1 |
Sun L, Liu Y, Song H, Hao J, Lin L. Engineering of an ene-reductase for producing the key intermediate of antiepileptic drug Brivaracetam. Appl Microbiol Biotechnol 2023;107:1649-61. [PMID: 36710288 DOI: 10.1007/s00253-023-12389-4] [Reference Citation Analysis]
|
2 |
Lonardi G, Parolin R, Licini G, Orlandi M. Catalytic Asymmetric Conjugate Reduction. Angew Chem Int Ed Engl 2023;:e202216649. [PMID: 36757599 DOI: 10.1002/anie.202216649] [Reference Citation Analysis]
|
3 |
Kang SW, Antoney J, Frkic RL, Lupton DW, Speight R, Scott C, Jackson CJ. Asymmetric Ene-Reduction of α,β-Unsaturated Compounds by F(420)-Dependent Oxidoreductases A Enzymes from Mycobacterium smegmatis. Biochemistry 2023;62:873-91. [PMID: 36637210 DOI: 10.1021/acs.biochem.2c00557] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Breukelaar WB, Polidori N, Singh A, Daniel B, Glueck SM, Gruber K, Kroutil W. Mechanistic Insights into the Ene-Reductase-Catalyzed Promiscuous Reduction of Oximes to Amines. ACS Catal 2023;13:2610-8. [PMID: 36846821 DOI: 10.1021/acscatal.2c06137] [Reference Citation Analysis]
|
5 |
Yang Y, Jin H, Li X, Yan J. Biohydrogenation of 1,3-Butadiene to 1-Butene under Acetogenic Conditions by Acetobacterium wieringae. Environ Sci Technol 2023;57:1637-45. [PMID: 36647731 DOI: 10.1021/acs.est.2c05683] [Reference Citation Analysis]
|
6 |
Kang SW, Antoney J, Lupton DW, Speight R, Scott C, Jackson CJ. Asymmetric Ene-Reduction by F(420) -Dependent Oxidoreductases B (FDOR-B) from Mycobacterium smegmatis. Chembiochem 2023;:e202200797. [PMID: 36716144 DOI: 10.1002/cbic.202200797] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
7 |
Böhmer S, Marx C, Goss R, Gilbert M, Sasso S, Happe T, Hemschemeier A. Chlamydomonas reinhardtii mutants deficient for Old Yellow Enzyme 3 exhibit increased photooxidative stress. Plant Direct 2023;7:e480. [PMID: 36685735 DOI: 10.1002/pld3.480] [Reference Citation Analysis]
|
8 |
Knaus T, Corrado ML, Mutti FG. One-Pot Biocatalytic Synthesis of Primary, Secondary, and Tertiary Amines with Two Stereocenters from α,β-Unsaturated Ketones Using Alkyl-Ammonium Formate. ACS Catal 2022;12:14459-75. [PMID: 36504913 DOI: 10.1021/acscatal.2c03052] [Reference Citation Analysis]
|
9 |
Li J, Li J, Cui Y, Wang M, Feng J, Yao P, Wu Q, Zhu D. Asymmetric Synthesis of Both Enantiomers of Dimethyl 2-Methylsuccinate by the Ene-Reductase-Catalyzed Reduction at High Substrate Concentration. Catalysts 2022;12:1133. [DOI: 10.3390/catal12101133] [Reference Citation Analysis]
|
10 |
Gonzalo G, Alcántara AR. ENZYME‐CATALYZED ASYMMETRIC SYNTHESIS. Catalytic Asymmetric Synthesis 2022. [DOI: 10.1002/9781119736424.ch14] [Reference Citation Analysis]
|
11 |
Papadopoulou A, Peters C, Borchert S, Steiner K, Buller R. Development of an Ene Reductase-Based Biocatalytic Process for the Production of Flavor Compounds. Org Process Res Dev . [DOI: 10.1021/acs.oprd.2c00096] [Reference Citation Analysis]
|
12 |
Hagiwara H. Introduction of Chiral Centers to α- and/or β-Positions of Carbonyl Groups by Biocatalytic Asymmetric Reduction of α,β-Unsaturated Carbonyl Compounds. Natural Product Communications 2022;17:1934578X2210990. [DOI: 10.1177/1934578x221099054] [Reference Citation Analysis]
|
13 |
