BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev. 2007;56:27-78. [PMID: 17574681 DOI: 10.1016/j.brainresrev.2007.05.004] [Cited by in Crossref: 885] [Cited by in F6Publishing: 894] [Article Influence: 59.0] [Reference Citation Analysis]
Number Citing Articles
1 Aguggia JP, Cornejo MP, Fernandez G, De Francesco PN, Mani BK, Cassano D, Cabral A, Valdivia S, García Romero G, Reynaldo M, Fehrentz J, Zigman JM, Perello M. Growth hormone secretagogue receptor signaling in the supramammillary nucleus targets nitric oxide-producing neurons and controls recognition memory in mice. Psychoneuroendocrinology 2022;139:105716. [DOI: 10.1016/j.psyneuen.2022.105716] [Reference Citation Analysis]
2 Lemaire J, Frew AJ, Mcarthur D, Gorgulho AA, Alger JR, Salomon N, Chen C, Behnke EJ, De Salles AA. White matter connectivity of human hypothalamus. Brain Research 2011;1371:43-64. [DOI: 10.1016/j.brainres.2010.11.072] [Cited by in Crossref: 55] [Cited by in F6Publishing: 50] [Article Influence: 5.0] [Reference Citation Analysis]
3 Dela Cruz J, Coke T, Karagiorgis T, Sampson C, Icaza-cukali D, Kest K, Ranaldi R, Bodnar R. c-Fos induction in mesotelencephalic dopamine pathway projection targets and dorsal striatum following oral intake of sugars and fats in rats. Brain Research Bulletin 2015;111:9-19. [DOI: 10.1016/j.brainresbull.2014.11.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
4 Hamed A, Kursa MB. Inter-individual differences in serotonin and glutamate co-transmission reflect differentiation in context-induced conditioned 50-kHz USVs response after morphine withdrawal. Brain Struct Funct 2018;223:3149-67. [PMID: 29774428 DOI: 10.1007/s00429-018-1683-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
5 Martz ME, Trucco EM, Cope LM, Hardee JE, Jester JM, Zucker RA, Heitzeg MM. Association of Marijuana Use With Blunted Nucleus Accumbens Response to Reward Anticipation. JAMA Psychiatry 2016;73:838-44. [PMID: 27384542 DOI: 10.1001/jamapsychiatry.2016.1161] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 9.0] [Reference Citation Analysis]
6 Humphries MD, Prescott TJ. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 2010;90:385-417. [PMID: 19941931 DOI: 10.1016/j.pneurobio.2009.11.003] [Cited by in Crossref: 228] [Cited by in F6Publishing: 213] [Article Influence: 17.5] [Reference Citation Analysis]
7 Döbrössy MD, Ramanathan C, Ashouri Vajari D, Tong Y, Schlaepfer T, Coenen VA. Neuromodulation in Psychiatric disorders: Experimental and Clinical evidence for reward and motivation network Deep Brain Stimulation: Focus on the medial forebrain bundle. Eur J Neurosci 2021;53:89-113. [PMID: 32931064 DOI: 10.1111/ejn.14975] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Léger L, Sapin E, Goutagny R, Peyron C, Salvert D, Fort P, Luppi PH. Dopaminergic neurons expressing Fos during waking and paradoxical sleep in the rat. J Chem Neuroanat 2010;39:262-71. [PMID: 20211244 DOI: 10.1016/j.jchemneu.2010.03.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.0] [Reference Citation Analysis]
9 Prast JM, Schardl A, Schwarzer C, Dechant G, Saria A, Zernig G. Reacquisition of cocaine conditioned place preference and its inhibition by previous social interaction preferentially affect D1-medium spiny neurons in the accumbens corridor. Front Behav Neurosci 2014;8:317. [PMID: 25309368 DOI: 10.3389/fnbeh.2014.00317] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
10 Opland DM, Leinninger GM, Myers MG. Modulation of the mesolimbic dopamine system by leptin. Brain Res. 2010;1350:65-70. [PMID: 20417193 DOI: 10.1016/j.brainres.2010.04.028] [Cited by in Crossref: 75] [Cited by in F6Publishing: 71] [Article Influence: 6.3] [Reference Citation Analysis]
11 Mohammadi M, Fendt M. Relief learning is dependent on NMDA receptor activation in the nucleus accumbens. Br J Pharmacol 2015;172:2419-26. [PMID: 25572550 DOI: 10.1111/bph.13070] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
12 Dela Peña I, Gevorkiana R, Shi WX. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms. Eur J Pharmacol 2015;764:562-70. [PMID: 26209364 DOI: 10.1016/j.ejphar.2015.07.044] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 6.7] [Reference Citation Analysis]
13 Berridge KC. 'Liking' and 'wanting' food rewards: brain substrates and roles in eating disorders. Physiol Behav 2009;97:537-50. [PMID: 19336238 DOI: 10.1016/j.physbeh.2009.02.044] [Cited by in Crossref: 626] [Cited by in F6Publishing: 547] [Article Influence: 48.2] [Reference Citation Analysis]
14 Ouachikh O, Dieb W, Durif F, Hafidi A. Anterior ventral tegmental area dopaminergic neurons are not involved in the motivational effects of bromocriptine, pramipexole and cocaine in drug-free rats. Behavioural Brain Research 2014;262:1-7. [DOI: 10.1016/j.bbr.2013.12.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
15 Kang J, Kim H, Hwang SH, Han M, Lee SH, Kim HF. Primate ventral striatum maintains neural representations of the value of previously rewarded objects for habitual seeking. Nat Commun 2021;12:2100. [PMID: 33833228 DOI: 10.1038/s41467-021-22335-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Stanton CH, Holmes AJ, Chang SWC, Joormann J. From Stress to Anhedonia: Molecular Processes through Functional Circuits. Trends Neurosci 2019;42:23-42. [PMID: 30327143 DOI: 10.1016/j.tins.2018.09.008] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
17 McIlvain G, Clements RG, Magoon EM, Spielberg JM, Telzer EH, Johnson CL. Viscoelasticity of reward and control systems in adolescent risk taking. Neuroimage 2020;215:116850. [PMID: 32298793 DOI: 10.1016/j.neuroimage.2020.116850] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
18 Hnasko TS, Chuhma N, Zhang H, Goh GY, Sulzer D, Palmiter RD, Rayport S, Edwards RH. Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 2010;65:643-56. [PMID: 20223200 DOI: 10.1016/j.neuron.2010.02.012] [Cited by in Crossref: 243] [Cited by in F6Publishing: 242] [Article Influence: 20.3] [Reference Citation Analysis]
19 Zhang M, Liao C, Yao Y, Liu Z, Gong F, Yan F. High-Performance Dopamine Sensors Based on Whole-Graphene Solution-Gated Transistors. Adv Funct Mater 2014;24:978-85. [DOI: 10.1002/adfm.201302359] [Cited by in Crossref: 95] [Cited by in F6Publishing: 58] [Article Influence: 10.6] [Reference Citation Analysis]
20 Wang J, Ishikawa M, Yang Y, Otaka M, Kim JY, Gardner GR, Stefanik MT, Milovanovic M, Huang YH, Hell JW, Wolf ME, Schlüter OM, Dong Y. Cascades of Homeostatic Dysregulation Promote Incubation of Cocaine Craving. J Neurosci 2018;38:4316-28. [PMID: 29626166 DOI: 10.1523/JNEUROSCI.3291-17.2018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
21 De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. Prog Brain Res 2021;261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Reference Citation Analysis]
22 Brown AL, Day TA, Dayas CV, Smith DW. Purity and enrichment of laser-microdissected midbrain dopamine neurons. Biomed Res Int 2013;2013:747938. [PMID: 23984404 DOI: 10.1155/2013/747938] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
23 Wacker D, Ludwig M. The role of vasopressin in olfactory and visual processing. Cell Tissue Res 2019;375:201-15. [PMID: 29951699 DOI: 10.1007/s00441-018-2867-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
24 Naert A, Callaerts-Vegh Z, Moechars D, Meert T, D'Hooge R. Vglut2 haploinsufficiency enhances behavioral sensitivity to MK-801 and amphetamine in mice. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1316-21. [PMID: 21514350 DOI: 10.1016/j.pnpbp.2011.03.023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
25 Rappeneau V, Morel AL, El Yacoubi M, Vaugeois JM, Denoroy L, Bérod A. Enhanced Cocaine-Associated Contextual Learning in Female H/Rouen Mice Selectively Bred for Depressive-Like Behaviors: Molecular and Neuronal Correlates. Int J Neuropsychopharmacol 2015;18:pyv022. [PMID: 25733538 DOI: 10.1093/ijnp/pyv022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
26 Vega-quiroga I, Yarur HE, Gysling K. Lateral septum stimulation disinhibits dopaminergic neurons in the antero-ventral region of the ventral tegmental area: Role of GABA-A alpha 1 receptors. Neuropharmacology 2018;128:76-85. [DOI: 10.1016/j.neuropharm.2017.09.034] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
27 Vander Weele CM, Porter-Stransky KA, Mabrouk OS, Lovic V, Singer BF, Kennedy RT, Aragona BJ. Rapid dopamine transmission within the nucleus accumbens: dramatic difference between morphine and oxycodone delivery. Eur J Neurosci 2014;40:3041-54. [PMID: 25208732 DOI: 10.1111/ejn.12709] [Cited by in Crossref: 68] [Cited by in F6Publishing: 66] [Article Influence: 8.5] [Reference Citation Analysis]
28 Sugiyama E, Kondo T, Kuzumaki N, Honda K, Yamanaka A, Narita M, Suematsu M, Sugiura Y. Mechanical allodynia induced by optogenetic sensory nerve excitation activates dopamine signaling and metabolism in medial nucleus accumbens. Neurochem Int 2019;129:104494. [PMID: 31233839 DOI: 10.1016/j.neuint.2019.104494] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Xiao L, Chattree G, Oscos FG, Cao M, Wanat MJ, Roberts TF. A Basal Ganglia Circuit Sufficient to Guide Birdsong Learning. Neuron 2018;98:208-221.e5. [PMID: 29551492 DOI: 10.1016/j.neuron.2018.02.020] [Cited by in Crossref: 55] [Cited by in F6Publishing: 42] [Article Influence: 13.8] [Reference Citation Analysis]
30 Wesson DW, Wilson DA. Sniffing out the contributions of the olfactory tubercle to the sense of smell: hedonics, sensory integration, and more? Neurosci Biobehav Rev 2011;35:655-68. [PMID: 20800615 DOI: 10.1016/j.neubiorev.2010.08.004] [Cited by in Crossref: 106] [Cited by in F6Publishing: 105] [Article Influence: 8.8] [Reference Citation Analysis]
31 Owesson-White CA, Cheer JF, Beyene M, Carelli RM, Wightman RM. Dynamic changes in accumbens dopamine correlate with learning during intracranial self-stimulation. Proc Natl Acad Sci U S A 2008;105:11957-62. [PMID: 18689678 DOI: 10.1073/pnas.0803896105] [Cited by in Crossref: 84] [Cited by in F6Publishing: 85] [Article Influence: 6.0] [Reference Citation Analysis]
32 Zhang Y, Wang C, Zhang Y, Zhang L, Yu T. GABAA receptor in the thalamic specific relay system contributes to the propofol-induced somatosensory cortical suppression in rat. PLoS One 2013;8:e82377. [PMID: 24324778 DOI: 10.1371/journal.pone.0082377] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
33 Gomes FV, Grace AA. Adolescent Stress as a Driving Factor for Schizophrenia Development-A Basic Science Perspective. Schizophr Bull 2017;43:486-9. [PMID: 28419390 DOI: 10.1093/schbul/sbx033] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
34 Owesson-White CA, Ariansen J, Stuber GD, Cleaveland NA, Cheer JF, Wightman RM, Carelli RM. Neural encoding of cocaine-seeking behavior is coincident with phasic dopamine release in the accumbens core and shell. Eur J Neurosci 2009;30:1117-27. [PMID: 19735286 DOI: 10.1111/j.1460-9568.2009.06916.x] [Cited by in Crossref: 76] [Cited by in F6Publishing: 87] [Article Influence: 5.8] [Reference Citation Analysis]
