: 10.1002/jcla.24374] [Reference Citation Analysis]
541 Shah S, Chougule MB, Kotha AK, Kashikar R, Godugu C, Raghuvanshi RS, Singh SB, Srivastava S. Nanomedicine based approaches for combating viral infections. J Control Release 2021;338:80-104. [PMID: 34375690 DOI: 10.1016/j.jconrel.2021.08.011] [Reference Citation Analysis]
542 Ahmad T, Chaudhuri R, Joshi MC, Almatroudi A, Rahmani AH, Ali SM. COVID-19: The Emerging Immunopathological Determinants for Recovery or Death. Front Microbiol 2020;11:588409. [PMID: 33335518 DOI: 10.3389/fmicb.2020.588409] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
543 Sekar PC, Rajasekaran R. Could Dermaseptin Analogue be a Competitive Inhibitor for ACE2 Towards Binding with Viral Spike Protein Causing COVID19?: Computational Investigation. Int J Pept Res Ther 2021;:1-14. [PMID: 33488318 DOI: 10.1007/s10989-020-10149-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
544 Nie J, Li Q, Zhang L, Cao Y, Zhang Y, Li T, Wu J, Liu S, Zhang M, Zhao C, Liu H, Nie L, Qin H, Wang M, Lu Q, Li X, Liu J, Liang H, Jiang T, Duan K, Yang X, Shen Y, Huang W, Wang Y. Functional comparison of SARS-CoV-2 with closely related pangolin and bat coronaviruses. Cell Discov 2021;7:21. [PMID: 33824288 DOI: 10.1038/s41421-021-00256-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
545 Rajendaran S, Jothi A, Anbazhagan V. Targeting the glycan of receptor binding domain with jacalin as a novel approach to develop a treatment against COVID-19. R Soc Open Sci 2020;7:200844. [PMID: 33047045 DOI: 10.1098/rsos.200844] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
546 Tristán-Flores FE, Casique-Aguirre D, Pliego-Arreaga R, Cervantes-Montelongo JA, García-Gutierrez P, Acosta-García G, Silva-Martínez GA. Identification of potential inhibitors of SARS-CoV-2 S protein-ACE2 interaction by in silico drug repurposing. F1000Res 2021;10:Chem Inf Sci-358. [PMID: 34900223 DOI: 10.12688/f1000research.52168.2] [Reference Citation Analysis]
547 Di Sarno V, Lauro G, Musella S, Ciaglia T, Vestuto V, Sala M, Scala MC, Smaldone G, Di Matteo F, Novi S, Tecce MF, Moltedo O, Bifulco G, Campiglia P, Gomez-Monterrey IM, Snoeck R, Andrei G, Ostacolo C, Bertamino A. Identification of a dual acting SARS-CoV-2 proteases inhibitor through in silico design and step-by-step biological characterization. Eur J Med Chem 2021;226:113863. [PMID: 34571172 DOI: 10.1016/j.ejmech.2021.113863] [Reference Citation Analysis]
548 Barker H, Parkkila S. Bioinformatic characterization of angiotensin-converting enzyme 2, the entry receptor for SARS-CoV-2. PLoS One 2020;15:e0240647. [PMID: 33112891 DOI: 10.1371/journal.pone.0240647] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
549 Rapp M, Guo Y, Reddem ER, Yu J, Liu L, Wang P, Cerutti G, Katsamba P, Bimela JS, Bahna FA, Mannepalli SM, Zhang B, Kwong PD, Huang Y, Ho DD, Shapiro L, Sheng Z. Modular basis for potent SARS-CoV-2 neutralization by a prevalent VH1-2-derived antibody class. Cell Rep 2021;35:108950. [PMID: 33794145 DOI: 10.1016/j.celrep.2021.108950] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
550 Al-Benna S. Gene Expression of Angiotensin-Converting Enzyme 2 Receptor in Skin and the Implications for COVID-19. Adv Skin Wound Care 2021;34:31-5. [PMID: 33323800 DOI: 10.1097/01.ASW.0000722748.73437.7d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
551 Peng J, Sun J, Zhao J, Deng X, Guo F, Chen L. Age and gender differences in ACE2 and TMPRSS2 expressions in oral epithelial cells. J Transl Med 2021;19:358. [PMID: 34412632 DOI: 10.1186/s12967-021-03037-4] [Reference Citation Analysis]
552 Villena J, Li C, Vizoso-Pinto MG, Sacur J, Ren L, Kitazawa H. Lactiplantibacillus plantarum as a Potential Adjuvant and Delivery System for the Development of SARS-CoV-2 Oral Vaccines. Microorganisms 2021;9:683. [PMID: 33810287 DOI: 10.3390/microorganisms9040683] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
553 Sun Y, Lin W, Dong W, Xu J. Origin and evolutionary analysis of the SARS-CoV-2 Omicron variant. J Biosaf Biosecur 2022;4:33-7. [PMID: 35005525 DOI: 10.1016/j.jobb.2021.12.001] [Reference Citation Analysis]
554 Groves DC, Rowland-Jones SL, Angyal A. The D614G mutations in the SARS-CoV-2 spike protein: Implications for viral infectivity, disease severity and vaccine design. Biochem Biophys Res Commun 2021;538:104-7. [PMID: 33199022 DOI: 10.1016/j.bbrc.2020.10.109] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
555 Shah RB, Shah RD, Retzinger DG, Retzinger AC, Retzinger DA, Retzinger GS. Competing Bioaerosols May Influence the Seasonality of Influenza-Like Illnesses, including COVID-19. The Chicago Experience. Pathogens 2021;10:1204. [PMID: 34578237 DOI: 10.3390/pathogens10091204] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
556 Shin CH, Kim KH, Jeeva S, Kang SM. Towards Goals to Refine Prophylactic and Therapeutic Strategies Against COVID-19 Linked to Aging and Metabolic Syndrome. Cells 2021;10:1412. [PMID: 34204163 DOI: 10.3390/cells10061412] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
557 Omotuyi IO, Nash O, Ajiboye OB, Iwegbulam CG, Oyinloye EB, Oyedeji OA, Kashim ZA, Okaiyeto K. Atomistic simulation reveals structural mechanisms underlying D614G spike glycoprotein-enhanced fitness in SARS-COV-2. J Comput Chem 2020;41:2158-61. [PMID: 32779780 DOI: 10.1002/jcc.26383] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 10.5] [Reference Citation Analysis]
558 Navya VB, Hosur MV. A computational study on hydroxychloroquine binding to target proteins related to SARS-COV-2 infection. Inform Med Unlocked 2021;26:100714. [PMID: 34458558 DOI: 10.1016/j.imu.2021.100714] [Reference Citation Analysis]
559 Chawla H, Fadda E, Crispin M. Principles of SARS-CoV-2 Glycosylation. Current Opinion in Structural Biology 2022. [DOI: 10.1016/j.sbi.2022.102402] [Reference Citation Analysis]
560 Ge J, Zhang S, Zhang L, Wang X. Structural basis of severe acute respiratory syndrome coronavirus 2 infection. Curr Opin HIV AIDS 2021;16:74-81. [PMID: 33186231 DOI: 10.1097/COH.0000000000000658] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
561 Chitsike L, Krstenansky J, Duerksen-Hughes PJ. ACE2 : S1 RBD Interaction-Targeted Peptides and Small Molecules as Potential COVID-19 Therapeutics. Adv Pharmacol Pharm Sci 2021;2021:1828792. [PMID: 34746794 DOI: 10.1155/2021/1828792] [Reference Citation Analysis]
562 Camargo SMR, Vuille-Dit-Bille RN, Meier CF, Verrey F. ACE2 and gut amino acid transport. Clin Sci (Lond). 2020;134:2823-2833. [PMID: 33140827 DOI: 10.1042/cs20200477] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
563 Zhou T, Tsybovsky Y, Gorman J, Rapp M, Cerutti G, Chuang GY, Katsamba PS, Sampson JM, Schön A, Bimela J, Boyington JC, Nazzari A, Olia AS, Shi W, Sastry M, Stephens T, Stuckey J, Teng IT, Wang P, Wang S, Zhang B, Friesner RA, Ho DD, Mascola JR, Shapiro L, Kwong PD. Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host Microbe 2020;28:867-879.e5. [PMID: 33271067 DOI: 10.1016/j.chom.2020.11.004] [Cited by in Crossref: 100] [Cited by in F6Publishing: 76] [Article Influence: 50.0] [Reference Citation Analysis]
564 van Oosten L, Altenburg JJ, Fougeroux C, Geertsema C, van den End F, Evers WAC, Westphal AH, Lindhoud S, van den Berg W, Swarts DC, Deurhof L, Suhrbier A, Le TT, Torres Morales S, Myeni SK, Kikkert M, Sander AF, de Jongh WA, Dagil R, Nielsen MA, Salanti A, Søgaard M, Keijzer TMP, Weijers D, Eppink MHM, Wijffels RH, van Oers MM, Martens DE, Pijlman GP. Two-Component Nanoparticle Vaccine Displaying Glycosylated Spike S1 Domain Induces Neutralizing Antibody Response against SARS-CoV-2 Variants. mBio 2021;12:e0181321. [PMID: 34634927 DOI: 10.1128/mBio.01813-21] [Reference Citation Analysis]
565 Ng KT, Mohd-Ismail NK, Tan YJ. Spike S2 Subunit: The Dark Horse in the Race for Prophylactic and Therapeutic Interventions against SARS-CoV-2. Vaccines (Basel) 2021;9:178. [PMID: 33672450 DOI: 10.3390/vaccines9020178] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
566 Maiti AK. Evolutionary Shift from Purifying Selection towards Divergent Selection of SARS-CoV2 Favors its Invasion into Multiple Human Organs. Virus Res 2022;:198712. [PMID: 35176330 DOI: 10.1016/j.virusres.2022.198712] [Reference Citation Analysis]
567 Wierbowski SD, Liang S, Liu Y, Chen Y, Gupta S, Andre NM, Lipkin SM, Whittaker GR, Yu H. A 3D structural SARS-CoV-2-human interactome to explore genetic and drug perturbations. Nat Methods 2021;18:1477-88. [PMID: 34845387 DOI: 10.1038/s41592-021-01318-w] [Reference Citation Analysis]