Venturi S, Trajkovic M, Colombo D, Brenna E, Fraaije MW, Gatti FG, Macchi P, Zamboni E. Chemoenzymatic Synthesis of the Most Pleasant Stereoisomer of Jessemal. J Org Chem 2022. [PMID: 35442680 DOI: 10.1021/acs.joc.2c00427] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Kumar Roy T, Sreedharan R, Ghosh P, Gandhi T, Maiti D. Ene-Reductase: A Multifaceted Biocatalyst in Organic Synthesis. Chemistry 2022;28:e202103949. [PMID: 35133702 DOI: 10.1002/chem.202103949] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
15 |
Křen V, Kroutil W, Hall M. A Career in Biocatalysis: Kurt Faber. ACS Catal 2022;12:3909-22. [DOI: 10.1021/acscatal.2c00579] [Reference Citation Analysis]
|
16 |
Ribeaucourt D, Höfler GT, Yemloul M, Bissaro B, Lambert F, Berrin JG, Lafond M, Paul CE. Tunable Production of (R)- or (S)-Citronellal from Geraniol via a Bienzymatic Cascade Using a Copper Radical Alcohol Oxidase and Old Yellow Enzyme. ACS Catal 2022;12:1111-6. [PMID: 35096467 DOI: 10.1021/acscatal.1c05334] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
|
17 |
Reeve HA, Nicholson J, Altaf F, Lonsdale TH, Preissler J, Lauterbach L, Lenz O, Leimkühler S, Hollmann F, Paul CE, Vincent KA. A hydrogen-driven biocatalytic approach to recycling synthetic analogues of NAD(P)H. Chem Commun . [DOI: 10.1039/d2cc02411j] [Reference Citation Analysis]
|
18 |
Hanefeld U, Hollmann F, Paul CE. Biocatalysis making waves in organic chemistry. Chem Soc Rev 2021. [PMID: 34929722 DOI: 10.1039/d1cs00100k] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
|
19 |
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Cited by in Crossref: 20] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
|
20 |
Mohamed GA, Ibrahim SRM. Untapped Potential of Marine-Associated Cladosporium Species: An Overview on Secondary Metabolites, Biotechnological Relevance, and Biological Activities. Mar Drugs 2021;19:645. [PMID: 34822516 DOI: 10.3390/md19110645] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
21 |
Akporji N, Singhania V, Dussart-Gautheret J, Gallou F, Lipshutz BH. Nanomicelle-enhanced, asymmetric ERED-catalyzed reductions of activated olefins. Applications to 1-pot chemo- and bio-catalysis sequences in water. Chem Commun (Camb) 2021;57:11847-50. [PMID: 34698744 DOI: 10.1039/d1cc04774d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
22 |
Tan Z, Han Y, Fu Y, Zhang X, Xu M, Na Q, Zhuang W, Qu X, Ying H, Zhu C. Investigating the Structure‐Reactivity Relationships Between Nicotinamide Coenzyme Biomimetics and Pentaerythritol Tetranitrate Reductase. Adv Synth Catal 2022;364:103-13. [DOI: 10.1002/adsc.202100726] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
23 |
Kočovský P. Addition Reactions: Polar Addition. Organic Reaction Mechanisms Series 2021. [DOI: 10.1002/9781119531975.ch10] [Reference Citation Analysis]
|
24 |
Coxon JM. Molecular Rearrangements. Organic Reaction Mechanisms Series 2021. [DOI: 10.1002/9781119531975.ch12] [Reference Citation Analysis]
|
25 |
Shi Q, Jia Y, Wang H, Li S, Li H, Guo J, Dou T, Qin B, You S. Identification of four ene reductases and their preliminary exploration in the asymmetric synthesis of (R)-dihydrocarvone and (R)-profen derivatives. Enzyme Microb Technol 2021;150:109880. [PMID: 34489033 DOI: 10.1016/j.enzmictec.2021.109880] [Reference Citation Analysis]
|
26 |
Toogood HS, Scrutton NS. Flavoprotein‐dependent Bioreduction. Flavin‐Based Catalysis 2021. [DOI: 10.1002/9783527830138.ch8] [Reference Citation Analysis]
|
27 |
