BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao X, Dai Y, Ma F, Misal S, Hasrat K, Zhu H, Qi Z. Molecular engineering to accelerate cancer cell discrimination and boost AIE-active type I photosensitizer for photodynamic therapy under hypoxia. Chemical Engineering Journal 2021;410:128133. [DOI: 10.1016/j.cej.2020.128133] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Li JH, You PD, Lu F, Huang JT, Fu JL, Tang HY, Zhou CQ. Single aromatics sulfonamide substituted dibenzothiazole squaraines for tumor NIR imaging and efficient photodynamic therapy at low drug dose. J Photochem Photobiol B 2023;240:112653. [PMID: 36706664 DOI: 10.1016/j.jphotobiol.2023.112653] [Reference Citation Analysis]
2 Feng H, Zhao Q, Zhang B, Hu H, Liu M, Wu K, Li X, Zhang X, Zhang L, Liu Y. Enabling Photo-Crosslinking and Photo-Sensitizing Properties for Synthetic Fluorescent Protein Chromophores. Angew Chem Int Ed Engl 2023;62:e202215215. [PMID: 36370037 DOI: 10.1002/anie.202215215] [Reference Citation Analysis]
3 Liu J, Chen W, Zheng C, Hu F, Zhai J, Bai Q, Sun N, Qian G, Zhang Y, Dong K, Lu T. Recent molecular design strategies for efficient photodynamic therapy and its synergistic therapy based on AIE photosensitizers. European Journal of Medicinal Chemistry 2022;244:114843. [DOI: 10.1016/j.ejmech.2022.114843] [Reference Citation Analysis]
4 Zhou J, Qi F, Chen Y, Zhang S, Zheng X, He W, Guo Z. Aggregation-Induced Emission Luminogens for Enhanced Photodynamic Therapy: From Organelle Targeting to Tumor Targeting. Biosensors 2022;12:1027. [DOI: 10.3390/bios12111027] [Reference Citation Analysis]
5 Wang Y, Ren M, Li Y, Liu F, Wang Y, Wang Z, Feng L. Bioactive AIEgens Tailored for Specific and Sensitive Theranostics of Gram-Positive Bacterial Infection. ACS Appl Mater Interfaces 2022. [PMID: 36194189 DOI: 10.1021/acsami.2c14550] [Reference Citation Analysis]
6 Li D, Liu P, Tan Y, Zhang Z, Kang M, Wang D, Tang BZ. Type I Photosensitizers Based on Aggregation-Induced Emission: A Rising Star in Photodynamic Therapy. Biosensors 2022;12:722. [DOI: 10.3390/bios12090722] [Reference Citation Analysis]
7 Huang K, Xie S, Jiang L, Li J, Chen J. A glutathione and hydrogen sulfide responsive photosensitizer for enhanced photodynamic therapy. Dyes and Pigments 2022;205:110529. [DOI: 10.1016/j.dyepig.2022.110529] [Reference Citation Analysis]
8 Wu MY, Wang Y, Wang LJ, Wang JL, Xia FW, Feng S. A novel furo[3,2-c]pyridine-based AIE photosensitizer for specific imaging and photodynamic ablation of Gram-positive bacteria. Chem Commun (Camb) 2022. [PMID: 36039808 DOI: 10.1039/d2cc04084k] [Reference Citation Analysis]
9 Abrahamse H, Hamblin MR, George S. Structure and functions of Aggregation-Induced Emission-Photosensitizers in anticancer and antimicrobial theranostics. Front Chem 2022;10:984268. [DOI: 10.3389/fchem.2022.984268] [Reference Citation Analysis]
10 Slovesnova NV, Minin AS, Smolyuk LT, Taniya OS, Tsmokalyuk AN, Kim GA, Kovalev IS, Pozdina VA, Kopchuk DS, Krinochkin AP, Zyryanov GV, Petrov AY, Charushin VN. Synthesis of new water-soluble polyarene-substituted naphtho[1,2-d]oxazole-based fluorophores as fluorescent dyes and biological photosensitizers. Dyes and Pigments 2022;204:110410. [DOI: 10.1016/j.dyepig.2022.110410] [Reference Citation Analysis]
11 Wang S, Zhou M, Chen L, Ren M, Bu Y, Wang J, Yu ZP, Zhu X, Zhang J, Wang L, Zhou H. Polarity-Sensitive Probe: Dual-Channel Visualization of the "Chameleon" Migration with the Assistance of Reactive Oxygen Species. ACS Appl Bio Mater 2022. [PMID: 35797702 DOI: 10.1021/acsabm.2c00488] [Reference Citation Analysis]
12 Pan C, Zhao W, Zhao X, Liu Z, Li X, Lyu Y, Wu X, Zhu Z, Zhu W, Wang Q. Type I photosensitizer based on AIE chromophore tricyano-methylene-pyridine for photodynamic therapy. Green Chemical Engineering 2022. [DOI: 10.1016/j.gce.2022.07.004] [Reference Citation Analysis]
13 Chen C, Wu C, Yu J, Zhu X, Wu Y, Liu J, Zhang Y. Photodynamic-based combinatorial cancer therapy strategies: Tuning the properties of nanoplatform according to oncotherapy needs. Coordination Chemistry Reviews 2022;461:214495. [DOI: 10.1016/j.ccr.2022.214495] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