568 Mehdi F, Chattopadhyay S, Thiruvengadam R, Yadav S, Kumar M, Sinha SK, Goswami S, Kshetrapal P, Wadhwa N, Chandramouli Natchu U, Sopory S, Koundinya Desiraju B, Pandey AK, Das A, Verma N, Sharma N, Sharma P, Bhartia V, Gosain M, Lodha R, Lamminmäki U, Shrivastava T, Bhatnagar S, Batra G. Development of a Fast SARS-CoV-2 IgG ELISA, Based on Receptor-Binding Domain, and Its Comparative Evaluation Using Temporally Segregated Samples From RT-PCR Positive Individuals. Front Microbiol 2020;11:618097. [PMID: 33552028 DOI: 10.3389/fmicb.2020.618097] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
569 Ding Z, Chen T, Lan J, Wong G. Application of animal models to compare and contrast the virulence of current and future potential SARS-CoV-2 variants. Biosaf Health 2022. [PMID: 35528630 DOI: 10.1016/j.bsheal.2022.05.001] [Reference Citation Analysis]
570 [DOI: 10.1101/2020.05.12.088716] [Cited by in Crossref: 43] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
571 Silva Andrade B, Ghosh P, Barh D, Tiwari S, José Santana Silva R, Rodrigues de Assis Soares W, Silva Melo T, Santos Freitas A, González-Grande P, Sousa Palmeira L, Carlos Junior Alcantara L, Giovanetti M, Góes-Neto A, Ariston de Carvalho Azevedo V. Computational screening for potential drug candidates against the SARS-CoV-2 main protease. F1000Res 2020;9:ISCB Comm J-514. [PMID: 33447372 DOI: 10.12688/f1000research.23829.2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
572 Fulford TS, Van H, Gherardin NA, Zheng S, Ciula M, Drummer HE, Redmond S, Tan HX, Boo I, Center RJ, Li F, Grimley SL, Wines BD, Nguyen THO, Mordant FL, Ellenberg P, Rowntree LC, Kedzierski L, Cheng AC, Doolan DL, Matthews G, Bond K, Hogarth PM, McQuilten Z, Subbarao K, Kedzierska K, Juno JA, Wheatley AK, Kent SJ, Williamson DA, Purcell DFJ, Anderson DA, Godfrey DI. A point-of-care lateral flow assay for neutralising antibodies against SARS-CoV-2. EBioMedicine 2021;74:103729. [PMID: 34871960 DOI: 10.1016/j.ebiom.2021.103729] [Reference Citation Analysis]
573 Sun J, Liu Q, Zhang X, Dun S, Liu L. Mitochondrial hijacking: a potential mechanism for SARS-CoV-2 to impair female fertility. Medical Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110778] [Reference Citation Analysis]
574 Ahsan W, Alhazmi HA, Patel KS, Mangla B, Al Bratty M, Javed S, Najmi A, Sultan MH, Makeen HA, Khalid A, Mohan S, Taha MME, Sultana S. Recent Advancements in the Diagnosis, Prevention, and Prospective Drug Therapy of COVID-19. Front Public Health 2020;8:384. [PMID: 32754570 DOI: 10.3389/fpubh.2020.00384] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
575 Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front Cell Infect Microbiol. 2020;10:587269. [PMID: 33324574 DOI: 10.3389/fcimb.2020.587269] [Cited by in Crossref: 55] [Cited by in F6Publishing: 67] [Article Influence: 27.5] [Reference Citation Analysis]
576 Lukose J, M SP, N M, Barik AK, Pai KM, Unnikrishnan VK, George SD, Kartha VB, Chidangil S. Photonics of human saliva: potential optical methods for the screening of abnormal health conditions and infections. Biophys Rev 2021;:1-27. [PMID: 34093888 DOI: 10.1007/s12551-021-00807-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
577 Chen Y, Huang D, Yuan W, Chang J, Yuan Z, Wu D, Han M, Luo X, Ning Q, Yan W. Lower Serum Angiotensin-Converting Enzyme Level in Relation to Hyperinflammation and Impaired Antiviral Immune Response Contributes to Progression of COVID-19 Infection. Infect Dis Ther 2021. [PMID: 34387835 DOI: 10.1007/s40121-021-00513-8] [Reference Citation Analysis]
578 Zhang D, Hamdoun S, Chen R, Yang L, Ip CK, Qu Y, Li R, Jiang H, Yang Z, Chung SK, Liu L, Wong VKW. Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry. Pharmacol Res 2021;172:105820. [PMID: 34403732 DOI: 10.1016/j.phrs.2021.105820] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
579 Ponga M. Quantifying the adhesive strength between the SARS-CoV-2 S-proteins and human receptor and its effect in therapeutics. Sci Rep 2020;10:17538. [PMID: 33067518 DOI: 10.1038/s41598-020-74189-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
580 Lin Z, Qing H, Li R, Zheng L, Yao H. Evolution trace of SARS-CoV-2 from January 19 to March 12, 2020, in the United States. J Med Virol 2021. [PMID: 34292617 DOI: 10.1002/jmv.27225] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
581 Pramanick I, Sengupta N, Mishra S, Pandey S, Girish N, Das A, Dutta S. Conformational flexibility and structural variability of SARS-CoV2 S protein. Structure 2021;29:834-845.e5. [PMID: 33932324 DOI: 10.1016/j.str.2021.04.006] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
582 Andrew M, Jayaraman G. Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19). Carbohydr Res 2021;505:108326. [PMID: 34015720 DOI: 10.1016/j.carres.2021.108326] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
583 Du Y, Shi R, Zhang Y, Duan X, Li L, Zhang J, Wang F, Zhang R, Shen H, Wang Y, Wu Z, Peng Q, Pan T, Sun W, Huang W, Feng Y, Feng H, Xiao J, Tan W, Wang Y, Wang C, Yan J. A broadly neutralizing humanized ACE2-targeting antibody against SARS-CoV-2 variants. Nat Commun 2021;12:5000. [PMID: 34404805 DOI: 10.1038/s41467-021-25331-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
584 Dwivedi R, Samanta P, Sharma P, Zhang F, Mishra SK, Kucheryavy P, Kim SB, Aderibigbe AO, Linhardt RJ, Tandon R, Doerksen RJ, Pomin VH. Structural and kinetic analyses of holothurian sulfated glycans suggest potential treatment for SARS-CoV-2 infection. J Biol Chem 2021;297:101207. [PMID: 34537241 DOI: 10.1016/j.jbc.2021.101207] [Reference Citation Analysis]
585 Alimoradi N, Sharqi M, Firouzabadi D, Sadeghi MM, Moezzi MI, Firouzabadi N. SNPs of ACE1 (rs4343) and ACE2 (rs2285666) genes are linked to SARS-CoV-2 infection but not with the severity of disease. Virol J 2022;19. [DOI: 10.1186/s12985-022-01782-6] [Reference Citation Analysis]
586 Khanna K, Raymond W, Jin J, Charbit AR, Gitlin I, Tang M, Werts AD, Barrett EG, Cox JM, Birch SM, Martinelli R, Sperber HS, Franz S, Pillai S, Healy AM, Duff T, Oscarson S, Hoffmann M, Pöhlmann S, Simmons G, Fahy JV. Thiol drugs decrease SARS-CoV-2 lung injury in vivo and disrupt SARS-CoV-2 spike complex binding to ACE2 in vitro. bioRxiv 2021:2020. [PMID: 33330868 DOI: 10.1101/2020.12.08.415505] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
587 Zhang Z, Li L, Li M, Wang X. The SARS-CoV-2 host cell receptor ACE2 correlates positively with immunotherapy response and is a potential protective factor for cancer progression. Comput Struct Biotechnol J. 2020;18:2438-2444. [PMID: 32905022 DOI: 10.1016/j.csbj.2020.08.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
588 Ahmad J, Jiang J, Boyd LF, Natarajan K, Margulies DH. Synthetic nanobody-SARS-CoV-2 receptor-binding domain structures identify distinct epitopes. bioRxiv 2021:2021. [PMID: 33532775 DOI: 10.1101/2021.01.27.428466] [Cited by in Crossref: 8] [Article Influence: 8.0] [Reference Citation Analysis]
589 Teng S, Tang Q. ACE2 enhance viral infection or viral infection aggravate the underlying diseases. Comput Struct Biotechnol J 2020;18:2100-6. [PMID: 32832038 DOI: 10.1016/j.csbj.2020.08.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
590 Bagheri M, Niavarani A. Molecular dynamics analysis predicts ritonavir and naloxegol strongly block the SARS-CoV-2 spike protein-hACE2 binding. Journal of Biomolecular Structure and Dynamics. [DOI: 10.1080/07391102.2020.1830854] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
591 Wang J, Guo C, Cai L, Liao C, Yi H, Li Q, Hu H, Deng Q, Lu Y, Guo Z, Chen Z, Lu J. Pre-Existing Cross-Reactive Antibody Responses Do Not Significantly Impact Inactivated COVID-19 Vaccine-Induced Neutralization. Front Immunol 2021;12:772511. [PMID: 34868035 DOI: 10.3389/fimmu.2021.772511] [Reference Citation Analysis]
592 Schoenle MV, Li Y, Yuan M, Clarkson MW, Wilson IA, Peti W, Page R. NMR Based SARS-CoV-2 Antibody Screening. J Am Chem Soc 2021;143:7930-4. [PMID: 34018723 DOI: 10.1021/jacs.1c03945] [Reference Citation Analysis]
593 Pontes C, Ruiz-Serra V, Lepore R, Valencia A. Unraveling the molecular basis of host cell receptor usage in SARS-CoV-2 and other human pathogenic β-CoVs. Comput Struct Biotechnol J 2021;19:759-66. [PMID: 33456724 DOI: 10.1016/j.csbj.2021.01.006] [Reference Citation Analysis]
594 Yadav M, Dhagat S, Eswari JS. Emerging strategies on in silico drug development against COVID-19: challenges and opportunities. Eur J Pharm Sci 2020;155:105522. [PMID: 32827661 DOI: 10.1016/j.ejps.2020.105522] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