Hall M. Enzymatic strategies for asymmetric synthesis. RSC Chem Biol 2021;2:958-89. [PMID: 34458820 DOI: 10.1039/d1cb00080b] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
|
28 |
Wang W, Taber DF, Renata H. Practical Enzymatic Production of Carbocycles. Chemistry 2021;27:11773-94. [PMID: 34107092 DOI: 10.1002/chem.202101232] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
29 |
Fu H, Lam H, Emmanuel MA, Kim JH, Sandoval BA, Hyster TK. Ground-State Electron Transfer as an Initiation Mechanism for Biocatalytic C-C Bond Forming Reactions. J Am Chem Soc 2021;143:9622-9. [PMID: 34114803 DOI: 10.1021/jacs.1c04334] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
|
30 |
Joseph Srinivasan S, Cleary SE, Ramirez MA, Reeve HA, Paul CE, Vincent KA. E. coli Nickel-Iron Hydrogenase 1 Catalyses Non-native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene-reductases*. Angew Chem Int Ed Engl 2021;60:13824-8. [PMID: 33721401 DOI: 10.1002/anie.202101186] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
31 |
Eggers R, Jammer A, Jha S, Kerschbaumer B, Lahham M, Strandback E, Toplak M, Wallner S, Winkler A, Macheroux P. The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana. Phytochemistry 2021;189:112822. [PMID: 34118767 DOI: 10.1016/j.phytochem.2021.112822] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
32 |
Liu G, Li S, Shi Q, Li H, Guo J, Ouyang J, Jia X, Zhang L, You S, Qin B. Engineering of Saccharomyces pastorianus old yellow enzyme 1 for the synthesis of pharmacologically active (S)-profen derivatives. Molecular Catalysis 2021;507:111568. [DOI: 10.1016/j.mcat.2021.111568] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
33 |
“Separate‐pot Two‐step” Chemoenzymatic Transformation. Chemo‐Enzymatic Cascade Reactions 2021. [DOI: 10.1002/9783527814268.ch2] [Reference Citation Analysis]
|
34 |
López‐vidal MG, Gamboa G, Oksdath‐mansilla G, Bisogno FR. Photobiocatalysis. In: de Gonzalo G, Lavandera I, editors. Biocatalysis for Practitioners. Wiley; 2021. pp. 317-59. [DOI: 10.1002/9783527824465.ch12] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
35 |
Hall M. Applications of Oxidoreductases in Synthesis: A Roadmap to Access Value‐Added Products. Biocatalysis for Practitioners 2021. [DOI: 10.1002/9783527824465.ch7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
36 |
Grinter R, Greening C. Cofactor F420: an expanded view of its distribution, biosynthesis, and roles in bacteria and archaea. FEMS Microbiol Rev 2021:fuab021. [PMID: 33851978 DOI: 10.1093/femsre/fuab021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
37 |
Krikštaponis A, Urbelis G, Meškys R. The First Step of Biodegradation of 7-Hydroxycoumarin in Pseudomonas mandelii 7HK4 Depends on an Alcohol Dehydrogenase-Type Enzyme. Int J Mol Sci 2021;22:1552. [PMID: 33557119 DOI: 10.3390/ijms22041552] [Reference Citation Analysis]
|
38 |
Nett N, Duewel S, Schmermund L, Benary GE, Ranaghan K, Mulholland A, Opperman DJ, Hoebenreich S. A robust and stereocomplementary panel of ene-reductase variants for gram-scale asymmetric hydrogenation. Molecular Catalysis 2021;502:111404. [DOI: 10.1016/j.mcat.2021.111404] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
|
39 |
Winkler CK, Schrittwieser JH, Kroutil W. Power of Biocatalysis for Organic Synthesis. ACS Cent Sci 2021;7:55-71. [PMID: 33532569 DOI: 10.1021/acscentsci.0c01496] [Cited by in Crossref: 85] [Cited by in F6Publishing: 89] [Article Influence: 42.5] [Reference Citation Analysis]
