BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang M, Chen HP, Zhai Y, Jiang DN, Liu JY, Tian CX, Wu TL, Zhu CH, Deng SP, Li GL. Phoenixin: Expression at different ovarian development stages and effects on genes ralated to reproduction in spotted scat, Scatophagus argus. Comp Biochem Physiol B Biochem Mol Biol 2019;228:17-25. [PMID: 30423433 DOI: 10.1016/j.cbpb.2018.10.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Liang H, Zhao Q, Lv S, Ji X. Regulation and physiological functions of phoenixin. Front Mol Biosci 2022;9:956500. [DOI: 10.3389/fmolb.2022.956500] [Reference Citation Analysis]
2 Jiang M, Liu J, Jiang D, Pan Q, Shi H, Huang Y, Zhu C, Li G, Deng S. Characterization and expression analysis of gpr173a and gpr173b revealed their involvement in reproductive regulation in spotted scat (Scatophagus argus). Aquaculture Reports 2022;25:101239. [DOI: 10.1016/j.aqrep.2022.101239] [Reference Citation Analysis]
3 Breton TS, Murray CA, Huff SR, Phaneuf AM, Tripp BM, Patuel SJ, Martyniuk CJ, Dimaggio MA. Phoenixin-14 alters transcriptome and steroid profiles in female green-spotted puffer (Dichotomyctere nigroviridis). Sci Rep 2022;12. [DOI: 10.1038/s41598-022-13695-z] [Reference Citation Analysis]
4 Rajeswari JJ, Vélez EJ, Unniappan S. Liver and muscle-specific effects of phoenixin-20 on the insulin-like growth factor system mRNAs in zebrafish. Growth Horm IGF Res 2022;63:101456. [PMID: 35305530 DOI: 10.1016/j.ghir.2022.101456] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022;11:957. [DOI: 10.3390/cells11060957] [Reference Citation Analysis]
6 Ren X, Huang Y, Li X, Li Z, Yang H, He R, Zhong H, Li G, Chen H. Identification and functional characterization of gonadotropin -releasing hormone in pompano (Trachinotus ovatus). Gen Comp Endocrinol 2022;316:113958. [PMID: 34861278 DOI: 10.1016/j.ygcen.2021.113958] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Hollander-Cohen L, Golan M, Levavi-Sivan B. Differential Regulation of Gonadotropins as Revealed by Transcriptomes of Distinct LH and FSH Cells of Fish Pituitary. Int J Mol Sci 2021;22:6478. [PMID: 34204216 DOI: 10.3390/ijms22126478] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
8 Breton TS, Sampson WGB, Clifford B, Phaneuf AM, Smidt I, True T, Wilcox AR, Lipscomb T, Murray C, DiMaggio MA. Characterization of the G protein-coupled receptor family SREB across fish evolution. Sci Rep 2021;11:12066. [PMID: 34103644 DOI: 10.1038/s41598-021-91590-9] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
9 Ceriani R, Calfún C, Whitlock KE. phoenixin(smim20), a gene coding for a novel reproductive ligand, is expressed in the brain of adult zebrafish. Gene Expr Patterns 2021;39:119164. [PMID: 33385537 DOI: 10.1016/j.gep.2020.119164] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
10 Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Molecular and Cellular Endocrinology 2020;518:111029. [DOI: 10.1016/j.mce.2020.111029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
11 Zhai Y, Deng SP, Liu JY, Jiang DN, Huang Y, Zhu CH, Li GL, Li MH. The reproductive regulation of LPXRFa and its receptor in the hypothalamo-pituitary-gonadal axis of the spotted scat (Scatophagus argus). Fish Physiol Biochem 2021;47:93-108. [PMID: 33215297 DOI: 10.1007/s10695-020-00898-2] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Peng M, Zhu W, Yang C, Yao J, Chen H, Jiang W, He Z, Li Q, Liu Q, Zhao Y, Lin Y, Chen X, Zeng D, Chen X. Genetic diversity of mitochondrial D‐LOOP sequences in the spotted scat ( Scatophagus argus ) from different geographical populations along the northern coast of the South China Sea. J Appl Ichthyol 2021;37:73-82. [DOI: 10.1111/jai.14121] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
13 Billert M, Rak A, Nowak KW, Skrzypski M. Phoenixin: More than Reproductive Peptide. Int J Mol Sci 2020;21:E8378. [PMID: 33171667 DOI: 10.3390/ijms21218378] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
14 Chen HP, Cui XF, Wang YR, Li ZY, Tian CX, Jiang DN, Zhu CH, Zhang Y, Li SS, Li GL. Identification, functional characterization, and estrogen regulation on gonadotropin-releasing hormone in the spotted scat, Scatophagus argus. Fish Physiol Biochem 2020;46:1743-57. [PMID: 32514853 DOI: 10.1007/s10695-020-00825-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
15 Rajeswari JJ, Unniappan S. Phoenixin-20 Stimulates mRNAs Encoding Hypothalamo-Pituitary-Gonadal Hormones, is Pro-Vitellogenic, and Promotes Oocyte Maturation in Zebrafish. Sci Rep 2020;10:6264. [PMID: 32286445 DOI: 10.1038/s41598-020-63226-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
16 Rajeswari JJ, Blanco AM, Unniappan S. Phoenixin-20 suppresses food intake, modulates glucoregulatory enzymes, and enhances glycolysis in zebrafish. Am J Physiol Regul Integr Comp Physiol 2020;318:R917-28. [PMID: 32208925 DOI: 10.1152/ajpregu.00019.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]