595 Elshabrawy HA. SARS-CoV-2: An Update on Potential Antivirals in Light of SARS-CoV Antiviral Drug Discoveries. Vaccines (Basel) 2020;8:E335. [PMID: 32585913 DOI: 10.3390/vaccines8020335] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
596 Płonka W, Paneth A, Paneth P. Docking and QSAR of Aminothioureas at the SARS-CoV-2 S-Protein-Human ACE2 Receptor Interface. Molecules 2020;25:E4645. [PMID: 33053830 DOI: 10.3390/molecules25204645] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
597 Gross LZF, Sacerdoti M, Piiper A, Zeuzem S, Leroux AE, Biondi RM. ACE2, the Receptor that Enables Infection by SARS-CoV-2: Biochemistry, Structure, Allostery and Evaluation of the Potential Development of ACE2 Modulators. ChemMedChem 2020;15:1682-90. [PMID: 32663362 DOI: 10.1002/cmdc.202000368] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
598 Swain SS, Singh SR, Sahoo A, Hussain T, Pati S. Anti-HIV-drug and phyto-flavonoid combination against SARS-CoV-2: a molecular docking-simulation base assessment. J Biomol Struct Dyn 2021;:1-14. [PMID: 33583350 DOI: 10.1080/07391102.2021.1885495] [Reference Citation Analysis]
599 Yang Z, Wang Y, Jin Y, Zhu Y, Wu Y, Li C, Kong Y, Song W, Tian X, Zhan W, Huang A, Zhou S, Xia S, Tian X, Peng C, Chen C, Shi Y, Hu G, Du S, Wang Y, Xie Y, Jiang S, Lu L, Sun L, Song Y, Ying T. A non-ACE2 competing human single-domain antibody confers broad neutralization against SARS-CoV-2 and circulating variants. Signal Transduct Target Ther 2021;6:378. [PMID: 34732694 DOI: 10.1038/s41392-021-00810-1] [Reference Citation Analysis]
600 Bhattarai A, Pawnikar S, Miao Y. Mechanism of Ligand Recognition by Human ACE2 Receptor. J Phys Chem Lett 2021;12:4814-22. [PMID: 33999630 DOI: 10.1021/acs.jpclett.1c01064] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
601 Zhu L, Yang P, Zhao Y, Zhuang Z, Wang Z, Song R, Zhang J, Liu C, Gao Q, Xu Q, Wei X, Sun HX, Ye B, Wu Y, Zhang N, Lei G, Yu L, Yan J, Diao G, Meng F, Bai C, Mao P, Yu Y, Wang M, Yuan Y, Deng Q, Li Z, Huang Y, Hu G, Liu Y, Wang X, Xu Z, Liu P, Bi Y, Shi Y, Zhang S, Chen Z, Wang J, Xu X, Wu G, Wang FS, Gao GF, Liu L, Liu WJ. Single-Cell Sequencing of Peripheral Mononuclear Cells Reveals Distinct Immune Response Landscapes of COVID-19 and Influenza Patients. Immunity 2020;53:685-696.e3. [PMID: 32783921 DOI: 10.1016/j.immuni.2020.07.009] [Cited by in Crossref: 95] [Cited by in F6Publishing: 81] [Article Influence: 47.5] [Reference Citation Analysis]
602 Zhu Y, Yu D, Han Y, Yan H, Chong H, Ren L, Wang J, Li T, He Y. Cross-reactive neutralization of SARS-CoV-2 by serum antibodies from recovered SARS patients and immunized animals. Sci Adv 2020;6:eabc9999. [PMID: 33036961 DOI: 10.1126/sciadv.abc9999] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
603 Long SW, Olsen RJ, Christensen PA, Bernard DW, Davis JJ, Shukla M, Nguyen M, Saavedra MO, Yerramilli P, Pruitt L, Subedi S, Kuo HC, Hendrickson H, Eskandari G, Nguyen HAT, Long JH, Kumaraswami M, Goike J, Boutz D, Gollihar J, McLellan JS, Chou CW, Javanmardi K, Finkelstein IJ, Musser JM. Molecular Architecture of Early Dissemination and Massive Second Wave of the SARS-CoV-2 Virus in a Major Metropolitan Area. medRxiv 2020:2020. [PMID: 33024977 DOI: 10.1101/2020.09.22.20199125] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
604 Azimirad M, Noori M, Raeisi H, Yadegar A, Shahrokh S, Asadzadeh Aghdaei H, Bentivegna E, Martelletti P, Petrosillo N, Zali MR. How Does COVID-19 Pandemic Impact on Incidence of Clostridioides difficile Infection and Exacerbation of Its Gastrointestinal Symptoms? Front Med (Lausanne) 2021;8:775063. [PMID: 34966759 DOI: 10.3389/fmed.2021.775063] [Reference Citation Analysis]
605 Luo J, Chen YL, Chen W, Duncan DA, Mentzer A, Knight JC, Ogg G, Klenerman P, Pavord ID, Xue L. Pre-existing asthma as a comorbidity does not modify cytokine responses and severity of COVID-19. Allergy Asthma Clin Immunol 2021;17:67. [PMID: 34238349 DOI: 10.1186/s13223-021-00569-8] [Reference Citation Analysis]
606 Xu K, An Y, Li Q, Huang W, Han Y, Zheng T, Fang F, Liu H, Liu C, Gao P, Xu S, Liu X, Zhang R, Zhao X, Liu WJ, Bi Y, Wang Y, Zhou D, Wang Q, Hou W, Xia Q, Gao GF, Dai L. Recombinant chimpanzee adenovirus AdC7 expressing dimeric tandem-repeat spike protein RBD protects mice against COVID-19. Emerg Microbes Infect 2021;10:1574-88. [PMID: 34289779 DOI: 10.1080/22221751.2021.1959270] [Reference Citation Analysis]
607 Singh J, Dhindsa RS, Misra V, Singh B. SARS-CoV2 infectivity is potentially modulated by host redox status. Comput Struct Biotechnol J 2020;18:3705-11. [PMID: 33250972 DOI: 10.1016/j.csbj.2020.11.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
608 Khelashvili G, Plante A, Doktorova M, Weinstein H. Ca 2+ -dependent mechanism of membrane insertion and destabilization by the SARS-CoV-2 fusion peptide. bioRxiv 2021:2020. [PMID: 33299996 DOI: 10.1101/2020.12.03.410472] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
609 Kar P, Kumar V, Vellingiri B, Sen A, Jaishee N, Anandraj A, Malhotra H, Bhattacharyya S, Mukhopadhyay S, Kinoshita M, Govindasamy V, Roy A, Naidoo D, Subramaniam MD. Anisotine and amarogentin as promising inhibitory candidates against SARS-CoV-2 proteins: a computational investigation. J Biomol Struct Dyn 2020;:1-11. [PMID: 33305988 DOI: 10.1080/07391102.2020.1860133] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
610 Rajpoot S, Ohishi T, Kumar A, Pan Q, Banerjee S, Zhang KYJ, Baig MS. A Novel Therapeutic Peptide Blocks SARS-CoV-2 Spike Protein Binding with Host Cell ACE2 Receptor. Drugs R D 2021;21:273-83. [PMID: 34324175 DOI: 10.1007/s40268-021-00357-0] [Reference Citation Analysis]
611 Silvas JA, Vasquez DM, Park JG, Chiem K, Allué-Guardia A, Garcia-Vilanova A, Platt RN, Miorin L, Kehrer T, Cupic A, Gonzalez-Reiche AS, Bakel HV, García-Sastre A, Anderson T, Torrelles JB, Ye C, Martinez-Sobrido L. Contribution of SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice. J Virol 2021;95:e0040221. [PMID: 34133899 DOI: 10.1128/JVI.00402-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
612 Ghorbani M, Brooks BR, Klauda JB. Critical Sequence Hotspots for Binding of Novel Coronavirus to Angiotensin Converter Enzyme as Evaluated by Molecular Simulations. J Phys Chem B 2020;124:10034-47. [PMID: 33112147 DOI: 10.1021/acs.jpcb.0c05994] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 13.5] [Reference Citation Analysis]
613 McGlacken-Byrne SM, Drew SEV, Turner K, Peters C, Amin R. The SARS-CoV-2 pandemic is associated with increased severity of presentation of childhood onset type 1 diabetes mellitus: A multi-centre study of the first COVID-19 wave. Diabet Med 2021;38:e14640. [PMID: 34245598 DOI: 10.1111/dme.14640] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
614 Heinzelman P, Romero PA. Discovery of human ACE2 variants with altered recognition by the SARS-CoV-2 spike protein. PLoS One 2021;16:e0251585. [PMID: 33979391 DOI: 10.1371/journal.pone.0251585] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
615 Zella D, Giovanetti M, Cella E, Borsetti A, Ciotti M, Ceccarelli G, D'Ettorre G, Pezzuto A, Tambone V, Campanozzi L, Magheri M, Unali F, Bianchi M, Benedetti F, Pascarella S, Angeletti S, Ciccozzi M. The importance of genomic analysis in cracking the coronavirus pandemic. Expert Rev Mol Diagn 2021;21:547-62. [PMID: 33849359 DOI: 10.1080/14737159.2021.1917998] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
616 Saputri DS, Li S, van Eerden FJ, Rozewicki J, Xu Z, Ismanto HS, Davila A, Teraguchi S, Katoh K, Standley DM. Flexible, Functional, and Familiar: Characteristics of SARS-CoV-2 Spike Protein Evolution. Front Microbiol 2020;11:2112. [PMID: 33042039 DOI: 10.3389/fmicb.2020.02112] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
617 Dorgham K, Quentric P, Gökkaya M, Marot S, Parizot C, Sauce D, Guihot A, Luyt CE, Schmidt M, Mayaux J, Beurton A, Le Guennec L, Demeret S, Ben Salah E, Mathian A, Yssel H, Combadiere B, Combadiere C, Traidl-Hoffmann C, Burrel S, Marcelin AG, Amoura Z, Voiriot G, Neumann AU, Gorochov G. Distinct cytokine profiles associated with COVID-19 severity and mortality. J Allergy Clin Immunol 2021;147:2098-107. [PMID: 33894209 DOI: 10.1016/j.jaci.2021.03.047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
618 Ghizlane EA, Manal M, Abderrahim EK, Abdelilah E, Mohammed M, Rajae A, Amine BM, Houssam B, Naima A, Brahim H. Lymphopenia in Covid-19: A single center retrospective study of 589 cases. Ann Med Surg (Lond) 2021;69:102816. [PMID: 34512964 DOI: 10.1016/j.amsu.2021.102816] [Reference Citation Analysis]