|
40 |
Patil PD, Nadar SS, Marghade DT. Photo-Enzymatic Green Synthesis: The Potential of Combining Photo-Catalysis and Enzymes. Advances in Green Synthesis 2021. [DOI: 10.1007/978-3-030-67884-5_9] [Reference Citation Analysis]
|
41 |
Velikogne S, Breukelaar WB, Hamm F, Glabonjat RA, Kroutil W. C=C-Ene-Reductases Reduce the C=N Bond of Oximes. ACS Catal 2020;10:13377-82. [PMID: 33251037 DOI: 10.1021/acscatal.0c03755] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
42 |
Nagy F, Gyujto I, Tasnádi G, Barna B, Balogh-Weiser D, Faber K, Poppe L, Hall M. Design and application of a bi-functional redox biocatalyst through covalent co-immobilization of ene-reductase and glucose dehydrogenase. J Biotechnol 2020;323:246-53. [PMID: 32891641 DOI: 10.1016/j.jbiotec.2020.08.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
43 |
An C, Shaw MH, Tharp A, Verma D, Li H, Wang H, Wang X. Enantioselective Enzymatic Reduction of Acrylic Acids. Org Lett 2020;22:8320-5. [PMID: 33048553 DOI: 10.1021/acs.orglett.0c02959] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
44 |
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem 2021;133:5706-27. [DOI: 10.1002/ange.202001876] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
45 |
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021;60:5644-65. [PMID: 32330347 DOI: 10.1002/anie.202001876] [Cited by in Crossref: 52] [Cited by in F6Publishing: 60] [Article Influence: 17.3] [Reference Citation Analysis]
|
46 |
Aguillón AR, Miranda AS, Junior II, Souza ROMA. Biocatalysis toward the Synthesis of Chiral Amines. Synthetic Approaches to Nonaromatic Nitrogen Heterocycles 2020. [DOI: 10.1002/9781119708841.ch21] [Reference Citation Analysis]
|
47 |
Venturi S, Brenna E, Colombo D, Fraaije MW, Gatti FG, Macchi P, Monti D, Trajkovic M, Zamboni E. Multienzymatic Stereoselective Reduction of Tetrasubstituted Cyclic Enones to Halohydrins with Three Contiguous Stereogenic Centers. ACS Catal 2020;10:13050-7. [DOI: 10.1021/acscatal.0c04097] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
48 |
Wohlgemuth R. Biocatalysis - Key enabling tools from biocatalytic one-step and multi-step reactions to biocatalytic total synthesis. N Biotechnol 2021;60:113-23. [PMID: 33045418 DOI: 10.1016/j.nbt.2020.08.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
|
49 |
Shi Q, Wang H, Liu J, Li S, Guo J, Li H, Jia X, Huo H, Zheng Z, You S, Qin B. Old yellow enzymes: structures and structure-guided engineering for stereocomplementary bioreduction. Appl Microbiol Biotechnol 2020;104:8155-70. [PMID: 32830294 DOI: 10.1007/s00253-020-10845-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
50 |
Pimviriyakul P, Chaiyen P. Overview of flavin-dependent enzymes. Enzymes 2020;47:1-36. [PMID: 32951820 DOI: 10.1016/bs.enz.2020.06.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
51 |
Aleku GA, Saaret A, Bradshaw-allen RT, Derrington SR, Titchiner GR, Gostimskaya I, Gahloth D, Parker DA, Hay S, Leys D. Enzymatic C–H activation of aromatic compounds through CO2 fixation. Nat Chem Biol 2020;16:1255-60. [DOI: 10.1038/s41589-020-0603-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
|
52 |
Aranda C, de Gonzalo G. Biocatalyzed Redox Processes Employing Green Reaction Media. Molecules 2020;25:E3016. [PMID: 32630322 DOI: 10.3390/molecules25133016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
53 |