14 Liu S, Wang B, Yu Y, Liu Y, Zhuang Z, Zhao Z, Feng G, Qin A, Tang BZ. Cationization-Enhanced Type I and Type II ROS Generation for Photodynamic Treatment of Drug-Resistant Bacteria. ACS Nano 2022. [PMID: 35584060 DOI: 10.1021/acsnano.2c01206] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
15 Xue K, Dai Y, Zhao X, Zhang P, Ma F, Zhang D, Ji H, Wang X, Liang J, Qi Z. Boost highly efficient singlet oxygen generation and accelerate cancer cell apoptosis for photodynamic therapy by logically designed mitochondria targeted near-infrared AIEgens. Sensors and Actuators B: Chemical 2022;358:131471. [DOI: 10.1016/j.snb.2022.131471] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
16 Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 42.0] [Reference Citation Analysis]
17 Xiao YF, Chen WC, Chen JX, Lu G, Tian S, Cui X, Zhang Z, Chen H, Wan Y, Li S, Lee CS. Amplifying Free Radical Generation of AIE Photosensitizer with Small Singlet-Triplet Splitting for Hypoxia-Overcoming Photodynamic Therapy. ACS Appl Mater Interfaces 2022;14:5112-21. [PMID: 35048696 DOI: 10.1021/acsami.1c23797] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
18 Xiao P, Shen Z, Wang D, Pan Y, Li Y, Gong J, Wang L, Wang D, Tang BZ. Precise Molecular Engineering of Type I Photosensitizers with Near-Infrared Aggregation-Induced Emission for Image-Guided Photodynamic Killing of Multidrug-Resistant Bacteria. Adv Sci (Weinh) 2022;9:e2104079. [PMID: 34927383 DOI: 10.1002/advs.202104079] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
19 Hong L, Li J, Luo Y, Guo T, Zhang C, Ou S, Long Y, Hu Z. Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy. Biomolecules 2022;12:81. [DOI: 10.3390/biom12010081] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
20 Chen L, Wang X, Yuan Y, Hu R, Chen Q, Zhu L, Gu M, Shen C. Photosensitizers with Aggregation-induced Emission and Their Biomedical Applications. Engineered Regeneration 2022. [DOI: 10.1016/j.engreg.2022.01.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Guo J, Dai J, Peng X, Wang Q, Wang S, Lou X, Xia F, Zhao Z, Tang BZ. 9,10-Phenanthrenequinone: A Promising Kernel to Develop Multifunctional Antitumor Systems for Efficient Type I Photodynamic and Photothermal Synergistic Therapy. ACS Nano 2021;15:20042-55. [PMID: 34846125 DOI: 10.1021/acsnano.1c07730] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
22 Wang Y, Sun Y, Ran J, Yang H, Xiao S, Yang J, Yang C, Wang H, Liu Y. Utilization of Nonradiative Excited-State Dissipation for Promoted Phototheranostics Based on an AIE-Active Type I ROS Generator. ACS Appl Mater Interfaces 2021. [PMID: 34932321 DOI: 10.1021/acsami.1c19008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
23 Zha M, Yang G, Li Y, Zhang C, Li B, Li K. Recent Advances in AIEgen-Based Photodynamic Therapy and Immunotherapy. Adv Healthc Mater 2021;10:e2101066. [PMID: 34519181 DOI: 10.1002/adhm.202101066] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
24 Dai J, Dong X, Wang Q, Lou X, Xia F, Wang S. PEG-Polymer Encapsulated Aggregation-Induced Emission Nanoparticles for Tumor Theranostics. Adv Healthc Mater 2021;10:e2101036. [PMID: 34414687 DOI: 10.1002/adhm.202101036] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
25 Chen H, Wan Y, Cui X, Li S, Lee CS. Recent Advances in Hypoxia-Overcoming Strategy of Aggregation-Induced Emission Photosensitizers for Efficient Photodynamic Therapy. Adv Healthc Mater 2021;10:e2101607. [PMID: 34674386 DOI: 10.1002/adhm.202101607] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
26 Yu Y, Wu S, Zhang L, Xu S, Dai C, Gan S, Xie G, Feng G, Tang BZ. Cationization to boost both type I and type II ROS generation for photodynamic therapy. Biomaterials 2022;280:121255. [PMID: 34810034 DOI: 10.1016/j.biomaterials.2021.121255] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
27 Mao L, Huang H, Hu D, Ma H, Tian M, Zhang X, Wei Y. A near-infrared bioprobe with aggregation-induced emission feature for in vitro photodynamic therapy. Dyes and Pigments 2021;194:109521. [DOI: 10.1016/j.dyepig.2021.109521] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
28 Bian H, Ma D, Zhang X, Xin K, Yang Y, Peng X, Xiao Y. Tailored Engineering of Novel Xanthonium Polymethine Dyes for Synergetic PDT and PTT Triggered by 1064 nm Laser toward Deep-Seated Tumors. Small 2021;17:e2100398. [PMID: 33885221 DOI: 10.1002/smll.202100398] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]