35 Baudonnat M, Guillou JL, Husson M, Vandesquille M, Corio M, Decorte L, Faugère A, Porte Y, Mons N, David V. Disrupting effect of drug-induced reward on spatial but not cue-guided learning: implication of the striatal protein kinase A/cAMP response element-binding protein pathway. J Neurosci 2011;31:16517-28. [PMID: 22090478 DOI: 10.1523/JNEUROSCI.1787-11.2011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
36 Colussi-mas J, Schenk S. Acute and sensitized response to 3,4-methylenedioxymethamphetamine in rats: different behavioral profiles reflected in different patterns of Fos expression. European Journal of Neuroscience 2008;28:1895-910. [DOI: 10.1111/j.1460-9568.2008.06467.x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 1.6] [Reference Citation Analysis]
37 Wu H, O'Neill B, Han DD, Thirtamara-Rajamani K, Wang Y, Gu HH. Restoration of cocaine stimulation and reward by reintroducing wild type dopamine transporter in adult knock-in mice with a cocaine-insensitive dopamine transporter. Neuropharmacology 2014;86:31-7. [PMID: 24835281 DOI: 10.1016/j.neuropharm.2014.04.022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
38 Renteria R, Jeanes ZM, Mangieri RA, Maier EY, Kircher DM, Buske TR, Morrisett RA. Using In Vitro Electrophysiology to Screen Medications: Accumbal Plasticity as an Engram of Alcohol Dependence. Int Rev Neurobiol 2016;126:441-65. [PMID: 27055622 DOI: 10.1016/bs.irn.2016.02.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
39 Weele CMV, Siciliano CA, Tye KM. Dopamine tunes prefrontal outputs to orchestrate aversive processing. Brain Res 2019;1713:16-31. [PMID: 30513287 DOI: 10.1016/j.brainres.2018.11.044] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
40 Xiong A, Wesson DW. Illustrated Review of the Ventral Striatum's Olfactory Tubercle. Chem Senses 2016;41:549-55. [PMID: 27340137 DOI: 10.1093/chemse/bjw069] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
41 Looi JC, Macfarlane MD, Walterfang M, Styner M, Velakoulis D, Lätt J, van Westen D, Nilsson C. Morphometric analysis of subcortical structures in progressive supranuclear palsy: In vivo evidence of neostriatal and mesencephalic atrophy. Psychiatry Res 2011;194:163-75. [PMID: 21899988 DOI: 10.1016/j.pscychresns.2011.07.013] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
42 Touzani K, Bodnar RJ, Sclafani A. Dopamine D1-like receptor antagonism in amygdala impairs the acquisition of glucose-conditioned flavor preference in rats. Eur J Neurosci 2009;30:289-98. [PMID: 19614979 DOI: 10.1111/j.1460-9568.2009.06829.x] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 3.1] [Reference Citation Analysis]
43 Valenti O, Gill KM, Grace AA. Different stressors produce excitation or inhibition of mesolimbic dopamine neuron activity: response alteration by stress pre-exposure. Eur J Neurosci 2012;35:1312-21. [PMID: 22512259 DOI: 10.1111/j.1460-9568.2012.08038.x] [Cited by in Crossref: 90] [Cited by in F6Publishing: 85] [Article Influence: 9.0] [Reference Citation Analysis]
44 Morales M, Pickel VM. Insights to drug addiction derived from ultrastructural views of the mesocorticolimbic system. Ann N Y Acad Sci 2012;1248:71-88. [PMID: 22171551 DOI: 10.1111/j.1749-6632.2011.06299.x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 3.0] [Reference Citation Analysis]
45 Darvas M, Palmiter RD. Restricting dopaminergic signaling to either dorsolateral or medial striatum facilitates cognition. J Neurosci 2010;30:1158-65. [PMID: 20089924 DOI: 10.1523/JNEUROSCI.4576-09.2010] [Cited by in Crossref: 52] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
46 Carandini T, Mancini M, Bogdan I, Rae CL, Barritt AW, Sethi A, Harrison N, Rashid W, Scarpini E, Galimberti D, Bozzali M, Cercignani M. Disruption of brainstem monoaminergic fibre tracts in multiple sclerosis as a putative mechanism for cognitive fatigue: a fixel-based analysis. Neuroimage Clin 2021;30:102587. [PMID: 33610097 DOI: 10.1016/j.nicl.2021.102587] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
47 Yang Z, Nesil T, Wingo T, Chang SL, Li MD. HIV-1 Proteins Influence Novelty-Seeking Behavior and Alter Region-Specific Transcriptional Responses to Chronic Nicotine Treatment in HIV-1Tg Rats. Nicotine Tob Res 2017;19:1024-32. [PMID: 28339662 DOI: 10.1093/ntr/ntx047] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
48 Rizzi G, Tan KR. Dopamine and Acetylcholine, a Circuit Point of View in Parkinson's Disease. Front Neural Circuits 2017;11:110. [PMID: 29311846 DOI: 10.3389/fncir.2017.00110] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
49 Cao J, de Lecea L, Ikemoto S. Intraventricular administration of neuropeptide S has reward-like effects. Eur J Pharmacol 2011;658:16-21. [PMID: 21349268 DOI: 10.1016/j.ejphar.2011.02.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
50 Hutson LW, Szczytkowski JL, Saurer TB, Lebonville C, Fuchs RA, Lysle DT. Region-specific contribution of the ventral tegmental area to heroin-induced conditioned immunomodulation. Brain Behav Immun 2014;38:118-24. [PMID: 24462948 DOI: 10.1016/j.bbi.2014.01.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
51 Saunders BT, Robinson TE. Individual variation in resisting temptation: implications for addiction. Neurosci Biobehav Rev 2013;37:1955-75. [PMID: 23438893 DOI: 10.1016/j.neubiorev.2013.02.008] [Cited by in Crossref: 97] [Cited by in F6Publishing: 90] [Article Influence: 10.8] [Reference Citation Analysis]
52 Schott BH, Minuzzi L, Krebs RM, Elmenhorst D, Lang M, Winz OH, Seidenbecher CI, Coenen HH, Heinze HJ, Zilles K, Düzel E, Bauer A. Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J Neurosci 2008;28:14311-9. [PMID: 19109512 DOI: 10.1523/JNEUROSCI.2058-08.2008] [Cited by in Crossref: 318] [Cited by in F6Publishing: 200] [Article Influence: 24.5] [Reference Citation Analysis]
53 Grace AA, Gomes FV. The Circuitry of Dopamine System Regulation and its Disruption in Schizophrenia: Insights Into Treatment and Prevention. Schizophr Bull 2019;45:148-57. [PMID: 29385549 DOI: 10.1093/schbul/sbx199] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 15.3] [Reference Citation Analysis]
54 Figlewicz DP, Benoit SC. Insulin, leptin, and food reward: update 2008. Am J Physiol Regul Integr Comp Physiol. 2009;296:R9-R19. [PMID: 18945945 DOI: 10.1152/ajpregu.90725.2008] [Cited by in Crossref: 135] [Cited by in F6Publishing: 129] [Article Influence: 9.6] [Reference Citation Analysis]
55 Sesack SR, Grace AA. Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology. 2010;35:27-47. [PMID: 19675534 DOI: 10.1038/npp.2009.93] [Cited by in Crossref: 599] [Cited by in F6Publishing: 590] [Article Influence: 49.9] [Reference Citation Analysis]
56 Hsieh YC, Puche AC. Development of the Islands of Calleja. Brain Res 2013;1490:52-60. [PMID: 23122882 DOI: 10.1016/j.brainres.2012.10.051] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
57 Chau P, Höifödt-Lidö H, Löf E, Söderpalm B, Ericson M. Glycine receptors in the nucleus accumbens involved in the ethanol intake-reducing effect of acamprosate. Alcohol Clin Exp Res 2010;34:39-45. [PMID: 19860809 DOI: 10.1111/j.1530-0277.2009.01063.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 2.6] [Reference Citation Analysis]
58 Cuzon Carlson VC. GABA and Glutamate Synaptic Coadaptations to Chronic Ethanol in the Striatum. In: Grant KA, Lovinger DM, editors. The Neuropharmacology of Alcohol. Cham: Springer International Publishing; 2018. pp. 79-112. [DOI: 10.1007/164_2018_98] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
59 Qiao Y, Zhang CK, Li ZH, Niu ZH, Li J, Li JL. Collateral Projections from the Lateral Parabrachial Nucleus to the Central Amygdaloid Nucleus and the Ventral Tegmental Area in the Rat. Anat Rec (Hoboken) 2019;302:1178-86. [PMID: 30332715 DOI: 10.1002/ar.23983] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
60 Carmichael K, Sullivan B, Lopez E, Sun L, Cai H. Diverse midbrain dopaminergic neuron subtypes and implications for complex clinical symptoms of Parkinson's disease. Ageing Neurodegener Dis 2021;1. [PMID: 34532720 DOI: 10.20517/and.2021.07] [Reference Citation Analysis]
61 Darland T, Mauch JT, Meier EM, Hagan SJ, Dowling JE, Darland DC. Sulpiride, but not SCH23390, modifies cocaine-induced conditioned place preference and expression of tyrosine hydroxylase and elongation factor 1α in zebrafish. Pharmacol Biochem Behav 2012;103:157-67. [PMID: 22910534 DOI: 10.1016/j.pbb.2012.07.017] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
62 Giacolini T, Conversi D, Alcaro A. The Brain Emotional Systems in Addictions: From Attachment to Dominance/Submission Systems. Front Hum Neurosci 2020;14:609467. [PMID: 33519403 DOI: 10.3389/fnhum.2020.609467] [Reference Citation Analysis]
63 Sonnenschein SF, Gomes FV, Grace AA. Dysregulation of Midbrain Dopamine System and the Pathophysiology of Schizophrenia. Front Psychiatry 2020;11:613. [PMID: 32719622 DOI: 10.3389/fpsyt.2020.00613] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
64 Kim HE, Kwon JH, Kim JJ. Neural Correlates of Garment Fit and Purchase Intention in the Consumer Decision-Making Process and the Influence of Product Presentation. Front Neurosci 2021;15:609004. [PMID: 34447291 DOI: 10.3389/fnins.2021.609004] [Reference Citation Analysis]
65 Numan M, Bress JA, Ranker LR, Gary AJ, Denicola AL, Bettis JK, Knapp SE. The importance of the basolateral/basomedial amygdala for goal-directed maternal responses in postpartum rats. Behavioural Brain Research 2010;214:368-76. [DOI: 10.1016/j.bbr.2010.06.006] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 3.0] [Reference Citation Analysis]
66 Bodea GO, Spille JH, Abe P, Andersson AS, Acker-Palmer A, Stumm R, Kubitscheck U, Blaess S. Reelin and CXCL12 regulate distinct migratory behaviors during the development of the dopaminergic system. Development 2014;141:661-73. [PMID: 24449842 DOI: 10.1242/dev.099937] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
67 O'Brien TC, Mustanski BS, Skol A, Cook EH Jr, Wakschlag LS. Do dopamine gene variants and prenatal smoking interactively predict youth externalizing behavior? Neurotoxicol Teratol 2013;40:67-73. [PMID: 24064458 DOI: 10.1016/j.ntt.2013.09.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
68 Gutiérrez-garcía AG, Contreras CM, Saldivar-lara M. An alarm pheromone reduces ventral tegmental area-nucleus accumbens shell responsivity. Neuroscience Letters 2018;678:16-21. [DOI: 10.1016/j.neulet.2018.04.054] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
69 Araujo SM, Poetini MR, Bortolotto VC, de Freitas Couto S, Pinheiro FC, Meichtry LB, de Almeida FP, Santos Musachio EA, de Paula MT, Prigol M. Chronic unpredictable mild stress-induced depressive-like behavior and dysregulation of brain levels of biogenic amines in Drosophila melanogaster. Behavioural Brain Research 2018;351:104-13. [DOI: 10.1016/j.bbr.2018.05.016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
70 Costumero V, Barrós-Loscertales A, Bustamante JC, Ventura-Campos N, Fuentes P, Rosell-Negre P, Ávila C. Reward sensitivity is associated with brain activity during erotic stimulus processing. PLoS One 2013;8:e66940. [PMID: 23840558 DOI: 10.1371/journal.pone.0066940] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