Nakano Y, Black MJ, Meichan AJ, Sandoval BA, Chung MM, Biegasiewicz KF, Zhu T, Hyster TK. Photoenzymatic Hydrogenation of Heteroaromatic Olefins Using 'Ene'-Reductases with Photoredox Catalysts. Angew Chem Int Ed Engl 2020;59:10484-8. [PMID: 32181943 DOI: 10.1002/anie.202003125] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
|
54 |
Nakano Y, Black MJ, Meichan AJ, Sandoval BA, Chung MM, Biegasiewicz KF, Zhu T, Hyster TK. Photoenzymatic Hydrogenation of Heteroaromatic Olefins Using ‘Ene’‐Reductases with Photoredox Catalysts. Angew Chem 2020;132:10570-4. [DOI: 10.1002/ange.202003125] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
55 |
Birolli WG, Zanin LL, Jimenez DEQ, Porto ALM. Synthesis of Knoevenagel Adducts Under Microwave Irradiation and Biocatalytic Ene-Reduction by the Marine-Derived Fungus Cladosporium sp. CBMAI 1237 for the Production of 2-Cyano-3-Phenylpropanamide Derivatives. Mar Biotechnol 2020;22:317-30. [DOI: 10.1007/s10126-020-09953-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
56 |
Janicki I, Kiełbasiński P, Szeląg J, Głębski A, Szczęsna-antczak M. Preparative scale application of Mucor circinelloides ene–reductase and alcohol dehydrogenase activity for the asymmetric bioreduction of α,β-unsaturated γ-ketophosphonates. Bioorganic Chemistry 2020;96:103548. [DOI: 10.1016/j.bioorg.2019.103548] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
57 |
Schmid G, Scheffen M, Willistein M, Boll M. Oxygen detoxification by dienoyl-CoA oxidase involving flavin/disulfide cofactors. Mol Microbiol 2020;114:17-30. [PMID: 32080908 DOI: 10.1111/mmi.14493] [Reference Citation Analysis]
|
58 |
Tentori F, Bavaro T, Brenna E, Colombo D, Monti D, Semproli R, Ubiali D. Immobilization of Old Yellow Enzymes via Covalent or Coordination Bonds. Catalysts 2020;10:260. [DOI: 10.3390/catal10020260] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
59 |
Aregger D, Peters C, Buller RM. Characterization of the Novel Ene Reductase Ppo-Er1 from Paenibacillus Polymyxa. Catalysts 2020;10:254. [DOI: 10.3390/catal10020254] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
60 |
Robescu MS, Niero M, Hall M, Cendron L, Bergantino E. Two new ene-reductases from photosynthetic extremophiles enlarge the panel of old yellow enzymes: CtOYE and GsOYE. Appl Microbiol Biotechnol 2020;104:2051-66. [PMID: 31930452 DOI: 10.1007/s00253-019-10287-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
61 |
Tischler D, Gädke E, Eggerichs D, Gomez Baraibar A, Mügge C, Scholtissek A, Paul CE. Asymmetric Reduction of (R)-Carvone through a Thermostable and Organic-Solvent-Tolerant Ene-Reductase. Chembiochem 2020;21:1217-25. [PMID: 31692216 DOI: 10.1002/cbic.201900599] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
62 |
Black MJ, Biegasiewicz KF, Meichan AJ, Oblinsky DG, Kudisch B, Scholes GD, Hyster TK. Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent 'ene'-reductases. Nat Chem 2020;12:71-5. [PMID: 31792387 DOI: 10.1038/s41557-019-0370-2] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 18.5] [Reference Citation Analysis]
|
63 |
Li Y, Pan H, Chang Y, Dong N, Zou L, Liang P, Tian W, Chang Z. Identification of key sites determining the cofactor specificity and improvement of catalytic activity of a steroid 5β-reductase from Capsella rubella. Enzyme Microb Technol 2020;134:109483. [PMID: 32044030 DOI: 10.1016/j.enzmictec.2019.109483] [Reference Citation Analysis]