619 Yang S, Li Y, Dai L, Wang J, He P, Li C, Fang X, Wang C, Zhao X, Huang E, Wu C, Zhong Z, Wang F, Duan X, Tian S, Wu L, Liu Y, Luo Y, Chen Z, Li F, Li J, Yu X, Ren H, Liu L, Meng S, Yan J, Hu Z, Gao L, Gao GF. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect Dis 2021;21:1107-19. [PMID: 33773111 DOI: 10.1016/S1473-3099(21)00127-4] [Cited by in Crossref: 23] [Cited by in F6Publishing: 41] [Article Influence: 23.0] [Reference Citation Analysis]
620 Aronson JK, Auker-Howlett D, Ghiara V, Kelly MP, Williamson J. The use of mechanistic reasoning in assessing coronavirus interventions. J Eval Clin Pract 2021;27:684-93. [PMID: 32666676 DOI: 10.1111/jep.13438] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
621 Sheikhzadeh Hesari F, Hosseinzadeh SS, Asl Monadi Sardroud MA. Review of COVID-19 and male genital tract. Andrologia 2021;53:e13914. [PMID: 33236375 DOI: 10.1111/and.13914] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
622 Condor Capcha JM, Lambert G, Dykxhoorn DM, Salerno AG, Hare JM, Whitt MA, Pahwa S, Jayaweera DT, Shehadeh LA. Generation of SARS-CoV-2 Spike Pseudotyped Virus for Viral Entry and Neutralization Assays: A 1-Week Protocol. Front Cardiovasc Med 2020;7:618651. [PMID: 33521067 DOI: 10.3389/fcvm.2020.618651] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
623 Nami B, Ghanaeian A, Ghanaeian K, Houri R, Nami N, Ghasemi-Dizgah A, Caluseriu O. The interaction of the severe acute respiratory syndrome coronavirus 2 spike protein with drug-inhibited angiotensin converting enzyme 2 studied by molecular dynamics simulation. J Hypertens 2021;39:1705-16. [PMID: 34188005 DOI: 10.1097/HJH.0000000000002829] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
624 Ku Z, Xie X, Davidson E, Ye X, Su H, Menachery VD, Li Y, Yuan Z, Zhang X, Muruato AE, I Escuer AG, Tyrell B, Doolan K, Doranz BJ, Wrapp D, Bates PF, McLellan JS, Weiss SR, Zhang N, Shi PY, An Z. Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape. Nat Commun 2021;12:469. [PMID: 33473140 DOI: 10.1038/s41467-020-20789-7] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 44.0] [Reference Citation Analysis]
625 Kumar A, Arora A, Sharma P, Anikhindi SA, Bansal N, Singla V, Khare S, Srivastava A. Gastrointestinal and hepatic manifestations of Corona Virus Disease-19 and their relationship to severe clinical course: A systematic review and meta-analysis. Indian J Gastroenterol 2020;39:268-84. [PMID: 32749643 DOI: 10.1007/s12664-020-01058-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
626 Valiente PA, Wen H, Nim S, Lee J, Kim HJ, Kim J, Perez-Riba A, Paudel YP, Hwang I, Kim KD, Kim S, Kim PM. Computational Design of Potent D-Peptide Inhibitors of SARS-CoV-2. J Med Chem 2021;64:14955-67. [PMID: 34624194 DOI: 10.1021/acs.jmedchem.1c00655] [Reference Citation Analysis]
627 Liu K, Pan X, Li L, Yu F, Zheng A, Du P, Han P, Meng Y, Zhang Y, Wu L, Chen Q, Song C, Jia Y, Niu S, Lu D, Qiao C, Chen Z, Ma D, Ma X, Tan S, Zhao X, Qi J, Gao GF, Wang Q. Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell 2021;184:3438-3451.e10. [PMID: 34139177 DOI: 10.1016/j.cell.2021.05.031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
628 Cameron A, Porterfield CA, Byron LD, Wang J, Pearson Z, Bohrhunter JL, Cardillo AB, Ryan-Muntz L, Sorensen RA, Caserta MT, Angeloni S, Hardy DJ, Zand MS, Pecora ND. A Multiplex Microsphere IgG Assay for SARS-CoV-2 Using ACE2-Mediated Inhibition as a Surrogate for Neutralization. J Clin Microbiol 2021;59:e02489-20. [PMID: 33139422 DOI: 10.1128/JCM.02489-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
629 Olaleye OA, Kaur M, Onyenaka C, Adebusuyi T. Discovery of Clioquinol and analogues as novel inhibitors of Severe Acute Respiratory Syndrome Coronavirus 2 infection, ACE2 and ACE2 - Spike protein interaction in vitro. Heliyon 2021;7:e06426. [PMID: 33732940 DOI: 10.1016/j.heliyon.2021.e06426] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
630 Trbojević-Akmačić I, Petrović T, Lauc G. SARS-CoV-2 S glycoprotein binding to multiple host receptors enables cell entry and infection. Glycoconj J 2021;38:611-23. [PMID: 34542788 DOI: 10.1007/s10719-021-10021-z] [Reference Citation Analysis]
631 Chen M, Rosenberg J, Cai X, Hsuan Lee AC, Shi J, Nguyen M, Wignakumar T, Mirle V, Edobor AJ, Fung J, Donington JS, Shanmugarajah K, Lin Y, Chang E, Randall G, Penaloza-MacMaster P, Tian B, Madariaga ML, Huang J. Nanotraps for the containment and clearance of SARS-CoV-2. Matter 2021;4:2059-82. [PMID: 33907732 DOI: 10.1016/j.matt.2021.04.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
632 Salih AEM, Thissera B, Yaseen M, Hassane ASI, El-Seedi HR, Sayed AM, Rateb ME. Marine Sulfated Polysaccharides as Promising Antiviral Agents: A Comprehensive Report and Modeling Study Focusing on SARS CoV-2. Mar Drugs 2021;19:406. [PMID: 34436245 DOI: 10.3390/md19080406] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
633 Yin W, Xu Y, Xu P, Cao X, Wu C, Gu C, He X, Wang X, Huang S, Yuan Q, Wu K, Hu W, Huang Z, Liu J, Wang Z, Jia F, Xia K, Liu P, Wang X, Song B, Zheng J, Jiang H, Cheng X, Jiang Y, Deng SJ, Xu HE. Structures of the Omicron Spike trimer with ACE2 and an anti-Omicron antibody. Science 2022;:eabn8863. [PMID: 35133176 DOI: 10.1126/science.abn8863] [Reference Citation Analysis]
634 Rosa L, Tripepi G, Naldi E, Aimati M, Santangeli S, Venditto F, Caldarelli M, Valenti P. Ambulatory COVID-19 Patients Treated with Lactoferrin as a Supplementary Antiviral Agent: A Preliminary Study. J Clin Med 2021;10:4276. [PMID: 34575388 DOI: 10.3390/jcm10184276] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
635 Shovlin CL, Vizcaychipi MP. Vascular inflammation and endothelial injury in SARS-CoV-2 infection: The overlooked regulatory cascades implicated by the ACE2 gene cluster. QJM 2020:hcaa241. [PMID: 32777054 DOI: 10.1093/qjmed/hcaa241] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
636 Choi HI, Kim T, Lee SW, Woo Kim J, Ju Noh Y, Kim GY, Jin Park H, Chae YJ, Lee KR, Kim SJ, Koo TS. Bioanalysis of niclosamide in plasma using liquid chromatography-tandem mass and application to pharmacokinetics in rats and dogs. J Chromatogr B Analyt Technol Biomed Life Sci 2021;1179:122862. [PMID: 34332199 DOI: 10.1016/j.jchromb.2021.122862] [Reference Citation Analysis]
637 Cao XJ, Fang KY, Zhou J, Li YP, Guo XG. The Diagnostic Accuracy of Xpert Xpress to SARS-CoV-2: a systematic review. J Virol Methods 2022;:114460. [PMID: 35032480 DOI: 10.1016/j.jviromet.2022.114460] [Reference Citation Analysis]
638 Browne K. Brought to Light: How Ultraviolet Disinfection Can Prevent the Nosocomial Transmission of COVID-19 and Other Infectious Diseases. Applied Microbiology 2021;1:537-56. [DOI: 10.3390/applmicrobiol1030035] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
639 Warner FJ, Rajapaksha H, Shackel N, Herath CB. ACE2: from protection of liver disease to propagation of COVID-19. Clin Sci (Lond). 2020;134:3137-3158. [PMID: 33284956 DOI: 10.1042/cs20201268] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
640 Chand GB, Banerjee A, Azad GK. Identification of twenty-five mutations in surface glycoprotein (Spike) of SARS-CoV-2 among Indian isolates and their impact on protein dynamics. Gene Rep 2020;21:100891. [PMID: 33015411 DOI: 10.1016/j.genrep.2020.100891] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
641 Pathangey G, Fadadu PP, Hospodar AR, Abbas AE. Angiotensin-converting enzyme 2 and COVID-19: patients, comorbidities, and therapies. Am J Physiol Lung Cell Mol Physiol 2021;320:L301-30. [PMID: 33237815 DOI: 10.1152/ajplung.00259.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
642 Yu R, Li P. Screening of potential spike glycoprotein / ACE2 dual antagonists against COVID-19 in silico molecular docking. J Virol Methods 2021;301:114424. [PMID: 34896453 DOI: 10.1016/j.jviromet.2021.114424] [Reference Citation Analysis]
643 Ali A, Vijayan R. Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms. Sci Rep. 2020;10:14214. [PMID: 32848162 DOI: 10.1038/s41598-020-71188-3] [Cited by in Crossref: 75] [Cited by in F6Publishing: 65] [Article Influence: 37.5] [Reference Citation Analysis]
644 Habli Z, Saleh S, Zaraket H, Khraiche ML. COVID-19 in-vitro Diagnostics: State-of-the-Art and Challenges for Rapid, Scalable, and High-Accuracy Screening. Front Bioeng Biotechnol 2020;8:605702. [PMID: 33634079 DOI: 10.3389/fbioe.2020.605702] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
645 McCallum M, Walls AC, Corti D, Veesler D. Closing coronavirus spike glycoproteins by structure-guided design. bioRxiv 2020:2020. [PMID: 32577661 DOI: 10.1101/2020.06.03.129817] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