71 Lammel S, Ion DI, Roeper J, Malenka RC. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 2011;70:855-62. [PMID: 21658580 DOI: 10.1016/j.neuron.2011.03.025] [Cited by in Crossref: 424] [Cited by in F6Publishing: 427] [Article Influence: 38.5] [Reference Citation Analysis]
72 Poisson CL, Engel L, Saunders BT. Dopamine Circuit Mechanisms of Addiction-Like Behaviors. Front Neural Circuits 2021;15:752420. [PMID: 34858143 DOI: 10.3389/fncir.2021.752420] [Reference Citation Analysis]
73 Perello M, Cabral A, Cornejo MP, De Francesco PN, Fernandez G, Uriarte M. Brain accessibility delineates the central effects of circulating ghrelin. J Neuroendocrinol 2019;31. [DOI: 10.1111/jne.12677] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
74 Suzuki M, Kirimoto H, Sugawara K, Oyama M, Yamada S, Yamamoto J, Matsunaga A, Fukuda M, Onishi H. Motor cortex-evoked activity in reciprocal muscles is modulated by reward probability. PLoS One 2014;9:e90773. [PMID: 24603644 DOI: 10.1371/journal.pone.0090773] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
75 Cadoni C. Fischer 344 and Lewis Rat Strains as a Model of Genetic Vulnerability to Drug Addiction. Front Neurosci 2016;10:13. [PMID: 26903787 DOI: 10.3389/fnins.2016.00013] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
76 Aragona BJ. The regional specificity of rapid actions of cocaine. Nat Rev Neurosci 2011;12:700-700. [DOI: 10.1038/nrn3043-c1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
77 Poore JC, Pfeifer JH, Berkman ET, Inagaki TK, Welborn BL, Lieberman MD. Prediction-error in the context of real social relationships modulates reward system activity. Front Hum Neurosci 2012;6:218. [PMID: 22891055 DOI: 10.3389/fnhum.2012.00218] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
78 Morris LS, Voon V, Leggio L. Stress, Motivation, and the Gut-Brain Axis: A Focus on the Ghrelin System and Alcohol Use Disorder. Alcohol Clin Exp Res 2018. [PMID: 29797564 DOI: 10.1111/acer.13781] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
79 Marks MJ, Grady SR, Salminen O, Paley MA, Wageman CR, McIntosh JM, Whiteaker P. α6β2*-subtype nicotinic acetylcholine receptors are more sensitive than α4β2*-subtype receptors to regulation by chronic nicotine administration. J Neurochem 2014;130:185-98. [PMID: 24661093 DOI: 10.1111/jnc.12721] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
80 Kest K, Cruz I, Chen DH, Galaj E, Ranaldi R. A food-associated CS activates c-Fos in VTA DA neurons and elicits conditioned approach. Behav Brain Res 2012;235:150-7. [PMID: 22963991 DOI: 10.1016/j.bbr.2012.07.044] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
81 Fouragnan E, Queirazza F, Retzler C, Mullinger KJ, Philiastides MG. Spatiotemporal neural characterization of prediction error valence and surprise during reward learning in humans. Sci Rep 2017;7:4762. [PMID: 28684734 DOI: 10.1038/s41598-017-04507-w] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
82 Xiao C, Cho JR, Zhou C, Treweek JB, Chan K, McKinney SL, Yang B, Gradinaru V. Cholinergic Mesopontine Signals Govern Locomotion and Reward through Dissociable Midbrain Pathways. Neuron 2016;90:333-47. [PMID: 27100197 DOI: 10.1016/j.neuron.2016.03.028] [Cited by in Crossref: 100] [Cited by in F6Publishing: 92] [Article Influence: 20.0] [Reference Citation Analysis]
83 Shabat-Simon M, Levy D, Amir A, Rehavi M, Zangen A. Dissociation between rewarding and psychomotor effects of opiates: differential roles for glutamate receptors within anterior and posterior portions of the ventral tegmental area. J Neurosci 2008;28:8406-16. [PMID: 18716199 DOI: 10.1523/JNEUROSCI.1958-08.2008] [Cited by in Crossref: 48] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
84 Gutiérrez-Castellanos N, Pardo-Bellver C, Martínez-García F, Lanuza E. The vomeronasal cortex - afferent and efferent projections of the posteromedial cortical nucleus of the amygdala in mice. Eur J Neurosci 2014;39:141-58. [PMID: 24188795 DOI: 10.1111/ejn.12393] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 3.4] [Reference Citation Analysis]
85 Jhou TC, Good CH, Rowley CS, Xu SP, Wang H, Burnham NW, Hoffman AF, Lupica CR, Ikemoto S. Cocaine drives aversive conditioning via delayed activation of dopamine-responsive habenular and midbrain pathways. J Neurosci 2013;33:7501-12. [PMID: 23616555 DOI: 10.1523/JNEUROSCI.3634-12.2013] [Cited by in Crossref: 132] [Cited by in F6Publishing: 92] [Article Influence: 14.7] [Reference Citation Analysis]
86 Ikemoto S. Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci Biobehav Rev 2010;35:129-50. [PMID: 20149820 DOI: 10.1016/j.neubiorev.2010.02.001] [Cited by in Crossref: 249] [Cited by in F6Publishing: 233] [Article Influence: 20.8] [Reference Citation Analysis]
87 Bubar MJ, Stutz SJ, Cunningham KA. 5-HT(2C) receptors localize to dopamine and GABA neurons in the rat mesoaccumbens pathway. PLoS One 2011;6:e20508. [PMID: 21687728 DOI: 10.1371/journal.pone.0020508] [Cited by in Crossref: 74] [Cited by in F6Publishing: 69] [Article Influence: 6.7] [Reference Citation Analysis]
88 Rodríguez-Manzo G, González-Morales E, Garduño-Gutiérrez R. Endocannabinoids Released in the Ventral Tegmental Area During Copulation to Satiety Modulate Changes in Glutamate Receptors Associated With Synaptic Plasticity Processes. Front Synaptic Neurosci 2021;13:701290. [PMID: 34483875 DOI: 10.3389/fnsyn.2021.701290] [Reference Citation Analysis]
89 Kazemi T, Avci NG, Keller RF, Akay YM, Akay M. Investigating the influence of perinatal nicotine exposure on genetic profiles of neurons in the sub-regions of the VTA. Sci Rep 2020;10:2419. [PMID: 32051445 DOI: 10.1038/s41598-020-59248-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
90 Soto AM, Kirsten TB, Reis-silva TM, Martins MF, Teodorov E, Flório JC, Palermo-neto J, Bernardi MM, Bondan EF. Single early prenatal lipopolysaccharide exposure impairs striatal monoamines and maternal care in female rats. Life Sciences 2013;92:852-8. [DOI: 10.1016/j.lfs.2013.03.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
91 Martí-Prats L, Orrico A, Polache A, Granero L. Dual motor responses elicited by ethanol in the posterior VTA: Consequences of the blockade of μ-opioid receptors. J Psychopharmacol 2015;29:1029-34. [PMID: 26216379 DOI: 10.1177/0269881115598337] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
92 Wilson RS, Nag S, Boyle PA, Hizel LP, Yu L, Buchman AS, Shah RC, Schneider JA, Arnold SE, Bennett DA. Brainstem aminergic nuclei and late-life depressive symptoms. JAMA Psychiatry 2013;70:1320-8. [PMID: 24132763 DOI: 10.1001/jamapsychiatry.2013.2224] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 4.4] [Reference Citation Analysis]
93 Agustín-Pavón C, Martínez-García F, Lanuza E. Focal lesions within the ventral striato-pallidum abolish attraction for male chemosignals in female mice. Behav Brain Res 2014;259:292-6. [PMID: 24269269 DOI: 10.1016/j.bbr.2013.11.020] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
94 Groenewegen H, Wouterlood F, Uylings H. Organization of Prefrontal-Striatal Connections. Handbook of Basal Ganglia Structure and Function, Second Edition. Elsevier; 2016. pp. 423-38. [DOI: 10.1016/b978-0-12-802206-1.00021-0] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
95 Lammel S, Tye KM, Warden MR. Progress in understanding mood disorders: optogenetic dissection of neural circuits. Genes Brain Behav 2014;13:38-51. [PMID: 23682971 DOI: 10.1111/gbb.12049] [Cited by in Crossref: 66] [Cited by in F6Publishing: 62] [Article Influence: 7.3] [Reference Citation Analysis]
96 Jaime S, Gu H, Sadacca BF, Stein EA, Cavazos JE, Yang Y, Lu H. Delta Rhythm Orchestrates the Neural Activity Underlying the Resting State BOLD Signal via Phase-amplitude Coupling. Cereb Cortex 2019;29:119-33. [PMID: 29161352 DOI: 10.1093/cercor/bhx310] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
97 Berke JD. What does dopamine mean? Nat Neurosci 2018;21:787-93. [PMID: 29760524 DOI: 10.1038/s41593-018-0152-y] [Cited by in Crossref: 259] [Cited by in F6Publishing: 192] [Article Influence: 64.8] [Reference Citation Analysis]
98 Davies J, Randeva HS, Chatha K, Hall M, Spandidos DA, Karteris E, Kyrou I. Neuropilin‑1 as a new potential SARS‑CoV‑2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID‑19. Mol Med Rep 2020;22:4221-6. [PMID: 33000221 DOI: 10.3892/mmr.2020.11510] [Cited by in Crossref: 18] [Cited by in F6Publishing: 34] [Article Influence: 9.0] [Reference Citation Analysis]
99 Kontaris I, East BS, Wilson DA. Behavioral and Neurobiological Convergence of Odor, Mood and Emotion: A Review. Front Behav Neurosci 2020;14:35. [PMID: 32210776 DOI: 10.3389/fnbeh.2020.00035] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
100 Loiodice S, McGhan P, Gryshkova V, Fleurance R, Dardou D, Hafidi A, Nogueira da Costa A, Durif F. Striatal changes underlie MPEP-mediated suppression of the acquisition and expression of pramipexole-induced place preference in an alpha-synuclein rat model of Parkinson's disease. J Psychopharmacol 2017;31:1323-33. [PMID: 28631520 DOI: 10.1177/0269881117714051] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
101 Serra GP, Guillaumin A, Dumas S, Vlcek B, Wallén-Mackenzie Å. Midbrain Dopamine Neurons Defined by TrpV1 Modulate Psychomotor Behavior. Front Neural Circuits 2021;15:726893. [PMID: 34858142 DOI: 10.3389/fncir.2021.726893] [Reference Citation Analysis]
102 Romer D, Betancourt LM, Brodsky NL, Giannetta JM, Yang W, Hurt H. Does adolescent risk taking imply weak executive function? A prospective study of relations between working memory performance, impulsivity, and risk taking in early adolescence. Dev Sci 2011;14:1119-33. [PMID: 21884327 DOI: 10.1111/j.1467-7687.2011.01061.x] [Cited by in Crossref: 87] [Cited by in F6Publishing: 75] [Article Influence: 7.9] [Reference Citation Analysis]
103 Singh K, Cauzzo S, García-Gomar MG, Stauder M, Vanello N, Passino C, Bianciardi M. Functional connectome of arousal and motor brainstem nuclei in living humans by 7 Tesla resting-state fMRI. Neuroimage 2022;:118865. [PMID: 35031472 DOI: 10.1016/j.neuroimage.2021.118865] [Reference Citation Analysis]
104 Aggarwal M, Akamine Y, Liu AW, Wickens JR. The nucleus accumbens and inhibition in the ventral tegmental area play a causal role in the Kamin blocking effect. Eur J Neurosci 2020;52:3087-109. [DOI: 10.1111/ejn.14732] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Zurborg S, Piszczek A, Martínez C, Hublitz P, Al Banchaabouchi M, Moreira P, Perlas E, Heppenstall PA. Generation and characterization of an Advillin-Cre driver mouse line. Mol Pain 2011;7:66. [PMID: 21906401 DOI: 10.1186/1744-8069-7-66] [Cited by in Crossref: 49] [Cited by in F6Publishing: 55] [Article Influence: 4.5] [Reference Citation Analysis]
106 Chuhma N, Mingote S, Moore H, Rayport S. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron 2014;81:901-12. [PMID: 24559678 DOI: 10.1016/j.neuron.2013.12.027] [Cited by in Crossref: 111] [Cited by in F6Publishing: 108] [Article Influence: 13.9] [Reference Citation Analysis]
