BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hossain MA, Wade JD. Synthetic relaxins. Current Opinion in Chemical Biology 2014;22:47-55. [DOI: 10.1016/j.cbpa.2014.09.014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 4.1] [Reference Citation Analysis]
Number Citing Articles
1 Traini C, Nistri S, Calosi L, Vannucchi MG. Chronic Exposure to Cigarette Smoke Affects the Ileum and Colon of Guinea Pigs Differently. Relaxin (RLX-2, Serelaxin) Prevents Most Local Damage. Front Pharmacol 2021;12:804623. [PMID: 35095510 DOI: 10.3389/fphar.2021.804623] [Reference Citation Analysis]
2 Karas JA, Wade JD, Hossain MA. The Chemical Synthesis of Insulin: An Enduring Challenge. Chem Rev 2021;121:4531-60. [PMID: 33689304 DOI: 10.1021/acs.chemrev.0c01251] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
3 Lin L, Lin G, Zhou Q, Bathgate RAD, Gong GQ, Yang D, Liu Q, Wang MW. Design, synthesis and pharmacological evaluation of tricyclic derivatives as selective RXFP4 agonists. Bioorg Chem 2021;110:104782. [PMID: 33730669 DOI: 10.1016/j.bioorg.2021.104782] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
4 Mallart S, Ingenito R, Bianchi E, Bresciani A, Esposito S, Gallo M, Magotti P, Monteagudo E, Orsatti L, Roversi D, Santoprete A, Tucci F, Veneziano M, Bartsch R, Boehm C, Brasseur D, Bruneau P, Corbier A, Froissant J, Gauzy-Lazo L, Gervat V, Marguet F, Menguy I, Minoletti C, Nicolas MF, Pasquier O, Poirier B, Raux A, Riva L, Janiak P, Strobel H, Duclos O, Illiano S. Identification of Potent and Long-Acting Single-Chain Peptide Mimetics of Human Relaxin-2 for Cardiovascular Diseases. J Med Chem 2021;64:2139-50. [PMID: 33555858 DOI: 10.1021/acs.jmedchem.0c01533] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
5 D'ercole A, Sabatino G, Pacini L, Impresari E, Capecchi I, Papini AM, Rovero P. On‐resin microwave‐assisted copper‐catalyzed azide‐alkyne cycloaddition of H1‐relaxin B single chain ‘stapled’ analogues. Peptide Science 2020;112. [DOI: 10.1002/pep2.24159] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
6 Praveen P, Kocan M, Valkovic A, Bathgate R, Hossain MA. Single chain peptide agonists of relaxin receptors. Molecular and Cellular Endocrinology 2019;487:34-9. [DOI: 10.1016/j.mce.2019.01.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
7 Leo CH, Jelinic M, Ng HH, Parry LJ, Tare M. Recent developments in relaxin mimetics as therapeutics for cardiovascular diseases. Curr Opin Pharmacol 2019;45:42-8. [PMID: 31048209 DOI: 10.1016/j.coph.2019.04.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
8 Ch'ng SS, Fu J, Brown RM, Smith CM, Hossain MA, McDougall SJ, Lawrence AJ. Characterization of the relaxin family peptide receptor 3 system in the mouse bed nucleus of the stria terminalis. J Comp Neurol 2019;527:2615-33. [PMID: 30947365 DOI: 10.1002/cne.24695] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
9 Muppidi A, Lee SJ, Hsu C, Zou H, Lee C, Pflimlin E, Mahankali M, Yang P, Chao E, Ahmad I, Crameri A, Wang D, Woods A, Shen W. Design and Synthesis of Potent, Long-Acting Lipidated Relaxin-2 Analogs. Bioconjugate Chem 2019;30:83-9. [DOI: 10.1021/acs.bioconjchem.8b00764] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
10 Wang JH, Hu MJ, Zhang L, Shao XX, Lv CH, Liu YL, Xu ZG, Guo ZY. Exploring receptor selectivity of the chimeric relaxin family peptide R3/I5 by incorporating unnatural amino acids. Biochimie 2018;154:77-85. [PMID: 30102931 DOI: 10.1016/j.biochi.2018.08.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