646 Ahmad J, Jiang J, Boyd LF, Zeher A, Huang R, Xia D, Natarajan K, Margulies DH. Structures of synthetic nanobody-SARS-CoV-2-RBD complexes reveal distinct sites of interaction and recognition of variants. Res Sq 2021:rs. [PMID: 34159326 DOI: 10.21203/rs.3.rs-625642/v1] [Reference Citation Analysis]
647 Gao S, Zhang L. ACE2 partially dictates the host range and tropism of SARS-CoV-2. Comput Struct Biotechnol J 2020;18:4040-7. [PMID: 33282147 DOI: 10.1016/j.csbj.2020.11.032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
648 Wong G, Bi YH, Wang QH, Chen XW, Zhang ZG, Yao YG. Zoonotic origins of human coronavirus 2019 (HCoV-19 / SARS-CoV-2): why is this work important? Zool Res 2020;41:213-9. [PMID: 32314559 DOI: 10.24272/j.issn.2095-8137.2020.031] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 15.5] [Reference Citation Analysis]
649 Luo YR, Yun C, Chakraborty I, Wu AHB, Lynch KL. A SARS-CoV-2 Label-Free Surrogate Virus Neutralization Test and a Longitudinal Study of Antibody Characteristics in COVID-19 Patients. J Clin Microbiol 2021;59:e0019321. [PMID: 33827900 DOI: 10.1128/JCM.00193-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
650 [DOI: 10.1101/2020.05.01.20077743] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
651 Serrano-Conde E, Leyva A, Fuentes A, de Salazar A, Chueca N, Pérez-Castro S, Regueiro B, Rojas A, Mendoza J, Rojas J, García F. In vitro neutralizing activity of BNT162b2 mRNA-induced antibodies against full B.1.351 SARS-CoV-2 variant. Transbound Emerg Dis 2021. [PMID: 34910373 DOI: 10.1111/tbed.14417] [Reference Citation Analysis]
652 Pagadala NS, Landi A, Maturu P, Tuszynski J. In silico identification of RBD subdomain of spike protein from Pro322-Thr581 for applications in vaccine development against SARS-CoV2. J Mol Struct 2021;1240:130534. [PMID: 33967342 DOI: 10.1016/j.molstruc.2021.130534] [Reference Citation Analysis]
653 Prahlad J, Struble LR, Lutz WE, Wallin SA, Khurana S, Schnaubelt A, Broadhurst MJ, Bayles KW, Borgstahl GEO. CyDisCo production of functional recombinant SARS-CoV-2 spike receptor binding domain. Protein Sci 2021. [PMID: 34191362 DOI: 10.1002/pro.4152] [Reference Citation Analysis]
654 Lukose J, Chidangil S, George SD. Optical technologies for the detection of viruses like COVID-19: Progress and prospects. Biosens Bioelectron 2021;178:113004. [PMID: 33497877 DOI: 10.1016/j.bios.2021.113004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 10.0] [Reference Citation Analysis]
655 Kumavath R, Barh D, Andrade BS, Imchen M, Aburjaile FF, Ch A, Rodrigues DLN, Tiwari S, Alzahrani KJ, Góes-Neto A, Weener ME, Ghosh P, Azevedo V. The Spike of SARS-CoV-2: Uniqueness and Applications. Front Immunol 2021;12:663912. [PMID: 34305894 DOI: 10.3389/fimmu.2021.663912] [Reference Citation Analysis]
656 Ou J, Zhou Z, Dai R, Zhang J, Zhao S, Wu X, Lan W, Ren Y, Cui L, Lan Q, Lu L, Seto D, Chodosh J, Wu J, Zhang G, Zhang Q. V367F Mutation in SARS-CoV-2 Spike RBD Emerging during the Early Transmission Phase Enhances Viral Infectivity through Increased Human ACE2 Receptor Binding Affinity. J Virol 2021;95:e0061721. [PMID: 34105996 DOI: 10.1128/JVI.00617-21] [Cited by in Crossref: 6] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
657 Walls AC, Miranda MC, Pham MN, Schäfer A, Greaney A, Arunachalam PS, Navarro MJ, Tortorici MA, Rogers K, O'Connor MA, Shireff L, Ferrell DE, Brunette N, Kepl E, Bowen J, Zepeda SK, Starr T, Hsieh CL, Fiala B, Wrenn S, Pettie D, Sydeman C, Johnson M, Blackstone A, Ravichandran R, Ogohara C, Carter L, Tilles SW, Rappuoli R, O'Hagan DT, Van Der Most R, Van Voorhis WC, McLellan JS, Kleanthous H, Sheahan TP, Fuller DH, Villinger F, Bloom J, Pulendran B, Baric R, King N, Veesler D. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. bioRxiv 2021:2021. [PMID: 33758839 DOI: 10.1101/2021.03.15.435528] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 9.0] [Reference Citation Analysis]
658 Dileepan M, Di D, Huang Q, Ahmed S, Heinrich D, Ly H, Liang Y. Seroprevalence of SARS-CoV-2 (COVID-19) exposure in pet cats and dogs in Minnesota, USA. Virulence 2021;12:1597-609. [PMID: 34125647 DOI: 10.1080/21505594.2021.1936433] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
659 Birtles D, Lee J. Identifying Distinct Structural Features of the SARS-CoV-2 Spike Protein Fusion Domain Essential for Membrane Interaction. Biochemistry 2021;60:2978-86. [PMID: 34570469 DOI: 10.1021/acs.biochem.1c00543] [Reference Citation Analysis]
660 Duan L, Zheng Q, Zhang H, Niu Y, Lou Y, Wang H. The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications for the Design of Spike-Based Vaccine Immunogens. Front Immunol 2020;11:576622. [PMID: 33117378 DOI: 10.3389/fimmu.2020.576622] [Cited by in Crossref: 69] [Cited by in F6Publishing: 50] [Article Influence: 34.5] [Reference Citation Analysis]
661 Schütz D, Ruiz-Blanco YB, Münch J, Kirchhoff F, Sanchez-Garcia E, Müller JA. Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Adv Drug Deliv Rev 2020;167:47-65. [PMID: 33189768 DOI: 10.1016/j.addr.2020.11.007] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 13.5] [Reference Citation Analysis]
662 Al Adem K, Shanti A, Stefanini C, Lee S. Inhibition of SARS-CoV-2 Entry into Host Cells Using Small Molecules.Pharmaceuticals (Basel). 2020;13. [PMID: 33302344 DOI: 10.3390/ph13120447] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
663 Duru CE, Umar HIU, Duru IA, Enenebeaku UE, Ngozi-Olehi LC, Enyoh CE. Blocking the interactions between human ACE2 and coronavirus spike glycoprotein by selected drugs: a computational perspective. Environ Anal Health Toxicol 2021;36:e2021010-0. [PMID: 34130375 DOI: 10.5620/eaht.2021010] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
664 Chakraborty S. E484K and N501Y SARS-CoV 2 spike mutants Increase ACE2 recognition but reduce affinity for neutralizing antibody. Int Immunopharmacol 2022;102:108424. [PMID: 34915409 DOI: 10.1016/j.intimp.2021.108424] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
665 Rao Y, Wang TY, Qin C, Espinosa B, Liu Q, Ekanayake A, Zhao J, Savas AC, Zhang S, Zarinfar M, Liu Y, Zhu W, Graham NA, Jiang T, Zhang C, Feng P. Targeting CTP Synthetase 1 to Restore Interferon Induction and Impede Nucleotide Synthesis in SARS-CoV-2 Infection. bioRxiv 2021:2021. [PMID: 33564769 DOI: 10.1101/2021.02.05.429959] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
666 Gao B, Zhu S. A Fungal Defensin Targets the SARS-CoV-2 Spike Receptor-Binding Domain. J Fungi (Basel) 2021;7:553. [PMID: 34356932 DOI: 10.3390/jof7070553] [Reference Citation Analysis]
667 Ramírez Hernández E, Hernández-Zimbrón LF, Martínez Zúñiga N, Leal-García JJ, Ignacio Hernández V, Ucharima-Corona LE, Pérez Campos E, Zenteno E. The Role of the SARS-CoV-2 S-Protein Glycosylation in the Interaction of SARS-CoV-2/ACE2 and Immunological Responses. Viral Immunol 2021;34:165-73. [PMID: 33605822 DOI: 10.1089/vim.2020.0174] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
668 Cai X, Prominski A, Lin Y, Ankenbruck N, Rosenberg J, Chen M, Shi J, Chang EB, Penaloza-MacMaster P, Tian B, Huang J. A Neutralizing Antibody-Conjugated Photothermal Nanoparticle Captures and Inactivates SARS-CoV-2. bioRxiv 2020:2020. [PMID: 33269351 DOI: 10.1101/2020.11.30.404624] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
669 Kar P, Saleh-E-In MM, Jaishee N, Anandraj A, Kormuth E, Vellingiri B, Angione C, Rahman PKSM, Pillay S, Sen A, Naidoo D, Roy A, Choi YE. Computational profiling of natural compounds as promising inhibitors against the spike proteins of SARS-CoV-2 wild-type and the variants of concern, viral cell-entry process, and cytokine storm in COVID-19. J Cell Biochem 2022. [PMID: 35342986 DOI: 10.1002/jcb.30243] [Reference Citation Analysis]
670 Cabezón E, Arechaga I. Drug Weaponry to Fight Against SARS-CoV-2. Front Mol Biosci 2020;7:204. [PMID: 33195397 DOI: 10.3389/fmolb.2020.00204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
671 Wang J, Zhang Y, Hu S, Bai H, Xue Z, Liu Y, Ma W. Antiviral drugs suppress infection of 2019-nCoV spike pseudotyped virus by interacting with ACE2 protein. J Biochem Mol Toxicol 2021;:e22948. [PMID: 34755435 DOI: 10.1002/jbt.22948] [Reference Citation Analysis]
672 Ortega MA, Fraile-Martínez O, García-Montero C, García-Gallego S, Sánchez-Trujillo L, Torres-Carranza D, Álvarez-Mon MÁ, Pekarek L, García-Honduvilla N, Bujan J, Álvarez-Mon M, Asúnsolo Á, De la Torre B. An integrative look at SARS‑CoV‑2 (Review). Int J Mol Med 2021;47:415-34. [PMID: 33416095 DOI: 10.3892/ijmm.2020.4828] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