107 Ding ZM, Ingraham CM, Rodd ZA, McBride WJ. Alcohol drinking increases the dopamine-stimulating effects of ethanol and reduces D2 auto-receptor and group II metabotropic glutamate receptor function within the posterior ventral tegmental area of alcohol preferring (P) rats. Neuropharmacology 2016;109:41-8. [PMID: 27260326 DOI: 10.1016/j.neuropharm.2016.05.023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
108 Wang DV, Viereckel T, Zell V, Konradsson-Geuken Å, Broker CJ, Talishinsky A, Yoo JH, Galinato MH, Arvidsson E, Kesner AJ, Hnasko TS, Wallén-Mackenzie Å, Ikemoto S. Disrupting Glutamate Co-transmission Does Not Affect Acquisition of Conditioned Behavior Reinforced by Dopamine Neuron Activation. Cell Rep 2017;18:2584-91. [PMID: 28297663 DOI: 10.1016/j.celrep.2017.02.062] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
109 Pina MM, Cunningham CL. Involvement of ventral tegmental area ionotropic glutamate receptors in the expression of ethanol-induced conditioned place preference. Behav Brain Res 2016;313:23-9. [PMID: 27378337 DOI: 10.1016/j.bbr.2016.06.063] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
110 Huff W, Mai J, Kuhn J, Lenartz D, Klosterkoetter J, Sturm V. Response to Dr. Mavridis' and Dr. Anagnostopoulos' letter. Clin Neurol Neurosurg 2011;113:258-9. [PMID: 21163570 DOI: 10.1016/j.clineuro.2010.11.005] [Reference Citation Analysis]
111 Gomes FV, Edelson JR, Volk DW, Grace AA. Altered brain cannabinoid 1 receptor mRNA expression across postnatal development in the MAM model of schizophrenia. Schizophr Res 2018;201:254-60. [PMID: 29705007 DOI: 10.1016/j.schres.2018.04.030] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
112 Fuxe K, Borroto-escuela DO, Tarakanov A, Fernandez WR, Manger P, Rivera A, van Craenenbroeck K, Skieterska K, Diaz-cabiale Z, Filip M, Ferraro L, Tanganelli S, Guidolin D, Cullheim S, de la Mora MP, Agnati LF. Understanding the balance and integration of volume and synaptic transmission. Relevance for psychiatry. Neurology, Psychiatry and Brain Research 2013;19:141-58. [DOI: 10.1016/j.npbr.2013.10.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
113 Lane G, Zhou G, Noto T, Zelano C. Assessment of direct knowledge of the human olfactory system. Exp Neurol 2020;329:113304. [PMID: 32278646 DOI: 10.1016/j.expneurol.2020.113304] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
114 Wenzel JM, Cheer JF. Endocannabinoid-dependent modulation of phasic dopamine signaling encodes external and internal reward-predictive cues. Front Psychiatry 2014;5:118. [PMID: 25225488 DOI: 10.3389/fpsyt.2014.00118] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
115 Wilson DA, Sullivan RM. Cortical processing of odor objects. Neuron 2011;72:506-19. [PMID: 22099455 DOI: 10.1016/j.neuron.2011.10.027] [Cited by in Crossref: 249] [Cited by in F6Publishing: 215] [Article Influence: 24.9] [Reference Citation Analysis]
116 Carter RM, Macinnes JJ, Huettel SA, Adcock RA. Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Front Behav Neurosci 2009;3:21. [PMID: 19753142 DOI: 10.3389/neuro.08.021.2009] [Cited by in Crossref: 102] [Cited by in F6Publishing: 107] [Article Influence: 7.8] [Reference Citation Analysis]
117 Pina MM, Cunningham CL. Ethanol-seeking behavior is expressed directly through an extended amygdala to midbrain neural circuit. Neurobiol Learn Mem 2017;137:83-91. [PMID: 27866960 DOI: 10.1016/j.nlm.2016.11.013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
118 Petzel A, Bernard R, Poller WC, Veh RW. Anterior and posterior parts of the rat ventral tegmental area and the rostromedial tegmental nucleus receive topographically distinct afferents from the lateral habenular complex: PETZEL et al. J Comp Neurol 2017;525:2310-27. [DOI: 10.1002/cne.24200] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
119 Tunstall BJ, Carmack SA. Social Stress-Induced Alterations in CRF Signaling in the VTA Facilitate the Emergence of Addiction-like Behavior. J Neurosci 2016;36:8780-2. [PMID: 27559161 DOI: 10.1523/JNEUROSCI.1815-16.2016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
120 Da Cunha C, Boschen SL, Gómez-A A, Ross EK, Gibson WS, Min HK, Lee KH, Blaha CD. Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation. Neurosci Biobehav Rev 2015;58:186-210. [PMID: 25684727 DOI: 10.1016/j.neubiorev.2015.02.003] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 5.4] [Reference Citation Analysis]
121 Bales JW, Wagner AK, Kline AE, Dixon CE. Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis. Neurosci Biobehav Rev 2009;33:981-1003. [PMID: 19580914 DOI: 10.1016/j.neubiorev.2009.03.011] [Cited by in Crossref: 173] [Cited by in F6Publishing: 164] [Article Influence: 13.3] [Reference Citation Analysis]
122 Himmerich H, Treasure J. Psychopharmacological advances in eating disorders. Expert Rev Clin Pharmacol 2018;11:95-108. [PMID: 28933969 DOI: 10.1080/17512433.2018.1383895] [Cited by in Crossref: 42] [Cited by in F6Publishing: 31] [Article Influence: 8.4] [Reference Citation Analysis]
123 Belle AM, Owesson-White C, Herr NR, Carelli RM, Wightman RM. Controlled iontophoresis coupled with fast-scan cyclic voltammetry/electrophysiology in awake, freely moving animals. ACS Chem Neurosci 2013;4:761-71. [PMID: 23480099 DOI: 10.1021/cn400031v] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
124 Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW. Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 2008;363:3125-35. [PMID: 18640910 DOI: 10.1098/rstb.2008.0089] [Cited by in Crossref: 594] [Cited by in F6Publishing: 554] [Article Influence: 42.4] [Reference Citation Analysis]
125 Kesby JP, Hubbard DT, Markou A, Semenova S. Expression of HIV gp120 protein increases sensitivity to the rewarding properties of methamphetamine in mice. Addict Biol 2014;19:593-605. [PMID: 23252824 DOI: 10.1111/adb.12023] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
126 Zhang D, Dragomir A, Akay YM, Akay M. Nicotine exposure increases the complexity of dopamine neurons in the parainterfascicular nucleus (PIF) sub-region of VTA. J Neuroeng Rehabil 2014;11:103. [PMID: 24920473 DOI: 10.1186/1743-0003-11-103] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
127 Peris J, MacFadyen K, Smith JA, de Kloet AD, Wang L, Krause EG. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. J Comp Neurol 2017;525:1094-108. [PMID: 27615433 DOI: 10.1002/cne.24116] [Cited by in Crossref: 70] [Cited by in F6Publishing: 63] [Article Influence: 11.7] [Reference Citation Analysis]
128 Kulesskaya N, Võikar V, Peltola M, Yegutkin GG, Salmi M, Jalkanen S, Rauvala H. CD73 is a major regulator of adenosinergic signalling in mouse brain. PLoS One 2013;8:e66896. [PMID: 23776700 DOI: 10.1371/journal.pone.0066896] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 3.7] [Reference Citation Analysis]
129 Venkatraman A, Edlow BL, Immordino-Yang MH. The Brainstem in Emotion: A Review. Front Neuroanat 2017;11:15. [PMID: 28337130 DOI: 10.3389/fnana.2017.00015] [Cited by in Crossref: 68] [Cited by in F6Publishing: 54] [Article Influence: 13.6] [Reference Citation Analysis]
130 Murray JE, Dilleen R, Pelloux Y, Economidou D, Dalley JW, Belin D, Everitt BJ. Increased impulsivity retards the transition to dorsolateral striatal dopamine control of cocaine seeking. Biol Psychiatry 2014;76:15-22. [PMID: 24157338 DOI: 10.1016/j.biopsych.2013.09.011] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
131 Gomes FV, Rincón-Cortés M, Grace AA. Adolescence as a period of vulnerability and intervention in schizophrenia: Insights from the MAM model. Neurosci Biobehav Rev 2016;70:260-70. [PMID: 27235082 DOI: 10.1016/j.neubiorev.2016.05.030] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 10.0] [Reference Citation Analysis]
132 Verheij MM, Cools AR. Twenty years of dopamine research: individual differences in the response of accumbal dopamine to environmental and pharmacological challenges. Eur J Pharmacol 2008;585:228-44. [PMID: 18423601 DOI: 10.1016/j.ejphar.2008.02.084] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 3.1] [Reference Citation Analysis]
133 Rutherford LG, Milton AL. Deconstructing and reconstructing behaviour relevant to mental health disorders: The benefits of a psychological approach, with a focus on addiction. Neurosci Biobehav Rev 2021;:104514. [PMID: 34958822 DOI: 10.1016/j.neubiorev.2021.104514] [Reference Citation Analysis]
134 Alghasham A, Rasheed N. Stress-mediated modulations in dopaminergic system and their subsequent impact on behavioral and oxidative alterations: an update. Pharm Biol 2014;52:368-77. [PMID: 24147890 DOI: 10.3109/13880209.2013.837492] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
135 Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 2009;61:786-800. [PMID: 19285474 DOI: 10.1016/j.neuron.2009.02.001] [Cited by in Crossref: 371] [Cited by in F6Publishing: 389] [Article Influence: 28.5] [Reference Citation Analysis]
136 Gentry RN, Schuweiler DR, Roesch MR. Dopamine signals related to appetitive and aversive events in paradigms that manipulate reward and avoidability. Brain Res 2019;1713:80-90. [PMID: 30300635 DOI: 10.1016/j.brainres.2018.10.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
137 Marcangione C, Rompré PP. Topographical Fos induction within the ventral midbrain and projection sites following self-stimulation of the posterior mesencephalon. Neuroscience 2008;154:1227-41. [PMID: 18556137 DOI: 10.1016/j.neuroscience.2008.05.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
138 Osier ND, Dixon CE. Catecholaminergic based therapies for functional recovery after TBI. Brain Res 2016;1640:15-35. [PMID: 26711850 DOI: 10.1016/j.brainres.2015.12.026] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
139 Aragona BJ, Day JJ, Roitman MF, Cleaveland NA, Wightman RM, Carelli RM. Regional specificity in the real-time development of phasic dopamine transmission patterns during acquisition of a cue-cocaine association in rats. Eur J Neurosci 2009;30:1889-99. [PMID: 19912327 DOI: 10.1111/j.1460-9568.2009.07027.x] [Cited by in Crossref: 79] [Cited by in F6Publishing: 90] [Article Influence: 6.1] [Reference Citation Analysis]
140 Moe RO, Nordgreen J, Janczak AM, Spruijt BM, Kostal L, Skjerve E, Zanella AJ, Bakken M. Effects of haloperidol, a dopamine D2-like receptor antagonist, on reward-related behaviors in laying hens. Physiol Behav 2011;102:400-5. [PMID: 21163277 DOI: 10.1016/j.physbeh.2010.12.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
141 De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 2017;151:175-236. [PMID: 27013075 DOI: 10.1016/j.pneurobio.2016.03.004] [Cited by in Crossref: 96] [Cited by in F6Publishing: 85] [Article Influence: 16.0] [Reference Citation Analysis]
142 Mori K, Sakano H. Processing of Odor Information During the Respiratory Cycle in Mice. Front Neural Circuits 2022;16:861800. [DOI: 10.3389/fncir.2022.861800] [Reference Citation Analysis]
143 Jaime S, Cavazos JE, Yang Y, Lu H. Longitudinal observations using simultaneous fMRI, multiple channel electrophysiology recording, and chemical microiontophoresis in the rat brain. J Neurosci Methods 2018;306:68-76. [PMID: 29778509 DOI: 10.1016/j.jneumeth.2018.05.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