|
64 |
Rauch MCR, Huijbers MME, Pabst M, Paul CE, Pešić M, Arends IWCE, Hollmann F. Photochemical regeneration of flavoenzymes - An Old Yellow Enzyme case-study. Biochim Biophys Acta Proteins Proteom 2020;1868:140303. [PMID: 31678192 DOI: 10.1016/j.bbapap.2019.140303] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
|
65 |
Gonzalo G, Lavandera I. Recent Advances in Selective Biocatalytic (Hydrogen Transfer) Reductions. In: Teichert JF, editor. Homogeneous Hydrogenation with Non‐Precious Catalysts. Wiley; 2019. pp. 227-59. [DOI: 10.1002/9783527814237.ch8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
66 |
Łużny M, Krzywda M, Kozłowska E, Kostrzewa-Susłow E, Janeczko T. Effective Hydrogenation of 3-(2"-furyl)- and 3-(2"-thienyl)-1-(2'-hydroxyphenyl)-prop-2-en-1-one in Selected Yeast Cultures. Molecules 2019;24:E3185. [PMID: 31480751 DOI: 10.3390/molecules24173185] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
|
67 |
Brewster RC, Suitor JT, Bennett AW, Wallace S. Transition Metal‐Free Reduction of Activated Alkenes Using a Living Microorganism. Angew Chem 2019;131:12539-44. [DOI: 10.1002/ange.201903973] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
68 |
Brewster RC, Suitor JT, Bennett AW, Wallace S. Transition Metal-Free Reduction of Activated Alkenes Using a Living Microorganism. Angew Chem Int Ed Engl 2019;58:12409-14. [PMID: 31286626 DOI: 10.1002/anie.201903973] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
|
69 |
Peters C, Buller R. Linear enzyme cascade for the production of (-)-iso-isopulegol. Z Naturforsch C J Biosci 2019;74:63-70. [PMID: 30645192 DOI: 10.1515/znc-2018-0146] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
70 |
Sandoval BA, Kurtoic SI, Chung MM, Biegasiewicz KF, Hyster TK. Photoenzymatic Catalysis Enables Radical-Mediated Ketone Reduction in Ene-Reductases. Angew Chem Int Ed Engl 2019;58:8714-8. [PMID: 30951226 DOI: 10.1002/anie.201902005] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 15.8] [Reference Citation Analysis]
|
71 |
Sandoval BA, Kurtoic SI, Chung MM, Biegasiewicz KF, Hyster TK. Photoenzymatic Catalysis Enables Radical‐Mediated Ketone Reduction in Ene‐Reductases. Angew Chem 2019;131:8806-10. [DOI: 10.1002/ange.201902005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
|
72 |
Toogood HS, Scrutton NS. Discovery, Characterisation, Engineering and Applications of Ene Reductases for Industrial Biocatalysis. ACS Catal 2019;8:3532-49. [PMID: 31157123 DOI: 10.1021/acscatal.8b00624] [Cited by in Crossref: 134] [Cited by in F6Publishing: 139] [Article Influence: 33.5] [Reference Citation Analysis]
|
73 |
Crotti M, Parmeggiani F, Ferrandi EE, Gatti FG, Sacchetti A, Riva S, Brenna E, Monti D. Stereoselectivity Switch in the Reduction of α-Alkyl-β-Arylenones by Structure-Guided Designed Variants of the Ene Reductase OYE1. Front Bioeng Biotechnol 2019;7:89. [PMID: 31080798 DOI: 10.3389/fbioe.2019.00089] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
|
74 |
Iorgu AI, Hedison TM, Hay S, Scrutton NS. Selectivity through discriminatory induced fit enables switching of NAD(P)H coenzyme specificity in Old Yellow Enzyme ene-reductases. FEBS J 2019;286:3117-28. [PMID: 31033202 DOI: 10.1111/febs.14862] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
|
75 |