11 Arai K, Takei T, Shinozaki R, Noguchi M, Fujisawa S, Katayama H, Moroder L, Ando S, Okumura M, Inaba K, Hojo H, Iwaoka M. Characterization and optimization of two-chain folding pathways of insulin via native chain assembly. Commun Chem 2018;1. [DOI: 10.1038/s42004-018-0024-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
12 Devarakonda T, Salloum FN. Heart Disease and Relaxin: New Actions for an Old Hormone. Trends Endocrinol Metab 2018;29:338-48. [PMID: 29526354 DOI: 10.1016/j.tem.2018.02.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
13 Miyazaki T, Ishizaki M, Dohra H, Park S, Terzic A, Kato T, Kohsaka T, Park EY. Insulin-like peptide 3 expressed in the silkworm possesses intrinsic disulfide bonds and full biological activity. Sci Rep 2017;7:17339. [PMID: 29229959 DOI: 10.1038/s41598-017-17707-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
14 Liu F, Li P, Gelfanov V, Mayer J, DiMarchi R. Synthetic Advances in Insulin-like Peptides Enable Novel Bioactivity. Acc Chem Res 2017;50:1855-65. [PMID: 28771323 DOI: 10.1021/acs.accounts.7b00227] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
15 Moroder L, Musiol H. Insulin - von seiner Entdeckung bis zur industriellen Synthese moderner Insulin-Analoga. Angew Chem 2017;129:10794-808. [DOI: 10.1002/ange.201702493] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
16 Moroder L, Musiol H. Insulin-From its Discovery to the Industrial Synthesis of Modern Insulin Analogues. Angew Chem Int Ed 2017;56:10656-69. [DOI: 10.1002/anie.201702493] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 4.6] [Reference Citation Analysis]
17 Taskova M, Mantsiou A, Astakhova K. Synthetic Nucleic Acid Analogues in Gene Therapy: An Update for Peptide-Oligonucleotide Conjugates. Chembiochem 2017;18:1671-82. [PMID: 28614621 DOI: 10.1002/cbic.201700229] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
18 Marshall SA, O'sullivan K, Ng H, Bathgate RA, Parry LJ, Hossain MA, Leo CH. B7-33 replicates the vasoprotective functions of human relaxin-2 (serelaxin). European Journal of Pharmacology 2017;807:190-7. [DOI: 10.1016/j.ejphar.2017.05.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
19 Wang J, Shao X, Hu M, Wei D, Nie W, Liu Y, Xu Z, Guo Z. Rapid preparation of bioluminescent tracers for relaxin family peptides using sortase-catalysed ligation. Amino Acids 2017;49:1611-7. [DOI: 10.1007/s00726-017-2455-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
20 Dekan Z, Headey SJ, Scanlon M, Baldo BA, Lee T, Aguilar M, Deuis JR, Vetter I, Elliott AG, Amado M, Cooper MA, Alewood D, Alewood PF. Δ‐Myrtoxin‐Mp1a is a Helical Heterodimer from the Venom of the Jack Jumper Ant that has Antimicrobial, Membrane‐Disrupting, and Nociceptive Activities. Angew Chem Int Ed 2017;56:8495-9. [DOI: 10.1002/anie.201703360] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
21 Wei D, Hu MJ, Shao XX, Wang JH, Nie WH, Liu YL, Xu ZG, Guo ZY. Development of a selective agonist for relaxin family peptide receptor 3. Sci Rep 2017;7:3230. [PMID: 28607363 DOI: 10.1038/s41598-017-03465-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
22 Dekan Z, Headey SJ, Scanlon M, Baldo BA, Lee T, Aguilar M, Deuis JR, Vetter I, Elliott AG, Amado M, Cooper MA, Alewood D, Alewood PF. Δ‐Myrtoxin‐Mp1a is a Helical Heterodimer from the Venom of the Jack Jumper Ant that has Antimicrobial, Membrane‐Disrupting, and Nociceptive Activities. Angew Chem 2017;129:8615-9. [DOI: 10.1002/ange.201703360] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