673 Preziuso S. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Exhibits High Predicted Binding Affinity to ACE2 from Lagomorphs (Rabbits and Pikas). Animals (Basel) 2020;10:E1460. [PMID: 32825305 DOI: 10.3390/ani10091460] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
674 Elliott A, Saul M, Zeng J, Marshall JL, Kim ES, Nagasaka M, Lenz HJ, Schwartzberg L, Spetzler D, Abraham J, Xiu J, Stafford P, Michael Korn W. Pan-cancer analysis of RNA expression of ANGIOTENSIN-I-CONVERTING ENZYME 2 reveals high variability and possible impact on COVID-19 clinical outcomes. Sci Rep 2021;11:5639. [PMID: 33707526 DOI: 10.1038/s41598-021-84731-7] [Reference Citation Analysis]
675 Edwards MJ, Becker KA, Gripp B, Hoffmann M, Keitsch S, Wilker B, Soddemann M, Gulbins A, Carpinteiro E, Patel SH, Wilson GC, Pöhlmann S, Walter S, Fassbender K, Ahmad SA, Carpinteiro A, Gulbins E. Sphingosine prevents binding of SARS-CoV-2 spike to its cellular receptor ACE2. J Biol Chem 2020;295:15174-82. [PMID: 32917722 DOI: 10.1074/jbc.RA120.015249] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
676 Klein SL, Pekosz A, Park HS, Ursin RL, Shapiro JR, Benner SE, Littlefield K, Kumar S, Naik HM, Betenbaugh MJ, Shrestha R, Wu AA, Hughes RM, Burgess I, Caturegli P, Laeyendecker O, Quinn TC, Sullivan D, Shoham S, Redd AD, Bloch EM, Casadevall A, Tobian AA. Sex, age, and hospitalization drive antibody responses in a COVID-19 convalescent plasma donor population. J Clin Invest 2020;130:6141-50. [PMID: 32764200 DOI: 10.1172/JCI142004] [Cited by in Crossref: 127] [Cited by in F6Publishing: 115] [Article Influence: 63.5] [Reference Citation Analysis]
677 Li CJ, Chao TL, Chang TY, Hsiao CC, Lu DC, Chiang YW, Lai GC, Tsai YM, Fang JT, Ieong S, Wang JT, Chang SY, Chang SC. Neutralizing Monoclonal Antibodies Inhibit SARS-CoV-2 Infection through Blocking Membrane Fusion. Microbiol Spectr 2022;:e0181421. [PMID: 35293796 DOI: 10.1128/spectrum.01814-21] [Reference Citation Analysis]
678 Liang H, Zhao L, Gong X, Hu M, Wang H. Virtual screening FDA approved drugs against multiple targets of SARS-CoV-2. Clin Transl Sci 2021;14:1123-32. [PMID: 33606912 DOI: 10.1111/cts.13007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
679 Ragotte RJ, Pulido D, Donnellan FR, Hill ML, Gorini G, Davies H, Brun J, McHugh K, King LDW, Skinner K, Miura K, Long CA, Zitzmann N, Draper SJ. Human Basigin (CD147) Does Not Directly Interact with SARS-CoV-2 Spike Glycoprotein. mSphere 2021;6:e0064721. [PMID: 34378982 DOI: 10.1128/mSphere.00647-21] [Reference Citation Analysis]
680 Parida PK, Paul D, Chakravorty D. The natural way forward: Molecular dynamics simulation analysis of phytochemicals from Indian medicinal plants as potential inhibitors of SARS-CoV-2 targets. Phytother Res 2020;34:3420-33. [PMID: 32969524 DOI: 10.1002/ptr.6868] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
681 Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020;41:1141-9. [PMID: 32747721 DOI: 10.1038/s41401-020-0485-4] [Cited by in Crossref: 352] [Cited by in F6Publishing: 324] [Article Influence: 176.0] [Reference Citation Analysis]
682 Gowthaman R, Guest JD, Yin R, Adolf-Bryfogle J, Schief WR, Pierce BG. CoV3D: a database of high resolution coronavirus protein structures. Nucleic Acids Res 2021;49:D282-7. [PMID: 32890396 DOI: 10.1093/nar/gkaa731] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
683 Castro R, Nobre LS, Eleutério RP, Thomaz M, Pires A, Monteiro SM, Mendes S, Gomes RA, Clemente JJ, Sousa MFQ, Pinto F, Silva AC, Freitas MC, Lemos AR, Akpogheneta O, Kosack L, Bergman ML, Duarte N, Matoso P, Costa J, Bandeiras TM, Gomes-Alves P, Gonçalves CP, Demengeot J, Alves PM. Production of high-quality SARS-CoV-2 antigens: Impact of bioprocess and storage on glycosylation, biophysical attributes, and ELISA serologic tests performance. Biotechnol Bioeng 2021;118:2202-19. [PMID: 33624859 DOI: 10.1002/bit.27725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
684 E G Müller W, Schröder HC, Neufurth M, Wang X. An unexpected biomaterial against SARS-CoV-2: Bio-polyphosphate blocks binding of the viral spike to the cell receptor. Mater Today (Kidlington) 2021. [PMID: 34366696 DOI: 10.1016/j.mattod.2021.07.029] [Reference Citation Analysis]
685 Tagliamonte MS, Abid N, Borocci S, Sangiovanni E, Ostrov DA, Kosakovsky Pond SL, Salemi M, Chillemi G, Mavian C. Multiple Recombination Events and Strong Purifying Selection at the Origin of SARS-CoV-2 Spike Glycoprotein Increased Correlated Dynamic Movements. Int J Mol Sci 2020;22:E80. [PMID: 33374797 DOI: 10.3390/ijms22010080] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
686 Rahman MS, Islam MR, Hoque MN, Alam ASMRU, Akther M, Puspo JA, Akter S, Anwar A, Sultana M, Hossain MA. Comprehensive annotations of the mutational spectra of SARS-CoV-2 spike protein: a fast and accurate pipeline. Transbound Emerg Dis 2021;68:1625-38. [PMID: 32954666 DOI: 10.1111/tbed.13834] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
687 Wec AZ, Wrapp D, Herbert AS, Maurer DP, Haslwanter D, Sakharkar M, Jangra RK, Dieterle ME, Lilov A, Huang D, Tse LV, Johnson NV, Hsieh CL, Wang N, Nett JH, Champney E, Burnina I, Brown M, Lin S, Sinclair M, Johnson C, Pudi S, Bortz R 3rd, Wirchnianski AS, Laudermilch E, Florez C, Fels JM, O'Brien CM, Graham BS, Nemazee D, Burton DR, Baric RS, Voss JE, Chandran K, Dye JM, McLellan JS, Walker LM. Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science 2020;369:731-6. [PMID: 32540900 DOI: 10.1126/science.abc7424] [Cited by in Crossref: 264] [Cited by in F6Publishing: 239] [Article Influence: 132.0] [Reference Citation Analysis]
688 Banerjee R, Roy P, Das S, Paul MK. A hybrid model integrating warm heat and ultraviolet germicidal irradiation might efficiently disinfect respirators and personal protective equipment. Am J Infect Control 2021;49:309-18. [PMID: 32735810 DOI: 10.1016/j.ajic.2020.07.022] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
689 Hendy M, Kaufman S, Ponga M. Molecular strategies for antibody binding and escape of SARS-CoV-2 and its mutations. Sci Rep 2021;11:21735. [PMID: 34741079 DOI: 10.1038/s41598-021-01081-0] [Reference Citation Analysis]
690 Everest H, Stevenson-leggett P, Bailey D, Bickerton E, Keep S. Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review. Viruses 2022;14:351. [DOI: 10.3390/v14020351] [Reference Citation Analysis]
691 Khattab AR, Teleb M, Kamel MS. In silico study of potential anti-SARS cell entry phytoligands from Phlomis aurea: a promising avenue for prophylaxis. Future Virol 2021;0. [PMID: 34745316 DOI: 10.2217/fvl-2021-0031] [Reference Citation Analysis]
692 Saad N, Moussa S. Immune response to COVID-19 infection: a double-edged sword. Immunol Med 2021;44:187-96. [PMID: 33444511 DOI: 10.1080/25785826.2020.1870305] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
693 Saponaro F, Rutigliano G, Sestito S, Bandini L, Storti B, Bizzarri R, Zucchi R. ACE2 in the Era of SARS-CoV-2: Controversies and Novel Perspectives. Front Mol Biosci 2020;7:588618. [PMID: 33195436 DOI: 10.3389/fmolb.2020.588618] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 14.0] [Reference Citation Analysis]
694 Park YJ, De Marco A, Starr TN, Liu Z, Pinto D, Walls AC, Zatta F, Zepeda SK, Bowen JE, Sprouse KR, Joshi A, Giurdanella M, Guarino B, Noack J, Abdelnabi R, Foo SC, Rosen LE, Lempp FA, Benigni F, Snell G, Neyts J, Whelan SPJ, Virgin HW, Bloom JD, Corti D, Pizzuto MS, Veesler D. Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science 2022;375:449-54. [PMID: 34990214 DOI: 10.1126/science.abm8143] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
695 Wang Y, Hao Y, Fa S, Zheng W, Yuan C, Wang W. Nanomedicine for the Diagnosis and Therapy of COVID-19. Front Bioeng Biotechnol 2021;9:758121. [PMID: 34805116 DOI: 10.3389/fbioe.2021.758121] [Reference Citation Analysis]
696 Rath SL, Kumar K. Investigation of the Effect of Temperature on the Structure of SARS-CoV-2 Spike Protein by Molecular Dynamics Simulations. Front Mol Biosci 2020;7:583523. [PMID: 33195427 DOI: 10.3389/fmolb.2020.583523] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
697 Sarver DC, Wong GW. Obesity alters Ace2 and Tmprss2 expression in lung, trachea, and esophagus in a sex-dependent manner: Implications for COVID-19. Biochem Biophys Res Commun 2021;538:92-6. [PMID: 33168188 DOI: 10.1016/j.bbrc.2020.10.066] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
698 Badhe Y, Gupta R, Rai B. In silico design of peptides with binding to the receptor binding domain (RBD) of the SARS-CoV-2 and their utility in bio-sensor development for SARS-CoV-2 detection. RSC Adv 2021;11:3816-26. [DOI: 10.1039/d0ra09123e] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
