BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kim S, Jo Y, Kook G, Pasquinelli C, Kim H, Kim K, Hoe HS, Choe Y, Rhim H, Thielscher A, Kim J, Lee HJ. Transcranial focused ultrasound stimulation with high spatial resolution. Brain Stimul 2021;14:290-300. [PMID: 33450428 DOI: 10.1016/j.brs.2021.01.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Souri M, Kiani Shahvandi M, Chiani M, Moradi Kashkooli F, Farhangi A, Mehrabi MR, Rahmim A, Savage VM, Soltani M. Stimuli-sensitive nano-drug delivery with programmable size changes to enhance accumulation of therapeutic agents in tumors. Drug Deliv 2023;30:2186312. [PMID: 36895188 DOI: 10.1080/10717544.2023.2186312] [Reference Citation Analysis]
2 Chen X, Gong Y, Chen W. Advanced Temporally-Spatially Precise Technologies for On-Demand Neurological Disorder Intervention. Adv Sci (Weinh) 2023;:e2207436. [PMID: 36929323 DOI: 10.1002/advs.202207436] [Reference Citation Analysis]
3 Hu Y, Wei J, Shen Y, Chen S, Chen X. Barrier-breaking effects of ultrasonic cavitation for drug delivery and biomarker release. Ultrason Sonochem 2023;94:106346. [PMID: 36870921 DOI: 10.1016/j.ultsonch.2023.106346] [Reference Citation Analysis]
4 Hu YY, Yang G, Liang XS, Ding XS, Xu DE, Li Z, Ma QH, Chen R, Sun YY. Transcranial low-intensity ultrasound stimulation for treating central nervous system disorders: A promising therapeutic application. Front Neurol 2023;14:1117188. [PMID: 36970512 DOI: 10.3389/fneur.2023.1117188] [Reference Citation Analysis]
5 Riis T, Kubanek J. Multifrequency-based sharpening of focal volume. Sci Rep 2022;12:22049. [PMID: 36543884 DOI: 10.1038/s41598-022-25886-9] [Reference Citation Analysis]
6 Li Y, Jiang Y, Lan L, Ge X, Cheng R, Zhan Y, Chen G, Shi L, Wang R, Zheng N, Yang C, Cheng JX. Optically-generated focused ultrasound for noninvasive brain stimulation with ultrahigh precision. Light Sci Appl 2022;11:321. [PMID: 36323662 DOI: 10.1038/s41377-022-01004-2] [Reference Citation Analysis]
7 Jo Y, Lee SM, Jung T, Park G, Lee C, Im GH, Lee S, Park JS, Oh C, Kook G, Kim H, Kim S, Lee BC, Suh GSB, Kim SG, Kim J, Lee HJ. General-Purpose Ultrasound Neuromodulation System for Chronic, Closed-Loop Preclinical Studies in Freely Behaving Rodents. Adv Sci (Weinh) 2022;9:e2202345. [PMID: 36259285 DOI: 10.1002/advs.202202345] [Reference Citation Analysis]
8 Mazzotti M, Kohtanen E, Erturk A, Ruzzene M. Identification of Critical Angles in Shear Mode Conversion-Based Transcranial Ultrasound via Leaky Guided Wave Analysis. 2022 IEEE International Ultrasonics Symposium (IUS) 2022. [DOI: 10.1109/ius54386.2022.9958552] [Reference Citation Analysis]
9 Kim E, Van Reet J, Kim HC, Kowsari K, Yoo SS. High Incidence of Intracerebral Hemorrhaging Associated with the Application of Low-Intensity Focused Ultrasound Following Acute Cerebrovascular Injury by Intracortical Injection. Pharmaceutics 2022;14. [PMID: 36297554 DOI: 10.3390/pharmaceutics14102120] [Reference Citation Analysis]
10 Mazzotti M, Kohtanen E, Erturk A, Ruzzene M. Optimizing transcranial ultrasound delivery at large incident angles by leveraging cranial leaky guided wave dispersion. Ultrasonics 2022. [DOI: 10.1016/j.ultras.2022.106882] [Reference Citation Analysis]
11 Kim E, Kum J, Lee SH, Kim H. Development of a wireless ultrasonic brain stimulation system for concurrent bilateral neuromodulation in freely moving rodents. Front Neurosci 2022;16:1011699. [DOI: 10.3389/fnins.2022.1011699] [Reference Citation Analysis]
