1 |
Qin Y, Zhang W, Liu Y, Zhao J, Yuan J, Chi M, Meng X, Du G, Cai C, Wang S, Nie S. Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy 2023;106:108079. [DOI: 10.1016/j.nanoen.2022.108079] [Reference Citation Analysis]
|
2 |
Zhou L, Song W, Sun D, Yan B, Chen T, Li T, Zhang J, Yu G, Ramakrishna S, Long Y. Transparent, Stretchable, and Recyclable Triboelectric Nanogenerator Based on an Acid- and Alkali-Resistant Hydrogel. ACS Appl Electron Mater 2022. [DOI: 10.1021/acsaelm.2c01281] [Reference Citation Analysis]
|
3 |
Wang J, Gao C, Hou P, Liu Y, Zhao J, Huo P. All-bio-based, Adhesive and Low-Temperature Resistant Hydrogel Electrolytes for Flexible Supercapacitors. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140952] [Reference Citation Analysis]
|
4 |
Jung G, Lee H, Park H, Kim J, Wook Kim J, Sik Kim D, Keum K, Hui Lee Y, Sook Ha J. Temperature-tolerant flexible supercapacitor integrated with a strain sensor using an organohydrogel for wearable electronics. Chemical Engineering Journal 2022;450:138379. [DOI: 10.1016/j.cej.2022.138379] [Reference Citation Analysis]
|
5 |
Chou SH, Lu HW, Liu TC, Chen YT, Fu YL, Shieh YH, Lai YC, Chen SY. An Environmental-Inert and Highly Self-Healable Elastomer Obtained via Double-Terminal Aromatic Disulfide Design and Zwitterionic Crosslinked Network for Use as a Triboelectric Nanogenerator. Adv Sci (Weinh) 2023;10:e2202815. [PMID: 36453583 DOI: 10.1002/advs.202202815] [Reference Citation Analysis]
|
6 |
Wang N, Zhang W, Li Z, Wang S, Suwardi A, Ye E, Li B, Liu Y, Wu Z, Dong Y, Loh XJ, Wang D. Dual-electric-polarity augmented cyanoethyl cellulose-based triboelectric nanogenerator with ultra-high triboelectric charge density and enhanced electrical output property at high humidity. Nano Energy 2022;103:107748. [DOI: 10.1016/j.nanoen.2022.107748] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
7 |
Ding Z, Yang X, Tang Y. Nanocellulose-based Electrodes and Separator toward Sustainable and Flexible All-solid-state Supercapacitor.. [DOI: 10.21203/rs.3.rs-2057264/v1] [Reference Citation Analysis]
|
8 |
Hu Y, Chen M, Qin C, Zhang J, Lu A. Cellulose ionic conductor with tunable Seebeck coefficient for low-grade heat harvesting. Carbohydrate Polymers 2022;292:119650. [DOI: 10.1016/j.carbpol.2022.119650] [Reference Citation Analysis]
|
9 |
Chen M, Qian X, Cai J, Zhou J, Lu A. Electronic skin based on cellulose/KCl/sorbitol organohydrogel. Carbohydrate Polymers 2022;292:119645. [DOI: 10.1016/j.carbpol.2022.119645] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
10 |
Qin C, Wu X, Huang C, Duan B, Zhou J, Yang H, Lu A. Tooth-derived flexible supercapacitor. Journal of Energy Storage 2022;52:104728. [DOI: 10.1016/j.est.2022.104728] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Wever PD, Janssens J, Fardim P. Fabrication of cellulose cryogel beads via room temperature dissolution in onium hydroxides. Carbohydrate Polymer Technologies and Applications 2022. [DOI: 10.1016/j.carpta.2022.100206] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
12 |
Sahoo S, Ratha S, Rout CS, Nayak SK. Self-charging supercapacitors for smart electronic devices: a concise review on the recent trends and future sustainability. J Mater Sci. [DOI: 10.1007/s10853-022-06875-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
|