BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gomes LM, Bataglioli JC, Storr T. Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coordination Chemistry Reviews 2020;412:213255. [DOI: 10.1016/j.ccr.2020.213255] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 14.5] [Reference Citation Analysis]
Number Citing Articles
1 Kwak J, Woo J, Park S, Lim MH. Rational design of photoactivatable metal complexes to target and modulate amyloid-β peptides. Journal of Inorganic Biochemistry 2023;238:112053. [DOI: 10.1016/j.jinorgbio.2022.112053] [Reference Citation Analysis]
2 Ramos-inza S, Plano D, Sanmartín C. Metal-based compounds containing selenium: An appealing approach towards novel therapeutic drugs with anticancer and antimicrobial effects. European Journal of Medicinal Chemistry 2022;244:114834. [DOI: 10.1016/j.ejmech.2022.114834] [Reference Citation Analysis]
3 Tao P, Xu W, Gu S, Shi H, Wang Q, Xu Y. Traditional Chinese medicine promotes the control and treatment of dementia. Front Pharmacol 2022;13:1015966. [DOI: 10.3389/fphar.2022.1015966] [Reference Citation Analysis]
4 Hong M, Kim M, Yoon J, Lee S, Baik M, Lim MH. Excited-State Intramolecular Hydrogen Transfer of Compact Molecules Controls Amyloid Aggregation Profiles. JACS Au 2022;2:2001-2012. [DOI: 10.1021/jacsau.2c00281] [Reference Citation Analysis]
5 Zheng T, Huo Y, Wang Y, Du W. Regulation of oxaliplatin and carboplatin on the assembly behavior and cytotoxicity of human islet amyloid polypeptide. J Inorg Biochem 2022;237:111989. [PMID: 36108345 DOI: 10.1016/j.jinorgbio.2022.111989] [Reference Citation Analysis]
6 Takalloobanafshi G, Kukreja A, Hicks JW. Historical efforts to develop 99mTc-based amyloid plaque targeting radiotracers. Front Nucl Med 2022;2. [DOI: 10.3389/fnume.2022.963698] [Reference Citation Analysis]
7 Roy M, Nath AK, Pal I, Dey SG. Second Sphere Interactions in Amyloidogenic Diseases. Chem Rev 2022. [PMID: 35471949 DOI: 10.1021/acs.chemrev.1c00941] [Reference Citation Analysis]
8 Araujo de Oliveira AP, Romero Colmenares VC, Diniz R, Freitas JTJ, da Cruz CM, Lages EB, Ferreira LAM, Vieira RP, Beraldo H. Memantine-Derived Schiff Bases as Transdermal Prodrug Candidates. ACS Omega 2022;7:11678-87. [PMID: 35449959 DOI: 10.1021/acsomega.1c06571] [Reference Citation Analysis]
9 Yang A, Liu C, Zhang H, Wu J, Shen R, Kou X. A multifunctional anti-AD approach: Design, synthesis, X-ray crystal structure, biological evaluation and molecular docking of chrysin derivatives. European Journal of Medicinal Chemistry 2022;233:114216. [DOI: 10.1016/j.ejmech.2022.114216] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Yawson GK, Will MF, Huffman SE, Strandquist ET, Bothwell PJ, Oliver EB, Apuzzo CF, Platt DC, Weitzel CS, Jones MA, Ferrence GM, Hamaker CG, Webb MI. A Dual-Pronged Approach: A Ruthenium(III) Complex That Modulates Amyloid-β Aggregation and Disrupts Its Formed Aggregates. Inorg Chem 2022. [PMID: 35102739 DOI: 10.1021/acs.inorgchem.1c01651] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Jiang B, Martí AA. Probing Amyloid Nanostructures Using Photoluminescent Metal Complexes. Eur J Inorg Chem 2021;2021:4408-4424. [DOI: 10.1002/ejic.202100422] [Reference Citation Analysis]
12 Sezer N, Arı İ, Biçer Y, Koç M. Superparamagnetic nanoarchitectures: Multimodal functionalities and applications. Journal of Magnetism and Magnetic Materials 2021;538:168300. [DOI: 10.1016/j.jmmm.2021.168300] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Han J, Du Z, Lim MH. Mechanistic Insight into the Design of Chemical Tools to Control Multiple Pathogenic Features in Alzheimer's Disease. Acc Chem Res 2021;54:3930-40. [PMID: 34606227 DOI: 10.1021/acs.accounts.1c00457] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