12 Arsiwala TA, Sprowls SA, Blethen KE, Fladeland RA, Wolford CP, Kielkowski BN, Glass MJ, Wang P, Wilson O, Carpenter JS, Ranjan M, Finomore V, Rezai A, Lockman PR. Characterization of passive permeability after low intensity focused ultrasound mediated blood-brain barrier disruption in a preclinical model. Fluids Barriers CNS 2022;19:72. [PMID: 36076213 DOI: 10.1186/s12987-022-00369-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Martinez-cartagena ME, Muzzio NE, Guntnur RT, Fisher V, Hebbale S, Rodgers T, Romero-garcia J, Romero G. Conductive Conjugated Polymer Nanocapacitors for Localized Electrical Neurostimulation. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c03152] [Reference Citation Analysis]
14 Badadhe JD, Roh H, Lee BC, Kim JH, Im M. Ultrasound stimulation for non-invasive visual prostheses. Front Cell Neurosci 2022;16:971148. [DOI: 10.3389/fncel.2022.971148] [Reference Citation Analysis]
15 Hu Z, Yang Y, Xu L, Jing Y, Chen H. Airy Beam-enabled Binary Acoustic Metasurfaces for Underwater Ultrasound Beam Manipulation. Phys Rev Appl 2022;18:024070. [PMID: 36600893 DOI: 10.1103/physrevapplied.18.024070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Sarica C, Nankoo J, Fomenko A, Grippe TC, Yamamoto K, Samuel N, Milano V, Vetkas A, Darmani G, Cizmeci MN, Lozano AM, Chen R. Human Studies of Transcranial Ultrasound neuromodulation: A systematic review of effectiveness and safety. Brain Stimulation 2022. [DOI: 10.1016/j.brs.2022.05.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Kim H, Yoon K, Park TY, Kim H, Park SH, Chang WS. Differential evolution method to find optimal location of a single-element transducer for transcranial focused ultrasound therapy. Computer Methods and Programs in Biomedicine 2022. [DOI: 10.1016/j.cmpb.2022.106777] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Seo H, Huh H, Lee E, Park J. Numerical Evaluation of the Effects of Transducer Displacement on Transcranial Focused Ultrasound in the Rat Brain. Brain Sciences 2022;12:216. [DOI: 10.3390/brainsci12020216] [Reference Citation Analysis]
19 Guo L, Zhang S, Wu J, Gao X, Zhao M, Xu G. Theoretical Analysis of Coupled Modified Hindmarsh-rose Model Under Transcranial Magnetic-acoustic Electrical Stimulation. International Journal of Circuits, Systems and Signal Processing 2022;16:610-617. [DOI: 10.46300/9106.2022.16.76] [Reference Citation Analysis]
20 Kim YH, Kang KC, Kim JN, Pai CN, Zhang Y, Ghanouni P, Park KK, Firouzi K, Khuri-Yakub BT. Patterned Interference Radiation Force for Transcranial Neuromodulation. Ultrasound Med Biol 2021:S0301-5629(21)00485-3. [PMID: 34955292 DOI: 10.1016/j.ultrasmedbio.2021.11.006] [Reference Citation Analysis]
21 Cheng Z, Wang C, Wei B, Gan W, Zhou Q, Cui M. High resolution ultrasonic neural modulation observed via in vivo two-photon calcium imaging. Brain Stimul 2021;15:190-6. [PMID: 34952226 DOI: 10.1016/j.brs.2021.12.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
22 Zhang X, Zhang Y, Roe AW. Ultra-high-field MRI studies of brain structure and function in humans and nonhuman primates: A collaborative approach to precision medicine. Current Opinion in Biomedical Engineering 2021;20:100320. [DOI: 10.1016/j.cobme.2021.100320] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Lee SM, Lee T, Kim H, Jo Y, Kim MG, Kim S, Bae HM, Lee HJ. Calcium-Modified Silk Patch as a Next-Generation Ultrasound Coupling Medium. ACS Appl Mater Interfaces 2021;13:55827-39. [PMID: 34784167 DOI: 10.1021/acsami.1c16735] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]