699 Wjst M. [The early phase of the COVID-19 pandemic in Bavaria, Germany]. Dtsch Med Wochenschr 2021;146:e1-9. [PMID: 33246350 DOI: 10.1055/a-1286-0212] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
700 Zeng C, Evans JP, King T, Zheng YM, Oltz EM, Whelan SPJ, Saif L, Peeples ME, Liu SL. SARS-CoV-2 Spreads through Cell-to-Cell Transmission. bioRxiv 2021:2021. [PMID: 34100011 DOI: 10.1101/2021.06.01.446579] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
701 Ali AM, Kunugi H. Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of In Silico, In Vitro, and Clinical Studies. Molecules 2021;26:1232. [PMID: 33669054 DOI: 10.3390/molecules26051232] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
702 Lai G, Chao T, Lin S, Kao H, Tsai Y, Lu D, Chiang Y, Chang S, Chang S. Neutralization or enhancement of SARS-CoV-2 infection by a monoclonal antibody targeting a specific epitope in the spike receptor-binding domain. Antiviral Research 2022. [DOI: 10.1016/j.antiviral.2022.105290] [Reference Citation Analysis]
703 Andreano E, Piccini G, Licastro D, Casalino L, Johnson NV, Paciello I, Dal Monego S, Pantano E, Manganaro N, Manenti A, Manna R, Casa E, Hyseni I, Benincasa L, Montomoli E, Amaro RE, McLellan JS, Rappuoli R. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. bioRxiv 2020:2020. [PMID: 33398278 DOI: 10.1101/2020.12.28.424451] [Cited by in Crossref: 137] [Cited by in F6Publishing: 38] [Article Influence: 68.5] [Reference Citation Analysis]
704 Koirala RP, Thapa B, Khanal SP, Powrel J, Adhikari RP, Adhikari NP. Binding of SARS-CoV-2/SARS-CoV spike protein with human ACE2 receptor. J Phys Commun 2021;5:035010. [DOI: 10.1088/2399-6528/abea27] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
705 Ali J, Elahi SN, Ali A, Waseem H, Abid R, Mohamed MM. Unveiling the Potential Role of Nanozymes in Combating the COVID-19 Outbreak. Nanomaterials (Basel) 2021;11:1328. [PMID: 34069866 DOI: 10.3390/nano11051328] [Reference Citation Analysis]
706 Kim S, Nguyen TT, Taitt AS, Jhun H, Park HY, Kim SH, Kim YG, Song EY, Lee Y, Yum H, Shin KC, Choi YK, Song CS, Yeom SC, Kim B, Netea M, Kim S. SARS-CoV-2 Omicron Mutation Is Faster than the Chase: Multiple Mutations on Spike/ACE2 Interaction Residues. Immune Netw 2021;21:e38. [PMID: 35036025 DOI: 10.4110/in.2021.21.e38] [Reference Citation Analysis]
707 Rasaeifar B, Gomez-Gutierrez P, Perez JJ. Molecular Features of Non-Selective Small Molecule Antagonists of the Bradykinin Receptors. Pharmaceuticals (Basel) 2020;13:E259. [PMID: 32967280 DOI: 10.3390/ph13090259] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
708 Rojas A, Schneider I, Lindner C, Gonzàlez I, Morales MA. Receptor for advanced glycation end-products axis and coronavirus disease 2019 in inflammatory bowel diseases: A dangerous liaison? World J Gastroenterol 2021;27:2270-80. [PMID: 34040321 DOI: 10.3748/wjg.v27.i19.2270] [Reference Citation Analysis]
709 Padhi AK, Seal A, Khan JM, Ahamed M, Tripathi T. Unraveling the mechanism of arbidol binding and inhibition of SARS-CoV-2: Insights from atomistic simulations. Eur J Pharmacol 2021;894:173836. [PMID: 33387467 DOI: 10.1016/j.ejphar.2020.173836] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
710 Das JK, Thakuri B, MohanKumar K, Roy S, Sljoka A, Sun GQ, Chakraborty A. Mutation-Induced Long-Range Allosteric Interactions in the Spike Protein Determine the Infectivity of SARS-CoV-2 Emerging Variants. ACS Omega 2021;6:31312-27. [PMID: 34805715 DOI: 10.1021/acsomega.1c05155] [Reference Citation Analysis]
711 Samrat SK, Tharappel AM, Li Z, Li H. Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus Res 2020;288:198141. [PMID: 32846196 DOI: 10.1016/j.virusres.2020.198141] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 18.0] [Reference Citation Analysis]
712 Rabbani G, Ahn SN, Kwon H, Ahmad K, Choi I. Penta-peptide ATN-161 based neutralization mechanism of SARS-CoV-2 spike protein. Biochem Biophys Rep 2021;28:101170. [PMID: 34778573 DOI: 10.1016/j.bbrep.2021.101170] [Reference Citation Analysis]
713 Caillet-Saguy C, Wolff N. PDZ-Containing Proteins Targeted by the ACE2 Receptor. Viruses 2021;13:2281. [PMID: 34835087 DOI: 10.3390/v13112281] [Reference Citation Analysis]
714 Walls AC, Fiala B, Schäfer A, Wrenn S, Pham MN, Murphy M, Tse LV, Shehata L, O'Connor MA, Chen C, Navarro MJ, Miranda MC, Pettie D, Ravichandran R, Kraft JC, Ogohara C, Palser A, Chalk S, Lee EC, Guerriero K, Kepl E, Chow CM, Sydeman C, Hodge EA, Brown B, Fuller JT, Dinnon KH 3rd, Gralinski LE, Leist SR, Gully KL, Lewis TB, Guttman M, Chu HY, Lee KK, Fuller DH, Baric RS, Kellam P, Carter L, Pepper M, Sheahan TP, Veesler D, King NP. Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell 2020;183:1367-1382.e17. [PMID: 33160446 DOI: 10.1016/j.cell.2020.10.043] [Cited by in Crossref: 112] [Cited by in F6Publishing: 103] [Article Influence: 56.0] [Reference Citation Analysis]
715 Dong W, Wang J, Tian L, Zhang J, Mead H, Jaramillo SA, Li A, Zumwalt RE, Whelan SPJ, Settles EW, Keim PS, Barker BM, Caligiuri MA, Yu J. FXa cleaves the SARS-CoV-2 spike protein and blocks cell entry to protect against infection with inferior effects in B.1.1.7 variant. bioRxiv 2021:2021. [PMID: 34127969 DOI: 10.1101/2021.06.07.447437] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
716 Li T, Cai H, Zhao Y, Li Y, Lai Y, Yao H, Liu LD, Sun Z, van Vlissingen MF, Kuiken T, GeurtsvanKessel CH, Zhang N, Zhou B, Lu L, Gong Y, Qin W, Mondal M, Duan B, Xu S, Richard AS, Raoul H, Chen J, Xu C, Wu L, Zhou H, Huang Z, Zhang X, Li J, Wang Y, Bi Y, Rockx B, Chen J, Meng FL, Lavillette D, Li D. Uncovering a conserved vulnerability site in SARS-CoV-2 by a human antibody. EMBO Mol Med 2021;:e14544. [PMID: 34672091 DOI: 10.15252/emmm.202114544] [Reference Citation Analysis]
717 Li AJ, Li X. Sex-dependent immune response and lethality of COVID-19. Stem Cell Res 2020;50:102116. [PMID: 33352531 DOI: 10.1016/j.scr.2020.102116] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
718 Salazar F, Bignell E, Brown GD, Cook PC, Warris A. Pathogenesis of Respiratory Viral and Fungal Coinfections. Clin Microbiol Rev 2021;:e0009421. [PMID: 34788127 DOI: 10.1128/CMR.00094-21] [Reference Citation Analysis]
719 Yin R, Guest JD, Taherzadeh G, Gowthaman R, Mittra I, Quackenbush J, Pierce BG. Structural and energetic profiling of SARS-CoV-2 receptor binding domain antibody recognition and the impact of circulating variants. PLoS Comput Biol 2021;17:e1009380. [PMID: 34491988 DOI: 10.1371/journal.pcbi.1009380] [Reference Citation Analysis]
720 Erdem Ö, Eş I, Saylan Y, Inci F. Unifying the Efforts of Medicine, Chemistry, and Engineering in Biosensing Technologies to Tackle the Challenges of the COVID-19 Pandemic. Anal Chem 2021. [PMID: 34874149 DOI: 10.1021/acs.analchem.1c04454] [Reference Citation Analysis]
721 Perez-Miller S, Patek M, Moutal A, Duran P, Cabel CR, Thorne CA, Campos SK, Khanna R. Novel Compounds Targeting Neuropilin Receptor 1 with Potential To Interfere with SARS-CoV-2 Virus Entry. ACS Chem Neurosci 2021;12:1299-312. [PMID: 33787218 DOI: 10.1021/acschemneuro.0c00619] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
722 Cao Y, Sun Y, Tian X, Bai Z, Gong Y, Qi J, Liu D, Liu W, Li J. Analysis of ACE2 Gene-Encoded Proteins Across Mammalian Species. Front Vet Sci 2020;7:457. [PMID: 32719819 DOI: 10.3389/fvets.2020.00457] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
723 Gomez-Gutierrez P, Perez JJ. Discovery of a Bradykinin B2 Partial Agonist Profile of Raloxifene in a Drug Repurposing Campaign. Int J Mol Sci 2020;22:E257. [PMID: 33383825 DOI: 10.3390/ijms22010257] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
724 Wlodawer A, Dauter Z, Shabalin IG, Gilski M, Brzezinski D, Kowiel M, Minor W, Rupp B, Jaskolski M. Ligand-centered assessment of SARS-CoV-2 drug target models in the Protein Data Bank. FEBS J 2020;287:3703-18. [PMID: 32418327 DOI: 10.1111/febs.15366] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
725 Verkhivker GM, Agajanian S, Oztas DY, Gupta G. Comparative Perturbation-Based Modeling of the SARS-CoV-2 Spike Protein Binding with Host Receptor and Neutralizing Antibodies: Structurally Adaptable Allosteric Communication Hotspots Define Spike Sites Targeted by Global Circulating Mutations. Biochemistry 2021;60:1459-84. [PMID: 33900725 DOI: 10.1021/acs.biochem.1c00139] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
726 Singla R, Mishra A, Joshi R, Jha S, Sharma AR, Upadhyay S, Sarma P, Prakash A, Medhi B. Human animal interface of SARS-CoV-2 (COVID-19) transmission: a critical appraisal of scientific evidence. Vet Res Commun 2020;44:119-30. [PMID: 32926266 DOI: 10.1007/s11259-020-09781-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