14 Spyrou B, Hungnes IN, Mota F, Bordoloi J, Blower PJ, White JM, Ma MT, Donnelly PS. Oxorhenium(V) and Oxotechnetium(V) Complexes of N3S Tetradentate Ligands with a Styrylpyridyl Functional Group: Toward Imaging Agents to Assist in the Diagnosis of Alzheimer's Disease. Inorg Chem 2021;60:13669-80. [PMID: 34424670 DOI: 10.1021/acs.inorgchem.1c01992] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Wang Y, Huynh TT, Cho HJ, Wang YC, Rogers BE, Mirica LM. Amyloid β-Binding Bifunctional Chelators with Favorable Lipophilicity for 64Cu Positron Emission Tomography Imaging in Alzheimer's Disease. Inorg Chem 2021;60:12610-20. [PMID: 34351146 DOI: 10.1021/acs.inorgchem.1c02079] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
16 Wall BJ, Will MF, Yawson GK, Bothwell PJ, Platt DC, Apuzzo CF, Jones MA, Ferrence GM, Webb MI. Importance of Hydrogen Bonding: Structure-Activity Relationships of Ruthenium(III) Complexes with Pyridine-Based Ligands for Alzheimer's Disease Therapy. J Med Chem 2021;64:10124-38. [PMID: 34197109 DOI: 10.1021/acs.jmedchem.1c00360] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
17 Kalaiarasi G, Mohankumar A, Dharani S, Dallemer F, Sundararaj P, Prabhakaran R. ONO‐Pincer‐Type Coumarin‐Based Copper(II) Metalates: Effect on Alzheimer's Disease Pathologies in Caenorhabditis elegans. Eur J Inorg Chem 2021;2021:1383-1396. [DOI: 10.1002/ejic.202100039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Tamil Selvan S, Ravichandar R, Kanta Ghosh K, Mohan A, Mahalakshmi P, Gulyás B, Padmanabhan P. Coordination chemistry of ligands: Insights into the design of amyloid beta/tau-PET imaging probes and nanoparticles-based therapies for Alzheimer’s disease. Coordination Chemistry Reviews 2021;430:213659. [DOI: 10.1016/j.ccr.2020.213659] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
19 Majdoub S, Garda Z, Oliveira AC, Relich I, Pallier A, Lacerda S, Hureau C, Geraldes CFGC, Morfin JF, Tóth É. Concentration-Dependent Interactions of Amphiphilic PiB Derivative Metal Complexes with Amyloid Peptides Aβ and Amylin*. Chemistry 2021;27:2009-20. [PMID: 33026686 DOI: 10.1002/chem.202004000] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Zou XY, Xie RR, Li W, Su CL, Chen YS, Tang H. Novel sampangine derivatives as potent inhibitors of Cu2+-mediated amyloid-β protein aggregation, oxidative stress and inflammation. Int J Biol Macromol 2021;174:1-10. [PMID: 33476619 DOI: 10.1016/j.ijbiomac.2021.01.091] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Storr T. Multifunctional compounds for the treatment of Alzheimer’s disease. Can J Chem 2021;99:1-9. [DOI: 10.1139/cjc-2020-0279] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 de Paiva REF, Marçal Neto A, Santos IA, Jardim ACG, Corbi PP, Bergamini FRG. What is holding back the development of antiviral metallodrugs? A literature overview and implications for SARS-CoV-2 therapeutics and future viral outbreaks. Dalton Trans 2020;49:16004-33. [PMID: 33030464 DOI: 10.1039/d0dt02478c] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 18.0] [Reference Citation Analysis]
23 Cali MP, Pereira LMB, Teodoro MD, Sellani TA, Rodrigues EG, Carlos RM. Comparison of Aβ (1-40, 1-28, 11-22, and 29-40) aggregation processes and inhibition of toxic species generated in early stages of aggregation by a water-soluble ruthenium complex. J Inorg Biochem 2021;215:111314. [PMID: 33261934 DOI: 10.1016/j.jinorgbio.2020.111314] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Prasanna G, Jing P. Self-assembly of N-terminal Alzheimer's β-amyloid and its inhibition. Biochem Biophys Res Commun 2021;534:950-6. [PMID: 33143872 DOI: 10.1016/j.bbrc.2020.10.065] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Roberts KF, Brue CR, Preston A, Baxter D, Herzog E, Varelas E, Meade TJ. Cobalt(III) Schiff base complexes stabilize non-fibrillar amyloid-β aggregates with reduced toxicity. J Inorg Biochem 2020;213:111265. [PMID: 33059154 DOI: 10.1016/j.jinorgbio.2020.111265] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Omidpanah S, Vahedi-Mazdabadi Y, Manayi A, Rastegari A, Hariri R, Mortazavi-Ardestani E, Eftekhari M, Khanavi M, Akbarzadeh T, Saeedi M. Phytochemical investigation and anticholinesterase activity of ethyl acetate fraction of Myristica fragrans Houtt. seeds. Nat Prod Res 2020;:1-7. [PMID: 32640862 DOI: 10.1080/14786419.2020.1788555] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]