BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lu Z, Li J, Ruan K, Sun M, Zhang S, Liu T, Yin J, Wang X, Chen H, Wang Y, Zou P, Huang Q, Ye J, Rao H. Deep learning-assisted smartphone-based ratio fluorescence for “on–off-on” sensing of Hg2+ and thiram. Chemical Engineering Journal 2022;435:134979. [DOI: 10.1016/j.cej.2022.134979] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Lu Z, Li M, Chen M, Wang Q, Wu C, Sun M, Su G, Wang X, Wang Y, Zhou X, Ye J, Liu T, Rao H. Deep learning-assisted smartphone-based portable and visual ratiometric fluorescence device integrated intelligent gel label for agro-food freshness detection. Food Chem 2023;413:135640. [PMID: 36758385 DOI: 10.1016/j.foodchem.2023.135640] [Reference Citation Analysis]
2 Yang Z, Hu L, Ning K, Wu Y, Liang J. A fluorescence sensor for thiram detection based on DNA-templated silver nanoclusters without metal ion-mediator. Food Chem 2023;413:135428. [PMID: 36758384 DOI: 10.1016/j.foodchem.2023.135428] [Reference Citation Analysis]
3 Chen H, Zhuang Z, Guo S, Xie S, Xin Y, Chen Y, Ouyang S, Zhao W, Shen K, Tao J, Zhao P. Artificial Neural Network Processed Linear-Light Tristimulus and Hue Parameters of Fluorescence for Smartphone Assisted Point-of-Care Testing Device. Sensors and Actuators B: Chemical 2023. [DOI: 10.1016/j.snb.2023.133659] [Reference Citation Analysis]
4 Zhu M, Sun L, Liu X, Pang X, Fan F, Yang X, Hua R, Wang Y. A reversible CHEF-based NIR fluorescent probe for sensing Hg(2+) and its multiple application in environmental media and biological systems. Sci Total Environ 2023;874:162460. [PMID: 36842597 DOI: 10.1016/j.scitotenv.2023.162460] [Reference Citation Analysis]
5 Hou J, Zhang Y, Ming F, Hong Y, Liu H, He Q, Hou C, Huo D. Ratio fluorescence sensor based on CD/Cu-MOFs for detection of Hg(2). Appl Opt 2023;62:A127-36. [PMID: 36821331 DOI: 10.1364/AO.473425] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Xing S, Cheng S, Tan M. Multi-emitter metal-organic frameworks as ratiometric luminescent sensors for food contamination and spoilage detection. Crit Rev Food Sci Nutr 2023;:1-17. [PMID: 36794423 DOI: 10.1080/10408398.2023.2179594] [Reference Citation Analysis]
7 Lu Z, Chen M, Liu T, Wu C, Sun M, Su G, Wang X, Wang Y, Yin H, Zhou X, Ye J, Shen Y, Rao H. Machine Learning System To Monitor Hg(2+) and Sulfide Using a Polychromatic Fluorescence-Colorimetric Paper Sensor. ACS Appl Mater Interfaces 2023. [PMID: 36750421 DOI: 10.1021/acsami.2c16565] [Reference Citation Analysis]
8 de Castro CM, Olivi P, de Freitas Araújo KC, Barbosa Segundo ID, dos Santos EV, Martínez-huitle CA. Environmental application of a cost-effective smartphone-based method for COD analysis: Applicability in the electrochemical treatment of real wastewater. Science of The Total Environment 2023;855:158816. [DOI: 10.1016/j.scitotenv.2022.158816] [Reference Citation Analysis]
9 Tang S, Wu X, Zhao P, Tang K, Chen Y, Fu J, Lei H, Yang Z, Zhang Z. Ratiometric Fluorescence Capillary Sensor-Integrated Molecular Imprinting for Simultaneous Detection of Two Biological Indicators of Parkinson's Disease. Anal Chem 2022;94:17223-31. [PMID: 36449628 DOI: 10.1021/acs.analchem.2c03926] [Reference Citation Analysis]
10 Lu Z, Chen S, Chen M, Ma H, Wang T, Liu T, Yin J, Sun M, Wu C, Su G, Dai X, Wang X, Wang Y, Yin H, Zhou X, Shen Y, Rao H. Trichromatic ratiometric fluorescent sensor based on machine learning and smartphone for visual and portable monitoring of tetracycline antibiotics. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140492] [Reference Citation Analysis]
11 Wu Y, Zhang Y, Xu Z, Guo X, Yang W, Zhang X, Liao Y, Fan M, Zhang D. A Portable Smartphone-Based System for the Detection of Blood Calcium Using Ratiometric Fluorescent Probes. Biosensors 2022;12:917. [DOI: 10.3390/bios12110917] [Reference Citation Analysis]
12 Vonnie JM, Rovina K, Mariah AMA, Erna KH, Felicia WXL, ‘Aqilah MNN. Trends in nanotechnology techniques for detecting heavy metals in food and contaminated water: a review. Int J Environ Sci Technol . [DOI: 10.1007/s13762-022-04487-z] [Reference Citation Analysis]
13 Xu M, Wang X, Liu X. Detection of Heavy Metal Ions by Ratiometric Photoelectric Sensor. J Agric Food Chem 2022. [PMID: 36074997 DOI: 10.1021/acs.jafc.2c03916] [Reference Citation Analysis]
14 Ruan K, Zhao S, Jiang X, Li Y, Fei J, Ou D, Tang Q, Lu Z, Liu T, Xia J. A 3D Fluorescence Classification and Component Prediction Method Based on VGG Convolutional Neural Network and PARAFAC Analysis Method. Applied Sciences 2022;12:4886. [DOI: 10.3390/app12104886] [Reference Citation Analysis]