144 Brischoux F, Chakraborty S, Brierley DI, Ungless MA. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A 2009;106:4894-9. [PMID: 19261850 DOI: 10.1073/pnas.0811507106] [Cited by in Crossref: 475] [Cited by in F6Publishing: 502] [Article Influence: 36.5] [Reference Citation Analysis]
145 Belin D, Everitt BJ. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 2008;57:432-41. [PMID: 18255035 DOI: 10.1016/j.neuron.2007.12.019] [Cited by in Crossref: 457] [Cited by in F6Publishing: 439] [Article Influence: 32.6] [Reference Citation Analysis]
146 Aragona BJ, Wang Z. Dopamine regulation of social choice in a monogamous rodent species. Front Behav Neurosci 2009;3:15. [PMID: 19707518 DOI: 10.3389/neuro.08.015.2009] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 4.2] [Reference Citation Analysis]
147 Ambrose-Lanci LM, Peiris NB, Unterwald EM, Van Bockstaele EJ. Cocaine withdrawal-induced trafficking of delta-opioid receptors in rat nucleus accumbens. Brain Res 2008;1210:92-102. [PMID: 18417105 DOI: 10.1016/j.brainres.2008.02.105] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.4] [Reference Citation Analysis]
148 Lüscher C, Robbins TW, Everitt BJ. The transition to compulsion in addiction. Nat Rev Neurosci 2020;21:247-63. [PMID: 32231315 DOI: 10.1038/s41583-020-0289-z] [Cited by in Crossref: 72] [Cited by in F6Publishing: 55] [Article Influence: 36.0] [Reference Citation Analysis]
149 Silkstone M, Brudzynski SM. The antagonistic relationship between aversive and appetitive emotional states in rats as studied by pharmacologically-induced ultrasonic vocalization from the nucleus accumbens and lateral septum. Pharmacol Biochem Behav 2019;181:77-85. [PMID: 31034853 DOI: 10.1016/j.pbb.2019.04.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
150 Breton JM, Charbit AR, Snyder BJ, Fong PTK, Dias EV, Himmels P, Lock H, Margolis EB. Relative contributions and mapping of ventral tegmental area dopamine and GABA neurons by projection target in the rat. J Comp Neurol 2019;527:916-41. [PMID: 30393861 DOI: 10.1002/cne.24572] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
151 Mayer D, Kahl E, Uzuneser TC, Fendt M. Role of the mesolimbic dopamine system in relief learning. Neuropsychopharmacology 2018;43:1651-9. [PMID: 29453443 DOI: 10.1038/s41386-018-0020-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
152 Robbins TW, Ersche KD, Everitt BJ. Drug addiction and the memory systems of the brain. Ann N Y Acad Sci 2008;1141:1-21. [PMID: 18991949 DOI: 10.1196/annals.1441.020] [Cited by in Crossref: 271] [Cited by in F6Publishing: 257] [Article Influence: 19.4] [Reference Citation Analysis]
153 Linke SE, Ussher M. Exercise-based treatments for substance use disorders: evidence, theory, and practicality. Am J Drug Alcohol Abuse 2015;41:7-15. [PMID: 25397661 DOI: 10.3109/00952990.2014.976708] [Cited by in Crossref: 70] [Cited by in F6Publishing: 61] [Article Influence: 8.8] [Reference Citation Analysis]
154 Jhou TC, Xu SP, Lee MR, Gallen CL, Ikemoto S. Mapping of reinforcing and analgesic effects of the mu opioid agonist endomorphin-1 in the ventral midbrain of the rat. Psychopharmacology (Berl) 2012;224:303-12. [PMID: 22669129 DOI: 10.1007/s00213-012-2753-6] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 4.5] [Reference Citation Analysis]
155 Bell MR, De Lorme KC, Figueira RJ, Kashy DA, Sisk CL. Adolescent gain in positive valence of a socially relevant stimulus: engagement of the mesocorticolimbic reward circuitry. Eur J Neurosci 2013;37:457-68. [PMID: 23173754 DOI: 10.1111/ejn.12058] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
156 Aguirre RMH, González MH, Hernández MP, Gutiérrez CDCA, Guevara MÁ. Observing baby or sexual videos changes the functional synchronization between the prefrontal and parietal cortices in mothers in different postpartum periods. Soc Neurosci 2020;15:489-504. [PMID: 32402224 DOI: 10.1080/17470919.2020.1761447] [Reference Citation Analysis]
157 Baumann MH, Williams Z, Zolkowska D, Rothman RB. Serotonin (5-HT) precursor loading with 5-hydroxy-l-tryptophan (5-HTP) reduces locomotor activation produced by (+)-amphetamine in the rat. Drug Alcohol Depend 2011;114:147-52. [PMID: 21071157 DOI: 10.1016/j.drugalcdep.2010.09.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 0.4] [Reference Citation Analysis]
158 Tang H, Lin P, Chan HL, Yan F. Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosens Bioelectron 2011;26:4559-63. [PMID: 21652201 DOI: 10.1016/j.bios.2011.05.025] [Cited by in Crossref: 142] [Cited by in F6Publishing: 113] [Article Influence: 12.9] [Reference Citation Analysis]
159 Kirouac GJ. Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neuroscience & Biobehavioral Reviews 2015;56:315-29. [DOI: 10.1016/j.neubiorev.2015.08.005] [Cited by in Crossref: 156] [Cited by in F6Publishing: 151] [Article Influence: 22.3] [Reference Citation Analysis]
160 Mulvihill KG, Brudzynski SM. Effect of microinjections of dopamine into the nucleus accumbens shell on emission of 50 kHz USV: Comparison with effects of d-amphetamine. Pharmacology Biochemistry and Behavior 2019;176:23-32. [DOI: 10.1016/j.pbb.2018.11.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
161 Ben-shaanan T, Schiller M, Rolls A. Studying brain-regulation of immunity with optogenetics and chemogenetics; A new experimental platform. Brain, Behavior, and Immunity 2017;65:1-8. [DOI: 10.1016/j.bbi.2016.11.024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
162 Lüscher C, Bellone C. Cocaine-evoked synaptic plasticity: a key to addiction? Nat Neurosci 2008;11:737-8. [PMID: 18575469 DOI: 10.1038/nn0708-737] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 2.2] [Reference Citation Analysis]
163 Zaichenko MI, Merzhanova GK. The Effects of Dopamine D1/D2 Receptor Agonists and Blockers on the Behavior of Rats with Different Choices of Reinforcement Value. Neurosci Behav Physi 2014;44:672-80. [DOI: 10.1007/s11055-014-9968-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
164 Adermark L, Clarke RB, Ericson M, Söderpalm B. Subregion-Specific Modulation of Excitatory Input and Dopaminergic Output in the Striatum by Tonically Activated Glycine and GABA(A) Receptors. Front Syst Neurosci 2011;5:85. [PMID: 22028683 DOI: 10.3389/fnsys.2011.00085] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.1] [Reference Citation Analysis]
165 Robinson DL, Howard EC, McConnell S, Gonzales RA, Wightman RM. Disparity between tonic and phasic ethanol-induced dopamine increases in the nucleus accumbens of rats. Alcohol Clin Exp Res 2009;33:1187-96. [PMID: 19389195 DOI: 10.1111/j.1530-0277.2009.00942.x] [Cited by in Crossref: 68] [Cited by in F6Publishing: 65] [Article Influence: 5.2] [Reference Citation Analysis]
166 Wei J, Ma JZ, Payne TJ, Cui W, Ray R, Mitra N, Lerman C, Li MD. Replication and extension of association of choline acetyltransferase with nicotine dependence in European and African American smokers. Hum Genet 2010;127:691-8. [PMID: 20383528 DOI: 10.1007/s00439-010-0818-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
167 Pastuzyn ED, Keefe KA. Changes in neural circuitry regulating response-reversal learning and Arc-mediated consolidation of learning in rats with methamphetamine-induced partial monoamine loss. Neuropsychopharmacology 2014;39:963-72. [PMID: 24150570 DOI: 10.1038/npp.2013.296] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
168 Low KL, Tomm RJ, Ma C, Tobiansky DJ, Floresco SB, Soma KK. Effects of aging on testosterone and androgen receptors in the mesocorticolimbic system of male rats. Horm Behav 2020;120:104689. [PMID: 31954104 DOI: 10.1016/j.yhbeh.2020.104689] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
169 Cornejo MP, Barrile F, De Francesco PN, Portiansky EL, Reynaldo M, Perello M. Ghrelin Recruits Specific Subsets of Dopamine and GABA Neurons of Different Ventral Tegmental Area Sub-nuclei. Neuroscience 2018;392:107-20. [DOI: 10.1016/j.neuroscience.2018.09.027] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
170 Liu Y, Harding M, Pittman A, Dore J, Striessnig J, Rajadhyaksha A, Chen X. Cav1.2 and Cav1.3 L-type calcium channels regulate dopaminergic firing activity in the mouse ventral tegmental area. J Neurophysiol. 2014;112:1119-1130. [PMID: 24848473 DOI: 10.1152/jn.00757.2013] [Cited by in Crossref: 42] [Cited by in F6Publishing: 34] [Article Influence: 5.3] [Reference Citation Analysis]
171 West A, Best J, Abdalla A, Nijhout HF, Reed M, Hashemi P. Voltammetric evidence for discrete serotonin circuits, linked to specific reuptake domains, in the mouse medial prefrontal cortex. Neurochem Int 2019;123:50-8. [PMID: 30031052 DOI: 10.1016/j.neuint.2018.07.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
172 Velázquez-Sánchez C, Ferragud A, Hernández-Rabaza V, Nácher A, Merino V, Cardá M, Murga J, Canales JJ. The dopamine uptake inhibitor 3 alpha-[bis(4'-fluorophenyl)metoxy]-tropane reduces cocaine-induced early-gene expression, locomotor activity, and conditioned reward. Neuropsychopharmacology 2009;34:2497-507. [PMID: 19606084 DOI: 10.1038/npp.2009.78] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.0] [Reference Citation Analysis]
173 An S, Li X, Deng L, Zhao P, Ding Z, Han Y, Luo Y, Liu X, Li A, Luo Q, Feng Z, Gong H. A Whole-Brain Connectivity Map of VTA and SNc Glutamatergic and GABAergic Neurons in Mice. Front Neuroanat 2021;15:818242. [PMID: 35002641 DOI: 10.3389/fnana.2021.818242] [Reference Citation Analysis]
174 Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 2012;74:858-73. [PMID: 22681690 DOI: 10.1016/j.neuron.2012.03.017] [Cited by in Crossref: 672] [Cited by in F6Publishing: 650] [Article Influence: 67.2] [Reference Citation Analysis]
175 Borland JM, Rilling JK, Frantz KJ, Albers HE. Sex-dependent regulation of social reward by oxytocin: an inverted U hypothesis. Neuropsychopharmacology 2019;44:97-110. [PMID: 29968846 DOI: 10.1038/s41386-018-0129-2] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 7.5] [Reference Citation Analysis]
176 Maharjan A, Peng M, Cakmak YO. Non-invasive High Frequency Median Nerve Stimulation Effectively Suppresses Olfactory Intensity Perception in Healthy Males. Front Hum Neurosci 2018;12:533. [PMID: 30719001 DOI: 10.3389/fnhum.2018.00533] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
177 Rasheed N, Ahmad A, Pandey CP, Chaturvedi RK, Lohani M, Palit G. Differential response of central dopaminergic system in acute and chronic unpredictable stress models in rats. Neurochem Res 2010;35:22-32. [PMID: 19568932 DOI: 10.1007/s11064-009-0026-5] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 3.5] [Reference Citation Analysis]
178 Matsubara Y, Kiyohara H, Teratani T, Mikami Y, Kanai T. Organ and brain crosstalk: The liver-brain axis in gastrointestinal, liver, and pancreatic diseases. Neuropharmacology 2021;205:108915. [PMID: 34919906 DOI: 10.1016/j.neuropharm.2021.108915] [Reference Citation Analysis]
179 Touzani K, Bodnar RJ, Sclafani A. Neuropharmacology of learned flavor preferences. Pharmacol Biochem Behav 2010;97:55-62. [PMID: 20600253 DOI: 10.1016/j.pbb.2010.06.001] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 3.8] [Reference Citation Analysis]
