BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Luo Y, Wang X, Cao Y. Transcriptomic analysis suggested the involvement of impaired lipid droplet biogenesis in graphene oxide-induced cytotoxicity in human umbilical vein endothelial cells. Chem Biol Interact 2021;333:109325. [PMID: 33221320 DOI: 10.1016/j.cbi.2020.109325] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Jin Y, Zhou J, Zhao X, Zhang X, Su Z. When 2D nanomaterials meet biomolecules: design strategies and hybrid nanostructures for bone tissue engineering. J Mater Chem B 2022;10:9040-53. [PMID: 36317564 DOI: 10.1039/d2tb01489k] [Reference Citation Analysis]
2 Liu X, Yang C, Chen P, Zhang L, Cao Y. The uses of transcriptomics and lipidomics indicated that direct contact with graphene oxide altered lipid homeostasis through ER stress in 3D human brain organoids. Science of The Total Environment 2022;849:157815. [DOI: 10.1016/j.scitotenv.2022.157815] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Liu J, Zhao W, Song F, Huang C, Zhang Z, Cao Y. Graphene oxide exposure suppresses immune responses and increases the sensitivities of zebrafishes to lipopolysaccharides via the down-regulation of Toll-like receptors. Ecological Indicators 2022;144:109563. [DOI: 10.1016/j.ecolind.2022.109563] [Reference Citation Analysis]
4 Cao Y. Nutrient molecule corona: An update for nanomaterial-food component interactions. Toxicology 2022;476:153253. [PMID: 35811011 DOI: 10.1016/j.tox.2022.153253] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
5 Tang X, Song F, Zhao W, Zhang Z, Cao Y. Intratracheal instillation of graphene oxide decreases anti-virus responses and lipid contents via suppressing Toll-like receptor 3 in mouse livers. J Appl Toxicol 2022. [PMID: 35727742 DOI: 10.1002/jat.4359] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Cao W, Gu M, Wang S, Huang C, Xie Y, Cao Y. Effects of epigallocatechin gallate on the stability, dissolution and toxicology of ZnO nanoparticles. Food Chem 2022;371:131383. [PMID: 34808776 DOI: 10.1016/j.foodchem.2021.131383] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Li S, Yan D, Huang C, Yang F, Cao Y. TiO2 nanosheets promote the transformation of vascular smooth muscle cells into foam cells in vitro and in vivo through the up-regulation of nuclear factor kappa B subunit 2. J Hazard Mater 2022;424:127704. [PMID: 34799167 DOI: 10.1016/j.jhazmat.2021.127704] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
8 Xie M, Huang C, Liang Y, Li S, Sheng L, Cao Y. MoS2 nanosheets and bulk materials altered lipid profiles in 3D Caco-2 spheroids. Chinese Chemical Letters 2022;33:293-7. [DOI: 10.1016/j.cclet.2021.06.049] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
9 Luo Y, Li J, Huang C, Wang X, Long D, Cao Y. Graphene oxide links alterations of anti-viral signaling pathways with lipid metabolism via suppressing TLR3 in vascular smooth muscle cells. Mol Omics 2022;18:779-790. [DOI: 10.1039/d2mo00086e] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Luo Y, Wang X, Cao Y. Transcriptomic-based toxicological investigations of graphene oxide with modest cytotoxicity to human umbilical vein endothelial cells: changes of Toll-like receptor signaling pathways. Toxicol Res (Camb) 2021;10:1104-15. [PMID: 34956614 DOI: 10.1093/toxres/tfab091] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
11 Yan Z, Chen C, Rosso G, Qian Y, Fan C. Two-Dimensional Nanomaterials for Peripheral Nerve Engineering: Recent Advances and Potential Mechanisms. Front Bioeng Biotechnol 2021;9:746074. [PMID: 34820361 DOI: 10.3389/fbioe.2021.746074] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Liu W, Luo H, Wei Q, Liu J, Wu J, Zhang Y, Chen L, Ren W, Shao L. Electrochemically derived nanographene oxide activates endothelial tip cells and promotes angiogenesis by binding endogenous lysophosphatidic acid. Bioact Mater 2022;9:92-104. [PMID: 34820558 DOI: 10.1016/j.bioactmat.2021.07.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
13 Liu C, Sun L, Sun Y, You X, Wan Y, Wu X, Tan M, Wu Q, Bai X, Ye X, Peng L, Zhao G, Xiang D, Zou L. Integrating transcriptome and physiological analyses to elucidate the molecular responses of buckwheat to graphene oxide. J Hazard Mater 2021;424:127443. [PMID: 34653867 DOI: 10.1016/j.jhazmat.2021.127443] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Liu Y, Hu Q, Huang C, Cao Y. Comparison of multi-walled carbon nanotubes and halloysite nanotubes on lipid profiles in human umbilical vein endothelial cells. NanoImpact 2021;23:100333. [DOI: 10.1016/j.impact.2021.100333] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
15 Cao Y. Potential roles of Kruppel-like factors in mediating adverse vascular effects of nanomaterials: A review. J Appl Toxicol 2021. [PMID: 33837572 DOI: 10.1002/jat.4172] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
16 Teng W, Yang Z, Wang S, Xiong D, Chen Y, Wu Z. Toxicity evaluation of mesoporous silica particles Santa Barbara No. 15 amorphous in human umbilical vein endothelial cells: influence of particle morphology. J Appl Toxicol 2021;41:1467-78. [DOI: 10.1002/jat.4137] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]