Peters C, Frasson D, Sievers M, Buller R. Novel Old Yellow Enzyme Subclasses. ChemBioChem 2019. [DOI: 10.1002/cbic.201800770] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
|
76 |
Colombo D, Brenna E, Gatti FG, Ghezzi MC, Monti D, Parmeggiani F, Tentori F. Chemoselective Biohydrogenation of Alkenes in the Presence of Alkynes for the Homologation of 2‐Alkynals/3‐Alkyn‐2‐ones into 4‐Alkynals/Alkynols. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900177] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
77 |
de Gonzalo G, Alcántara AR, Domínguez de maría P. Cyclopentyl Methyl Ether (CPME): A Versatile Eco‐Friendly Solvent for Applications in Biotechnology and Biorefineries. ChemSusChem 2019;12:2083-97. [DOI: 10.1002/cssc.201900079] [Cited by in Crossref: 68] [Cited by in F6Publishing: 70] [Article Influence: 17.0] [Reference Citation Analysis]
|
78 |
Sheldon RA, Brady D. Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. ChemSusChem 2019;12:2859-81. [DOI: 10.1002/cssc.201900351] [Cited by in Crossref: 159] [Cited by in F6Publishing: 161] [Article Influence: 39.8] [Reference Citation Analysis]
|
79 |
Prier CK, Kosjek B. Recent preparative applications of redox enzymes. Current Opinion in Chemical Biology 2019;49:105-12. [DOI: 10.1016/j.cbpa.2018.11.011] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 9.5] [Reference Citation Analysis]
|
80 |
Żyszka-Haberecht B, Poliwoda A, Lipok J. 'Structural constraints in cyanobacteria-mediated whole-cell biotransformation of methoxylated and methylated derivatives of 2'-hydroxychalcone. J Biotechnol 2019;293:36-46. [PMID: 30690100 DOI: 10.1016/j.jbiotec.2019.01.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
|
81 |
Wu S, Zhou Y, Li Z. Biocatalytic selective functionalisation of alkenes via single-step and one-pot multi-step reactions. Chem Commun (Camb) 2019;55:883-96. [PMID: 30566124 DOI: 10.1039/c8cc07828a] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 10.8] [Reference Citation Analysis]
|
82 |
Baker Dockrey SA, Narayan ARH. Flavin-dependent biocatalysts in synthesis. Tetrahedron 2019;75:1115-21. [PMID: 31274935 DOI: 10.1016/j.tet.2019.01.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
|
83 |
Mathew S, Trajkovic M, Kumar H, Nguyen QT, Fraaije MW. Enantio- and regioselective ene-reductions using F420H2-dependent enzymes. Chem Commun (Camb) 2018;54:11208-11. [PMID: 30230493 DOI: 10.1039/c8cc04449j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
|
84 |
Zachos I, Nowak C, Sieber V. Biomimetic cofactors and methods for their recycling. Curr Opin Chem Biol 2019;49:59-66. [PMID: 30336443 DOI: 10.1016/j.cbpa.2018.10.003] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
|
85 |
Patil MD, Grogan G, Yun H. Biocatalyzed C−C Bond Formation for the Production of Alkaloids. ChemCatChem 2018;10:4783-804. [DOI: 10.1002/cctc.201801130] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
|
86 |
Zhang W, Hollmann F. Nonconventional regeneration of redox enzymes - a practical approach for organic synthesis? Chem Commun (Camb) 2018;54:7281-9. [PMID: 29714371 DOI: 10.1039/c8cc02219d] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
|
87 |
Li Z, Wang Z, Meng G, Lu H, Huang Z, Chen F. Identification of an Ene Reductase from Yeast Kluyveromyces Marxianus and Application in the Asymmetric Synthesis of ( R )-Profen Esters. Asian J Org Chem 2018;7:763-9. [DOI: 10.1002/ajoc.201800059] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
|