180 Gomes FV, Grace AA. Prefrontal Cortex Dysfunction Increases Susceptibility to Schizophrenia-Like Changes Induced by Adolescent Stress Exposure. Schizophr Bull 2017;43:592-600. [PMID: 28003467 DOI: 10.1093/schbul/sbw156] [Cited by in Crossref: 6] [Cited by in F6Publishing: 25] [Article Influence: 1.2] [Reference Citation Analysis]
181 Mahler SV, Aston-Jones GS. Fos activation of selective afferents to ventral tegmental area during cue-induced reinstatement of cocaine seeking in rats. J Neurosci 2012;32:13309-26. [PMID: 22993446 DOI: 10.1523/JNEUROSCI.2277-12.2012] [Cited by in Crossref: 90] [Cited by in F6Publishing: 67] [Article Influence: 9.0] [Reference Citation Analysis]
182 Lovinger DM, Gremel CM. A Circuit-Based Information Approach to Substance Abuse Research. Trends Neurosci 2021;44:122-35. [PMID: 33168235 DOI: 10.1016/j.tins.2020.10.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
183 Wood J, Ahmari SE. A Framework for Understanding the Emerging Role of Corticolimbic-Ventral Striatal Networks in OCD-Associated Repetitive Behaviors. Front Syst Neurosci 2015;9:171. [PMID: 26733823 DOI: 10.3389/fnsys.2015.00171] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 5.3] [Reference Citation Analysis]
184 Feng Q, Chen X, Sun J, Zhou Y, Sun Y, Ding W, Zhang Y, Zhuang Z, Xu J, Du Y. Voxel-level comparison of arterial spin-labeled perfusion magnetic resonance imaging in adolescents with internet gaming addiction. Behav Brain Funct 2013;9:33. [PMID: 23937918 DOI: 10.1186/1744-9081-9-33] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 5.1] [Reference Citation Analysis]
185 Lelos MJ, Dowd E, Dunnett SB. Nigral grafts in animal models of Parkinson's disease. Is recovery beyond motor function possible? Prog Brain Res 2012;200:113-42. [PMID: 23195417 DOI: 10.1016/B978-0-444-59575-1.00006-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
186 Luo R, Uematsu A, Weitemier A, Aquili L, Koivumaa J, McHugh TJ, Johansen JP. A dopaminergic switch for fear to safety transitions. Nat Commun 2018;9:2483. [PMID: 29950562 DOI: 10.1038/s41467-018-04784-7] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 16.0] [Reference Citation Analysis]
187 Maitre M, Roullot-lacarrière V, Piazza PV, Revest J. Western blot detection of brain phosphoproteins after performing Laser Microdissection and Pressure Catapulting (LMPC). Journal of Neuroscience Methods 2011;198:204-12. [DOI: 10.1016/j.jneumeth.2011.04.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
188 Leslie FM, Mojica CY, Reynaga DD. Nicotinic receptors in addiction pathways. Mol Pharmacol 2013;83:753-8. [PMID: 23247824 DOI: 10.1124/mol.112.083659] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 5.5] [Reference Citation Analysis]
189 Capelle HH, Blahak C, Schrader C, Baezner H, Kinfe TM, Herzog J, Dengler R, Krauss JK. Chronic deep brain stimulation in patients with tardive dystonia without a history of major psychosis. Mov Disord 2010;25:1477-81. [PMID: 20629157 DOI: 10.1002/mds.23123] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 3.2] [Reference Citation Analysis]
190 Bruijnzeel AW, Alexander JC, Perez PD, Bauzo-Rodriguez R, Hall G, Klausner R, Guerra V, Zeng H, Igari M, Febo M. Acute nicotine administration increases BOLD fMRI signal in brain regions involved in reward signaling and compulsive drug intake in rats. Int J Neuropsychopharmacol 2014;18:pyu011. [PMID: 25552431 DOI: 10.1093/ijnp/pyu011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
191 Mohebi A, Pettibone JR, Hamid AA, Wong JT, Vinson LT, Patriarchi T, Tian L, Kennedy RT, Berke JD. Dissociable dopamine dynamics for learning and motivation. Nature 2019;570:65-70. [PMID: 31118513 DOI: 10.1038/s41586-019-1235-y] [Cited by in Crossref: 180] [Cited by in F6Publishing: 116] [Article Influence: 60.0] [Reference Citation Analysis]
192 Menassa DA, Sloan C, Chance SA. Primary olfactory cortex in autism and epilepsy: increased glial cells in autism. Brain Pathol 2017;27:437-48. [PMID: 27409070 DOI: 10.1111/bpa.12415] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
193 Trofimova I. Functional Constructivism Approach to Multilevel Nature of Bio-Behavioral Diversity. Front Psychiatry 2021;12:641286. [PMID: 34777031 DOI: 10.3389/fpsyt.2021.641286] [Reference Citation Analysis]
194 Rose EJ, Ross TJ, Salmeron BJ, Lee M, Shakleya DM, Huestis MA, Stein EA. Acute nicotine differentially impacts anticipatory valence- and magnitude-related striatal activity. Biol Psychiatry 2013;73:280-8. [PMID: 22939991 DOI: 10.1016/j.biopsych.2012.06.034] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 4.4] [Reference Citation Analysis]
195 Borowitz MA, Yokum S, Duval ER, Gearhardt AN. Weight-Related Differences in Salience, Default Mode, and Executive Function Network Connectivity in Adolescents. Obesity (Silver Spring) 2020;28:1438-46. [PMID: 32633100 DOI: 10.1002/oby.22853] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
196 Hoque KE, Blume SR, Sammut S, West AR. Electrical stimulation of the hippocampal fimbria facilitates neuronal nitric oxide synthase activity in the medial shell of the rat nucleus accumbens: Modulation by dopamine D1 and D2 receptor activation. Neuropharmacology 2017;126:151-7. [PMID: 28887183 DOI: 10.1016/j.neuropharm.2017.09.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
197 Moriya S, Yamashita A, Kawashima S, Nishi R, Yamanaka A, Kuwaki T. Acute Aversive Stimuli Rapidly Increase the Activity of Ventral Tegmental Area Dopamine Neurons in Awake Mice. Neuroscience 2018;386:16-23. [PMID: 29958943 DOI: 10.1016/j.neuroscience.2018.06.027] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
198 Diaconescu AO, Menon M, Jensen J, Kapur S, McIntosh AR. Dopamine-induced changes in neural network patterns supporting aversive conditioning. Brain Res 2010;1313:143-61. [PMID: 19961836 DOI: 10.1016/j.brainres.2009.11.064] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 1.5] [Reference Citation Analysis]
199 Kawaura K, Ogata Y, Honda S, Soeda F, Shirasaki T, Takahama K. Tipepidine, a non-narcotic antitussive, exerts an antidepressant-like effect in the forced swimming test in adrenocorticotropic hormone-treated rats. Behavioural Brain Research 2016;302:269-78. [DOI: 10.1016/j.bbr.2015.12.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
200 Wright KN, Johnson NL, Dossat AM, Wilson JT, Wesson DW. Reducing local synthesis of estrogen in the tubular striatum promotes attraction to same-sex odors in female mice. Hormones and Behavior 2022;140:105122. [DOI: 10.1016/j.yhbeh.2022.105122] [Reference Citation Analysis]
201 Rodríguez-Manzo G, González-Morales E. Endocannabinoids mediate long-lasting behavioural and physiological changes in male rats induced by the repeated activation of the mesolimbic system by copulation to satiety. Behav Brain Res 2020;383:112510. [PMID: 31987931 DOI: 10.1016/j.bbr.2020.112510] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
202 Tanahashi S, Yamamura S, Nakagawa M, Motomura E, Okada M. Dopamine D2 and serotonin 5-HT1A receptors mediate the actions of aripiprazole in mesocortical and mesoaccumbens transmission. Neuropharmacology 2012;62:765-74. [PMID: 21925189 DOI: 10.1016/j.neuropharm.2011.08.031] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 3.5] [Reference Citation Analysis]
203 Chester DS, Lynam DR, Milich R, DeWall CN. Neural mechanisms of the rejection-aggression link. Soc Cogn Affect Neurosci 2018;13:501-12. [PMID: 29618118 DOI: 10.1093/scan/nsy025] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
204 Guan Y, Xiao C, Krnjevic K, Xie G, Zuo W, Ye JH. GABAergic actions mediate opposite ethanol effects on dopaminergic neurons in the anterior and posterior ventral tegmental area. J Pharmacol Exp Ther 2012;341:33-42. [PMID: 22209891 DOI: 10.1124/jpet.111.187963] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
205 Bassareo V, Cucca F, Frau R, Di Chiara G. Differential activation of accumbens shell and core dopamine by sucrose reinforcement with nose poking and with lever pressing. Behav Brain Res 2015;294:215-23. [PMID: 26275926 DOI: 10.1016/j.bbr.2015.08.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
206 Chester DS, DeWall CN, Derefinko KJ, Estus S, Lynam DR, Peters JR, Jiang Y. Looking for reward in all the wrong places: dopamine receptor gene polymorphisms indirectly affect aggression through sensation-seeking. Soc Neurosci 2016;11:487-94. [PMID: 26592425 DOI: 10.1080/17470919.2015.1119191] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
207 Sanchez-Catalan MJ, Kaufling J, Georges F, Veinante P, Barrot M. The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience 2014;282:198-216. [PMID: 25241061 DOI: 10.1016/j.neuroscience.2014.09.025] [Cited by in Crossref: 65] [Cited by in F6Publishing: 64] [Article Influence: 8.1] [Reference Citation Analysis]
208 Graham DL, Durai HH, Trammell TS, Noble BL, Mortlock DP, Galli A, Stanwood GD. A novel mouse model of glucagon-like peptide-1 receptor expression: A look at the brain. J Comp Neurol 2020;528:2445-70. [PMID: 32170734 DOI: 10.1002/cne.24905] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
209 Gallo EF, Meszaros J, Sherman JD, Chohan MO, Teboul E, Choi CS, Moore H, Javitch JA, Kellendonk C. Accumbens dopamine D2 receptors increase motivation by decreasing inhibitory transmission to the ventral pallidum. Nat Commun 2018;9:1086. [PMID: 29540712 DOI: 10.1038/s41467-018-03272-2] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 9.3] [Reference Citation Analysis]
210 Morikawa H, Paladini CA. Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms. Neuroscience 2011;198:95-111. [PMID: 21872647 DOI: 10.1016/j.neuroscience.2011.08.023] [Cited by in Crossref: 86] [Cited by in F6Publishing: 86] [Article Influence: 7.8] [Reference Citation Analysis]
211 Simmons SC, Wheeler K, Mazei-Robison MS. Determination of circuit-specific morphological adaptations in ventral tegmental area dopamine neurons by chronic morphine. Mol Brain 2019;12:10. [PMID: 30736837 DOI: 10.1186/s13041-019-0435-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
212 Rewal M, Donahue R, Gill TM, Nie H, Ron D, Janak PH. Alpha4 subunit-containing GABAA receptors in the accumbens shell contribute to the reinforcing effects of alcohol. Addict Biol 2012;17:309-21. [PMID: 21507158 DOI: 10.1111/j.1369-1600.2011.00333.x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 2.5] [Reference Citation Analysis]
213 Oishi Y, Suzuki Y, Takahashi K, Yonezawa T, Kanda T, Takata Y, Cherasse Y, Lazarus M. Activation of ventral tegmental area dopamine neurons produces wakefulness through dopamine D2-like receptors in mice. Brain Struct Funct 2017;222:2907-15. [DOI: 10.1007/s00429-017-1365-7] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 11.8] [Reference Citation Analysis]
214 Pape L, van Lith K, Veltman D, Cohn M, Marhe R, van den Brink W, Doreleijers T, Popma A. Effect of Methylphenidate on Resting-State Connectivity in Adolescents With a Disruptive Behavior Disorder: A Double-Blind Randomized Placebo-Controlled fMRI Study. Front Psychiatry 2021;12:662652. [PMID: 34220576 DOI: 10.3389/fpsyt.2021.662652] [Reference Citation Analysis]