23 Thalluri K, Kou B, Yang X, Zaykov AN, Mayer JP, Gelfanov VM, Liu F, Dimarchi RD. Synthesis of relaxin‐2 and insulin‐like peptide 5 enabled by novel tethering and traceless chemical excision. J Pept Sci 2017;23:455-65. [DOI: 10.1002/psc.3010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
24 Thalluri K, Kou B, Gelfanov V, Mayer JP, Liu F, Dimarchi RD. Biomimetic Synthesis of Insulin Enabled by Oxime Ligation and Traceless “C-Peptide” Chemical Excision. Org Lett 2017;19:706-9. [DOI: 10.1021/acs.orglett.6b03876] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
25 Lin F, Hossain MA, Post S, Karashchuk G, Tatar M, De Meyts P, Wade JD. Total Solid-Phase Synthesis of Biologically Active Drosophila Insulin-Like Peptide 2 (DILP2). Aust J Chem 2017;70:208-12. [PMID: 29491510 DOI: 10.1071/CH16626] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
26 Yang X, Gelfanov V, Liu F, Dimarchi R. Synthetic Route to Human Relaxin-2 via Iodine-Free Sequential Disulfide Bond Formation. Org Lett 2016;18:5516-9. [DOI: 10.1021/acs.orglett.6b02751] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
27 Katayama H, Mita M. A sulfanyl-PEG derivative of relaxin-like peptide utilizable for the conjugation with KLH and the antibody production. Bioorganic & Medicinal Chemistry 2016;24:3596-602. [DOI: 10.1016/j.bmc.2016.05.068] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
28 Wu F, Mayer JP, Zaykov AN, Zhang F, Liu F, Dimarchi RD. Chemical Synthesis of Human Insulin-Like Peptide-6. Chem Eur J 2016;22:9777-83. [DOI: 10.1002/chem.201601410] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
29 Pini A, Boccalini G, Lucarini L, Catarinicchia S, Guasti D, Masini E, Bani D, Nistri S. Protection from Cigarette Smoke-Induced Lung Dysfunction and Damage by H2 Relaxin (Serelaxin). Journal of Pharmacology and Experimental Therapeutics 2016;357:451-8. [DOI: 10.1124/jpet.116.232215] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
30 Hossain MA, Kocan M, Yao ST, Royce SG, Nair VB, Siwek C, Patil NA, Harrison IP, Rosengren KJ, Selemidis S, Summers RJ, Wade JD, Bathgate RAD, Samuel CS. A single-chain derivative of the relaxin hormone is a functionally selective agonist of the G protein-coupled receptor, RXFP1. Chem Sci 2016;7:3805-19. [PMID: 30155023 DOI: 10.1039/c5sc04754d] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 6.3] [Reference Citation Analysis]
31 Pini A, Boccalini G, Baccari MC, Becatti M, Garella R, Fiorillo C, Calosi L, Bani D, Nistri S. Protection from cigarette smoke-induced vascular injury by recombinant human relaxin-2 (serelaxin). J Cell Mol Med 2016;20:891-902. [PMID: 26915460 DOI: 10.1111/jcmm.12802] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
32 Liu F, Zaykov AN, Levy JJ, DiMarchi RD, Mayer JP. Chemical synthesis of peptides within the insulin superfamily. J Pept Sci 2016;22:260-70. [PMID: 26910514 DOI: 10.1002/psc.2863] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 5.3] [Reference Citation Analysis]
33 Tailhades J, Sethi A, Petrie EJ, Gooley PR, Bathgate RA, Wade JD, Hossain MA. Native Chemical Ligation to Minimize Aspartimide Formation during Chemical Synthesis of Small LDLa Protein. Chemistry 2016;22:1146-51. [PMID: 26612092 DOI: 10.1002/chem.201503599] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
34 Hossain MA, Haugaard-Kedström LM, Rosengren KJ, Bathgate RA, Wade JD. Chemically synthesized dicarba H2 relaxin analogues retain strong RXFP1 receptor activity but show an unexpected loss of in vitro serum stability. Org Biomol Chem 2015;13:10895-903. [PMID: 26368576 DOI: 10.1039/c5ob01539a] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]