727 Abdelrahman Z, Chen Z, Lyu H, Wang X. Comparisons of the immunological landscape between COVID-19, influenza, and respiratory syncytial virus patients by clustering analysis. Comput Struct Biotechnol J 2021;19:2347-55. [PMID: 33907612 DOI: 10.1016/j.csbj.2021.04.043] [Reference Citation Analysis]
728 Liu J, Lu F, Chen Y, Plow E, Qin J. Integrin mediates cell entry of the SARS-CoV-2 virus independent of cellular receptor ACE2. J Biol Chem 2022;:101710. [PMID: 35150743 DOI: 10.1016/j.jbc.2022.101710] [Reference Citation Analysis]
729 Nakhleh A, Shehadeh N. Glycemic control of type 2 diabetic patients with coronavirus disease during hospitalization: a proposal for early insulin therapy. Am J Physiol Endocrinol Metab 2020;318:E835-7. [PMID: 32401039 DOI: 10.1152/ajpendo.00163.2020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
730 Tabynov K, Turebekov N, Babayeva M, Fomin G, Yerubayev T, Yespolov T, Li L, Renukaradhya GJ, Petrovsky N, Tabynov K. An adjuvanted subunit SARS-CoV-2 spike protein vaccine provides protection against Covid-19 infection and transmission. NPJ Vaccines 2022;7:24. [PMID: 35197485 DOI: 10.1038/s41541-022-00450-8] [Reference Citation Analysis]
731 Wang Z, Xu X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells 2020;9:E920. [PMID: 32283711 DOI: 10.3390/cells9040920] [Cited by in Crossref: 212] [Cited by in F6Publishing: 204] [Article Influence: 106.0] [Reference Citation Analysis]
732 Zhou W, Xu C, Wang P, Luo M, Xu Z, Cheng R, Jin X, Guo Y, Xue G, Juan L, Anashkina AA, Nie H, Jiang Q. N439K Variant in Spike Protein Alter the Infection Efficiency and Antigenicity of SARS-CoV-2 Based on Molecular Dynamics Simulation. Front Cell Dev Biol 2021;9:697035. [PMID: 34414185 DOI: 10.3389/fcell.2021.697035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
733 Valdes-Balbin Y, Santana-Mederos D, Paquet F, Fernandez S, Climent Y, Chiodo F, Rodríguez L, Sanchez Ramirez B, Leon K, Hernandez T, Castellanos-Serra L, Garrido R, Chen GW, Garcia-Rivera D, Rivera DG, Verez-Bencomo V. Molecular Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines. ACS Cent Sci 2021;7:757-67. [PMID: 34075345 DOI: 10.1021/acscentsci.1c00216] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
734 Uddin MB, Sajib EH, Hoque SF, Bappy MNI, Elahi F, Ghosh A, Muhit S, Hassan MM, Hasan M, Chelliah R, Park SJ, Mony TJ, Oh DH, Ahmed SSU. Genomic diversity and molecular dynamics interaction on mutational variances among RB domains of SARS-CoV-2 interplay drug inactivation. Infect Genet Evol 2021;:105128. [PMID: 34752930 DOI: 10.1016/j.meegid.2021.105128] [Reference Citation Analysis]
735 VanPatten S, He M, Altiti A, F Cheng K, Ghanem MH, Al-Abed Y. Evidence supporting the use of peptides and peptidomimetics as potential SARS-CoV-2 (COVID-19) therapeutics. Future Med Chem 2020;12:1647-56. [PMID: 32672061 DOI: 10.4155/fmc-2020-0180] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 11.5] [Reference Citation Analysis]
736 Witkowska D. Mass Spectrometry and Structural Biology Techniques in the Studies on the Coronavirus-Receptor Interaction. Molecules 2020;25:E4133. [PMID: 32927621 DOI: 10.3390/molecules25184133] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
737 Morens DM, Fauci AS. Emerging Pandemic Diseases: How We Got to COVID-19. Cell. 2020;182:1077-1092. [PMID: 32846157 DOI: 10.1016/j.cell.2020.08.021] [Cited by in Crossref: 120] [Cited by in F6Publishing: 100] [Article Influence: 60.0] [Reference Citation Analysis]
738 Kim E, Kim YC, Park JY, Jung J, Lee JP, Kim H. Evaluation of the Prognosis of COVID-19 Patients According to the Presence of Underlying Diseases and Drug Treatment. Int J Environ Res Public Health 2021;18:5342. [PMID: 34067850 DOI: 10.3390/ijerph18105342] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
739 Macela A, Kubelkova K. Why Does SARS-CoV-2 Infection Induce Autoantibody Production? Pathogens 2021;10:380. [PMID: 33809954 DOI: 10.3390/pathogens10030380] [Reference Citation Analysis]
740 Brouwer PJM, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, Torres JL, Okba NMA, Claireaux M, Kerster G, Bentlage AEH, van Haaren MM, Guerra D, Burger JA, Schermer EE, Verheul KD, van der Velde N, van der Kooi A, van Schooten J, van Breemen MJ, Bijl TPL, Sliepen K, Aartse A, Derking R, Bontjer I, Kootstra NA, Wiersinga WJ, Vidarsson G, Haagmans BL, Ward AB, de Bree GJ, Sanders RW, van Gils MJ. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science 2020;369:643-50. [PMID: 32540902 DOI: 10.1126/science.abc5902] [Cited by in Crossref: 500] [Cited by in F6Publishing: 490] [Article Influence: 250.0] [Reference Citation Analysis]
741 Cruz-Teran C, Tiruthani K, McSweeney M, Ma A, Pickles R, Lai SK. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Adv Drug Deliv Rev 2021;169:100-17. [PMID: 33309815 DOI: 10.1016/j.addr.2020.12.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
742 Williams-Noonan BJ, Todorova N, Kulkarni K, Aguilar MI, Yarovsky I. An Active Site Inhibitor Induces Conformational Penalties for ACE2 Recognition by the Spike Protein of SARS-CoV-2. J Phys Chem B 2021;125:2533-50. [PMID: 33657325 DOI: 10.1021/acs.jpcb.0c11321] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
743 Buratto D, Saxena A, Ji Q, Yang G, Pantano S, Zonta F. Rapid Assessment of Binding Affinity of SARS-COV-2 Spike Protein to the Human Angiotensin-Converting Enzyme 2 Receptor and to Neutralizing Biomolecules Based on Computer Simulations. Front Immunol 2021;12:730099. [PMID: 34858396 DOI: 10.3389/fimmu.2021.730099] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
744 Narang D, James DA, Balmer MT, Wilson DJ. Protein Footprinting, Conformational Dynamics, and Core Interface-Adjacent Neutralization "Hotspots" in the SARS-CoV-2 Spike Protein Receptor Binding Domain/Human ACE2 Interaction. J Am Soc Mass Spectrom 2021;32:1593-600. [PMID: 33794092 DOI: 10.1021/jasms.0c00465] [Reference Citation Analysis]
745 AlGhamdi NA, Alsuwat HS, Borgio JF, AbdulAzeez S. Emerging of composition variations of SARS-CoV-2 spike protein and human ACE2 contribute to the level of infection: in silico approaches. J Biomol Struct Dyn 2020;:1-12. [PMID: 33138699 DOI: 10.1080/07391102.2020.1841032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
746 Verkhivker GM, Agajanian S, Oztas DY, Gupta G. Landscape-Based Mutational Sensitivity Cartography and Network Community Analysis of the SARS-CoV-2 Spike Protein Structures: Quantifying Functional Effects of the Circulating D614G Variant. ACS Omega 2021;6:16216-33. [PMID: 34179666 DOI: 10.1021/acsomega.1c02336] [Reference Citation Analysis]
747 Ghasemiyeh P, Mohammadi-Samani S, Firouzabadi N, Dehshahri A, Vazin A. A focused review on technologies, mechanisms, safety, and efficacy of available COVID-19 vaccines. Int Immunopharmacol 2021;100:108162. [PMID: 34562844 DOI: 10.1016/j.intimp.2021.108162] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
748 Egieyeh S, Egieyeh E, Malan S, Christofells A, Fielding B. Computational drug repurposing strategy predicted peptide-based drugs that can potentially inhibit the interaction of SARS-CoV-2 spike protein with its target (humanACE2). PLoS One 2021;16:e0245258. [PMID: 33417604 DOI: 10.1371/journal.pone.0245258] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
749 Barre A, Damme EJMV, Simplicien M, Benoist H, Rougé P. Man-Specific, GalNAc/T/Tn-Specific and Neu5Ac-Specific Seaweed Lectins as Glycan Probes for the SARS-CoV-2 (COVID-19) Coronavirus. Mar Drugs 2020;18:E543. [PMID: 33138151 DOI: 10.3390/md18110543] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
750 Ionescu MI. An Overview of the Crystallized Structures of the SARS-CoV-2. Protein J 2020;39:600-18. [PMID: 33098476 DOI: 10.1007/s10930-020-09933-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
751 He Y, Qu J, Wei L, Liao S, Zheng N, Liu Y, Wang X, Jing Y, Shen CK, Ji C, Luo G, Zhang Y, Xiang Q, Fu Y, Li S, Fan Y, Fang S, Wang P, Li L. Generation and Effect Testing of a SARS-CoV-2 RBD-Targeted Polyclonal Therapeutic Antibody Based on a 2-D Airway Organoid Screening System. Front Immunol 2021;12:689065. [PMID: 34733269 DOI: 10.3389/fimmu.2021.689065] [Reference Citation Analysis]
752 Helal MA, Shouman S, Abdelwaly A, Elmehrath AO, Essawy M, Sayed SM, Saleh AH, El-Badri N. Molecular basis of the potential interaction of SARS-CoV-2 spike protein to CD147 in COVID-19 associated-lymphopenia. J Biomol Struct Dyn 2020;:1-11. [PMID: 32936048 DOI: 10.1080/07391102.2020.1822208] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]