215 Zendehdel M, Hasani K, Babapour V, Mortezaei SS, Khoshbakht Y, Hassanpour S. Dopamine-induced hypophagia is mediated by D1 and 5HT-2c receptors in chicken. Vet Res Commun 2014;38:11-9. [PMID: 24122738 DOI: 10.1007/s11259-013-9581-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
216 Sesia T, Bizup B, Grace AA. Nucleus accumbens high-frequency stimulation selectively impacts nigrostriatal dopaminergic neurons. Int J Neuropsychopharmacol 2014;17:421-7. [PMID: 24131575 DOI: 10.1017/S1461145713001211] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
217 Fritz BM, Boehm SL 2nd. Rodent models and mechanisms of voluntary binge-like ethanol consumption: Examples, opportunities, and strategies for preclinical research. Prog Neuropsychopharmacol Biol Psychiatry 2016;65:297-308. [PMID: 26021391 DOI: 10.1016/j.pnpbp.2015.05.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
218 Chalençon L, Thevenet M, Noury N, Bensafi M, Mandairon N. Identification of new behavioral parameters to assess odorant hedonic value in humans: A naturalistic approach. J Neurosci Methods 2022;366:109422. [PMID: 34826503 DOI: 10.1016/j.jneumeth.2021.109422] [Reference Citation Analysis]
219 Ogawa SK, Cohen JY, Hwang D, Uchida N, Watabe-Uchida M. Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Rep 2014;8:1105-18. [PMID: 25108805 DOI: 10.1016/j.celrep.2014.06.042] [Cited by in Crossref: 136] [Cited by in F6Publishing: 118] [Article Influence: 17.0] [Reference Citation Analysis]
220 Mebel DM, Wong JC, Dong YJ, Borgland SL. Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake. Eur J Neurosci 2012;36:2336-46. [PMID: 22712725 DOI: 10.1111/j.1460-9568.2012.08168.x] [Cited by in Crossref: 127] [Cited by in F6Publishing: 127] [Article Influence: 12.7] [Reference Citation Analysis]
221 Münster A, Votteler A, Sommer S, Hauber W. Role of the Medial Orbitofrontal Cortex and Ventral Tegmental Area in Effort-Related Responding. Cereb Cortex Commun 2020;1:tgaa086. [PMID: 34296142 DOI: 10.1093/texcom/tgaa086] [Reference Citation Analysis]
222 Szczytkowski JL, Lebonville C, Hutson L, Fuchs RA, Lysle DT. Heroin-induced conditioned immunomodulation requires expression of IL-1β in the dorsal hippocampus. Brain Behav Immun 2013;30:95-102. [PMID: 23357470 DOI: 10.1016/j.bbi.2013.01.076] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
223 Wang C, Chen H, Wang X, Zhang R, Hao W. Dopamine Responsiveness in the Nucl. Accumbens Shell and Parameters of the Heroin-Influenced Conditioned Place Preference in Rats. Neurophysiology 2015;47:212-7. [DOI: 10.1007/s11062-015-9523-0] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
224 Sackett DA, Saddoris MP, Carelli RM. Nucleus Accumbens Shell Dopamine Preferentially Tracks Information Related to Outcome Value of Reward. eNeuro 2017;4:ENEURO. [PMID: 28593190 DOI: 10.1523/ENEURO.0058-17.2017] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 4.2] [Reference Citation Analysis]
225 Murray JE, Belin-Rauscent A, Simon M, Giuliano C, Benoit-Marand M, Everitt BJ, Belin D. Basolateral and central amygdala differentially recruit and maintain dorsolateral striatum-dependent cocaine-seeking habits. Nat Commun 2015;6:10088. [PMID: 26657320 DOI: 10.1038/ncomms10088] [Cited by in Crossref: 55] [Cited by in F6Publishing: 46] [Article Influence: 7.9] [Reference Citation Analysis]
226 Sellings LHL, Baharnouri G, Mcquade LE, Clarke PBS. Rewarding and aversive effects of nicotine are segregated within the nucleus accumbens. European Journal of Neuroscience 2008;28:342-52. [DOI: 10.1111/j.1460-9568.2008.06341.x] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 3.7] [Reference Citation Analysis]
227 Shen X, Ruan X, Zhao H. Stimulation of midbrain dopaminergic structures modifies firing rates of rat lateral habenula neurons. PLoS One 2012;7:e34323. [PMID: 22485164 DOI: 10.1371/journal.pone.0034323] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 3.3] [Reference Citation Analysis]
228 Celentano M, Caprioli D, Dipasquale P, Cardillo V, Nencini P, Gaetani S, Badiani A. Drug context differently regulates cocaine versus heroin self-administration and cocaine- versus heroin-induced Fos mRNA expression in the rat. Psychopharmacology (Berl) 2009;204:349-60. [PMID: 19169671 DOI: 10.1007/s00213-009-1467-x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 1.9] [Reference Citation Analysis]
229 Miyata J. Toward integrated understanding of salience in psychosis. Neurobiology of Disease 2019;131:104414. [DOI: 10.1016/j.nbd.2019.03.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
230 Yu T, Lang S, Birbaumer N, Kotchoubey B. Neural correlates of sensory preconditioning: a preliminary fMRI investigation. Hum Brain Mapp 2014;35:1297-304. [PMID: 23450811 DOI: 10.1002/hbm.22253] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
231 Belin D, Belin-Rauscent A, Murray JE, Everitt BJ. Addiction: failure of control over maladaptive incentive habits. Curr Opin Neurobiol 2013;23:564-72. [PMID: 23452942 DOI: 10.1016/j.conb.2013.01.025] [Cited by in Crossref: 151] [Cited by in F6Publishing: 121] [Article Influence: 16.8] [Reference Citation Analysis]
232 Fenoy AJ, Quevedo J, Soares JC. Deep brain stimulation of the "medial forebrain bundle": a strategy to modulate the reward system and manage treatment-resistant depression. Mol Psychiatry 2021. [PMID: 33903731 DOI: 10.1038/s41380-021-01100-6] [Reference Citation Analysis]
233 Cabib S, Puglisi-Allegra S. The mesoaccumbens dopamine in coping with stress. Neurosci Biobehav Rev 2012;36:79-89. [PMID: 21565217 DOI: 10.1016/j.neubiorev.2011.04.012] [Cited by in Crossref: 175] [Cited by in F6Publishing: 161] [Article Influence: 15.9] [Reference Citation Analysis]
234 Zubair M, Murris SR, Isa K, Onoe H, Koshimizu Y, Kobayashi K, Vanduffel W, Isa T. Divergent Whole Brain Projections from the Ventral Midbrain in Macaques. Cereb Cortex 2021;31:2913-31. [PMID: 33558867 DOI: 10.1093/cercor/bhaa399] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
235 Ouachikh O, Dieb W, Durif F, Hafidi A. Differential behavioral reinforcement effects of dopamine receptor agonists in the rat with bilateral lesion of the posterior ventral tegmental area. Behavioural Brain Research 2013;252:24-31. [DOI: 10.1016/j.bbr.2013.05.042] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
236 Yamaguchi T, Qi J, Wang HL, Zhang S, Morales M. Glutamatergic and dopaminergic neurons in the mouse ventral tegmental area. Eur J Neurosci 2015;41:760-72. [PMID: 25572002 DOI: 10.1111/ejn.12818] [Cited by in Crossref: 80] [Cited by in F6Publishing: 74] [Article Influence: 11.4] [Reference Citation Analysis]
237 Menegas W, Babayan BM, Uchida N, Watabe-Uchida M. Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. Elife 2017;6:e21886. [PMID: 28054919 DOI: 10.7554/eLife.21886] [Cited by in Crossref: 109] [Cited by in F6Publishing: 61] [Article Influence: 21.8] [Reference Citation Analysis]
238 Prosser R, Glass J. Neurological Aspects of Cocaine and the Suprachiasmatic Circadian Clock. The Neuroscience of Cocaine. Elsevier; 2017. pp. 163-72. [DOI: 10.1016/b978-0-12-803750-8.00017-8] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
239 Sampedro-piquero P, J. Santín L, Castilla-ortega E. Aberrant Brain Neuroplasticity and Function in Drug Addiction: A Focus on Learning-Related Brain Regions. In: Palermo S, Morese R, editors. Behavioral Neuroscience. IntechOpen; 2019. [DOI: 10.5772/intechopen.85280] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
240 Rewal M, Jurd R, Gill TM, He DY, Ron D, Janak PH. Alpha4-containing GABAA receptors in the nucleus accumbens mediate moderate intake of alcohol. J Neurosci 2009;29:543-9. [PMID: 19144854 DOI: 10.1523/JNEUROSCI.3199-08.2009] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 3.7] [Reference Citation Analysis]
241 Burton AC, Nakamura K, Roesch MR. From ventral-medial to dorsal-lateral striatum: neural correlates of reward-guided decision-making. Neurobiol Learn Mem 2015;117:51-9. [PMID: 24858182 DOI: 10.1016/j.nlm.2014.05.003] [Cited by in Crossref: 101] [Cited by in F6Publishing: 94] [Article Influence: 12.6] [Reference Citation Analysis]
242 Liu CM, Hsu TM, Suarez AN, Subramanian KS, Fatemi RA, Cortella AM, Noble EE, Roitman MF, Kanoski SE. Central oxytocin signaling inhibits food reward-motivated behaviors and VTA dopamine responses to food-predictive cues in male rats. Horm Behav 2020;126:104855. [PMID: 32991888 DOI: 10.1016/j.yhbeh.2020.104855] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
243 Wesson DW, Wilson DA. Smelling sounds: olfactory-auditory sensory convergence in the olfactory tubercle. J Neurosci 2010;30:3013-21. [PMID: 20181598 DOI: 10.1523/JNEUROSCI.6003-09.2010] [Cited by in Crossref: 85] [Cited by in F6Publishing: 45] [Article Influence: 7.1] [Reference Citation Analysis]
244 Wu C, Garamszegi SP, Xie X, Mash DC. Altered Dopamine Synaptic Markers in Postmortem Brain of Obese Subjects. Front Hum Neurosci 2017;11:386. [PMID: 28824395 DOI: 10.3389/fnhum.2017.00386] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
245 Gleich T, Spitta G, Butler O, Zacharias K, Aydin S, Sebold M, Garbusow M, Rapp M, Schubert F, Buchert R, Heinz A, Gallinat J. Dopamine D2/3 receptor availability in alcohol use disorder and individuals at high risk: Towards a dimensional approach. Addict Biol 2021;26:e12915. [PMID: 32500613 DOI: 10.1111/adb.12915] [Reference Citation Analysis]
246 Li J, Nie H, Bian W, Dave V, Janak PH, Ye JH. Microinjection of glycine into the ventral tegmental area selectively decreases ethanol consumption. J Pharmacol Exp Ther 2012;341:196-204. [PMID: 22238211 DOI: 10.1124/jpet.111.190058] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
247 Hoebel BG, Avena NM, Rada P. Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol 2007;7:617-27. [PMID: 18023617 DOI: 10.1016/j.coph.2007.10.014] [Cited by in Crossref: 117] [Cited by in F6Publishing: 106] [Article Influence: 7.8] [Reference Citation Analysis]
248 Nordenankar K, Smith-Anttila CJ, Schweizer N, Viereckel T, Birgner C, Mejia-Toiber J, Morales M, Leao RN, Wallén-Mackenzie Å. Increased hippocampal excitability and impaired spatial memory function in mice lacking VGLUT2 selectively in neurons defined by tyrosine hydroxylase promoter activity. Brain Struct Funct 2015;220:2171-90. [PMID: 24802380 DOI: 10.1007/s00429-014-0778-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
249 Chon U, LaFever BJ, Nguyen U, Kim Y, Imamura F. Topographically Distinct Projection Patterns of Early-Generated and Late-Generated Projection Neurons in the Mouse Olfactory Bulb. eNeuro 2020;7:ENEURO. [PMID: 33158934 DOI: 10.1523/ENEURO.0369-20.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
250 Cross SJ, Leslie FM. Combined nicotine and ethanol age-dependently alter neural and behavioral responses in male rats. Behav Pharmacol 2021;32:321-34. [PMID: 33660662 DOI: 10.1097/FBP.0000000000000622] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
251 Hahn JD, Swanson LW. Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res Rev 2010;64:14-103. [PMID: 20170674 DOI: 10.1016/j.brainresrev.2010.02.002] [Cited by in Crossref: 72] [Cited by in F6Publishing: 76] [Article Influence: 6.0] [Reference Citation Analysis]
252 Giessel AJ, Datta SR. Olfactory maps, circuits and computations. Curr Opin Neurobiol 2014;24:120-32. [PMID: 24492088 DOI: 10.1016/j.conb.2013.09.010] [Cited by in Crossref: 54] [Cited by in F6Publishing: 43] [Article Influence: 6.0] [Reference Citation Analysis]
253 Puglisi-Allegra S, Ventura R. Prefrontal/accumbal catecholamine system processes high motivational salience. Front Behav Neurosci 2012;6:31. [PMID: 22754514 DOI: 10.3389/fnbeh.2012.00031] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
254 Perogamvros L, Schwartz S. The roles of the reward system in sleep and dreaming. Neurosci Biobehav Rev 2012;36:1934-51. [PMID: 22669078 DOI: 10.1016/j.neubiorev.2012.05.010] [Cited by in Crossref: 101] [Cited by in F6Publishing: 85] [Article Influence: 10.1] [Reference Citation Analysis]
255 Sampedro-piquero P, Ladrón de Guevara-miranda D, Pavón FJ, Serrano A, Suárez J, Rodríguez de Fonseca F, Santín LJ, Castilla-ortega E. Neuroplastic and cognitive impairment in substance use disorders: a therapeutic potential of cognitive stimulation. Neuroscience & Biobehavioral Reviews 2019;106:23-48. [DOI: 10.1016/j.neubiorev.2018.11.015] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
256 Fujita Y, Kunitachi S, Iyo M, Hashimoto K. The antibiotic minocycline prevents methamphetamine-induced rewarding effects in mice. Pharmacol Biochem Behav 2012;101:303-6. [PMID: 22260872 DOI: 10.1016/j.pbb.2012.01.005] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 2.7] [Reference Citation Analysis]
257 Ioanas H, Saab BJ, Rudin M. Whole-brain opto-fMRI map of mouse VTA dopaminergic activation reflects structural projections with small but significant deviations. Transl Psychiatry 2022;12. [DOI: 10.1038/s41398-022-01812-5] [Reference Citation Analysis]
258 Yao Y, Gao G, Liu K, Shi X, Cheng M, Xiong Y, Song S. Projections from D2 Neurons in Different Subregions of Nucleus Accumbens Shell to Ventral Pallidum Play Distinct Roles in Reward and Aversion. Neurosci Bull 2021;37:623-40. [PMID: 33548029 DOI: 10.1007/s12264-021-00632-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
259 Kabanova A, Pabst M, Lorkowski M, Braganza O, Boehlen A, Nikbakht N, Pothmann L, Vaswani AR, Musgrove R, Di Monte DA, Sauvage M, Beck H, Blaess S. Function and developmental origin of a mesocortical inhibitory circuit. Nat Neurosci 2015;18:872-82. [DOI: 10.1038/nn.4020] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
260 Grigsby KB, Kovarik CM, Mao X, Booth FW. Medial preoptic estrogen receptor-beta blunts the estrogen receptor-alpha mediated increases in wheel-running behavior of female rats. Behav Brain Res 2020;379:112341. [PMID: 31711895 DOI: 10.1016/j.bbr.2019.112341] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
261 O'Connell LA, Hofmann HA. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 2011;519:3599-639. [PMID: 21800319 DOI: 10.1002/cne.22735] [Cited by in Crossref: 548] [Cited by in F6Publishing: 491] [Article Influence: 54.8] [Reference Citation Analysis]
262 de Oliveira Guaita G, Vecchia DD, Andreatini R, Robinson DL, Schwarting RKW, Da Cunha C. Diazepam blocks 50 kHz ultrasonic vocalizations and stereotypies but not the increase in locomotor activity induced in rats by amphetamine. Psychopharmacology 2018;235:1887-96. [DOI: 10.1007/s00213-018-4878-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
263 Biesdorf C, Wang A, Topic B, Petri D, Milani H, Huston J, de Souza Silva M. Dopamine in the nucleus accumbens core, but not shell, increases during signaled food reward and decreases during delayed extinction. Neurobiology of Learning and Memory 2015;123:125-39. [DOI: 10.1016/j.nlm.2015.06.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
264 Yetnikoff L, Cheng AY, Lavezzi HN, Parsley KP, Zahm DS. Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: A study in rat. J Comp Neurol 2015;523:2426-56. [PMID: 25940654 DOI: 10.1002/cne.23797] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 8.0] [Reference Citation Analysis]
265 Everitt BJ. Drug Cues, Conditioned Reinforcement, and Drug Seeking: The Sequelae of a Collaborative Venture With Athina Markou. Biological Psychiatry 2018;83:924-31. [DOI: 10.1016/j.biopsych.2017.09.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
266 Yang H, de Jong JW, Tak Y, Peck J, Bateup HS, Lammel S. Nucleus Accumbens Subnuclei Regulate Motivated Behavior via Direct Inhibition and Disinhibition of VTA Dopamine Subpopulations. Neuron 2018;97:434-449.e4. [PMID: 29307710 DOI: 10.1016/j.neuron.2017.12.022] [Cited by in Crossref: 140] [Cited by in F6Publishing: 131] [Article Influence: 35.0] [Reference Citation Analysis]
267 Ubl B, Kuehner C, Kirsch P, Ruttorf M, Diener C, Flor H. Altered neural reward and loss processing and prediction error signalling in depression. Soc Cogn Affect Neurosci 2015;10:1102-12. [PMID: 25567763 DOI: 10.1093/scan/nsu158] [Cited by in Crossref: 87] [Cited by in F6Publishing: 78] [Article Influence: 12.4] [Reference Citation Analysis]
268 Menegas W, Bergan JF, Ogawa SK, Isogai Y, Umadevi Venkataraju K, Osten P, Uchida N, Watabe-Uchida M. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass.Elife. 2015;4:e10032. [PMID: 26322384 DOI: 10.7554/eLife.10032] [Cited by in Crossref: 145] [Cited by in F6Publishing: 105] [Article Influence: 20.7] [Reference Citation Analysis]
269 Chuhma N, Mingote S, Kalmbach A, Yetnikoff L, Rayport S. Heterogeneity in Dopamine Neuron Synaptic Actions Across the Striatum and Its Relevance for Schizophrenia. Biol Psychiatry 2017;81:43-51. [PMID: 27692238 DOI: 10.1016/j.biopsych.2016.07.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 5.3] [Reference Citation Analysis]
270 Juarez B, Han MH. Diversity of Dopaminergic Neural Circuits in Response to Drug Exposure. Neuropsychopharmacology 2016;41:2424-46. [PMID: 26934955 DOI: 10.1038/npp.2016.32] [Cited by in Crossref: 70] [Cited by in F6Publishing: 66] [Article Influence: 11.7] [Reference Citation Analysis]
271 García-Pérez D, Laorden ML, Milanés MV. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration. Int J Neuropsychopharmacol 2015;19:pyv077. [PMID: 26164717 DOI: 10.1093/ijnp/pyv077] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
272 Quinn RK, James MH, Hawkins GE, Brown AL, Heathcote A, Smith DW, Cairns MJ, Dayas CV. Temporally specific miRNA expression patterns in the dorsal and ventral striatum of addiction-prone rats. Addict Biol 2018;23:631-42. [PMID: 28612502 DOI: 10.1111/adb.12520] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
273 Spiller K, Xi ZX, Peng XQ, Newman AH, Ashby CR Jr, Heidbreder C, Gaál J, Gardner EL. The selective dopamine D3 receptor antagonists SB-277011A and NGB 2904 and the putative partial D3 receptor agonist BP-897 attenuate methamphetamine-enhanced brain stimulation reward in rats. Psychopharmacology (Berl) 2008;196:533-42. [PMID: 17985117 DOI: 10.1007/s00213-007-0986-6] [Cited by in Crossref: 55] [Cited by in F6Publishing: 54] [Article Influence: 3.7] [Reference Citation Analysis]
274 Makary MM, Polosecki P, Cecchi GA, DeAraujo IE, Barron DS, Constable TR, Whang PG, Thomas DA, Mowafi H, Small DM, Geha P. Loss of nucleus accumbens low-frequency fluctuations is a signature of chronic pain. Proc Natl Acad Sci U S A 2020;117:10015-23. [PMID: 32312809 DOI: 10.1073/pnas.1918682117] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
275 de la Cruz F, Wagner G, Schumann A, Suttkus S, Güllmar D, Reichenbach JR, Bär KJ. Interrelations between dopamine and serotonin producing sites and regions of the default mode network. Hum Brain Mapp 2021;42:811-23. [PMID: 33128416 DOI: 10.1002/hbm.25264] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
276 Martínez-Téllez RI, Hernández-Torres E, Gamboa C, Flores G. Prenatal stress alters spine density and dendritic length of nucleus accumbens and hippocampus neurons in rat offspring. Synapse 2009;63:794-804. [PMID: 19489049 DOI: 10.1002/syn.20664] [Cited by in Crossref: 134] [Cited by in F6Publishing: 124] [Article Influence: 10.3] [Reference Citation Analysis]
277 Kesner AJ, Shin R, Calva CB, Don RF, Junn S, Potter CT, Ramsey LA, Abou-Elnaga AF, Cover CG, Wang DV, Lu H, Yang Y, Ikemoto S. Supramammillary neurons projecting to the septum regulate dopamine and motivation for environmental interaction in mice. Nat Commun 2021;12:2811. [PMID: 33990558 DOI: 10.1038/s41467-021-23040-z] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
278 Chuhma N, Mingote S, Yetnikoff L, Kalmbach A, Ma T, Ztaou S, Sienna AC, Tepler S, Poulin JF, Ansorge M, Awatramani R, Kang UJ, Rayport S. Dopamine neuron glutamate cotransmission evokes a delayed excitation in lateral dorsal striatal cholinergic interneurons. Elife 2018;7:e39786. [PMID: 30295607 DOI: 10.7554/eLife.39786] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 6.5] [Reference Citation Analysis]
279 Kim KS, Lee KW, Baek IS, Lim CM, Krishnan V, Lee JK, Nestler EJ, Han PL. Adenylyl cyclase-5 activity in the nucleus accumbens regulates anxiety-related behavior. J Neurochem 2008;107:105-15. [PMID: 18673448 DOI: 10.1111/j.1471-4159.2008.05592.x] [Cited by in Crossref: 44] [Cited by in F6Publishing: 49] [Article Influence: 3.1] [Reference Citation Analysis]
280 Martin-Lopez E, Xu C, Liberia T, Meller SJ, Greer CA. Embryonic and postnatal development of mouse olfactory tubercle. Mol Cell Neurosci 2019;98:82-96. [PMID: 31200100 DOI: 10.1016/j.mcn.2019.06.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
281 Holly EN, Boyson CO, Montagud-Romero S, Stein DJ, Gobrogge KL, DeBold JF, Miczek KA. Episodic Social Stress-Escalated Cocaine Self-Administration: Role of Phasic and Tonic Corticotropin Releasing Factor in the Anterior and Posterior Ventral Tegmental Area. J Neurosci 2016;36:4093-105. [PMID: 27053215 DOI: 10.1523/JNEUROSCI.2232-15.2016] [Cited by in Crossref: 47] [Cited by in F6Publishing: 28] [Article Influence: 7.8] [Reference Citation Analysis]
282 Steffensen SC, Taylor SR, Horton ML, Barber EN, Lyle LT, Stobbs SH, Allison DW. Cocaine disinhibits dopamine neurons in the ventral tegmental area via use-dependent blockade of GABA neuron voltage-sensitive sodium channels. Eur J Neurosci 2008;28:2028-40. [PMID: 19046384 DOI: 10.1111/j.1460-9568.2008.06479.x] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 3.6] [Reference Citation Analysis]
283 Collins AL, Saunders BT. Heterogeneity in striatal dopamine circuits: Form and function in dynamic reward seeking. J Neurosci Res 2020;98:1046-69. [PMID: 32056298 DOI: 10.1002/jnr.24587] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
284 Kolb EM, Rezende EL, Holness L, Radtke A, Lee SK, Obenaus A, Garland T Jr. Mice selectively bred for high voluntary wheel running have larger midbrains: support for the mosaic model of brain evolution. J Exp Biol 2013;216:515-23. [PMID: 23325861 DOI: 10.1242/jeb.076000] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]
285 Knapp CM, Tozier L, Pak A, Ciraulo DA, Kornetsky C. Deep brain stimulation of the nucleus accumbens reduces ethanol consumption in rats. Pharmacol Biochem Behav 2009;92:474-9. [PMID: 19463262 DOI: 10.1016/j.pbb.2009.01.017] [Cited by in Crossref: 90] [Cited by in F6Publishing: 71] [Article Influence: 6.9] [Reference Citation Analysis]
286 Sprow GM, Rinker JA, Thiele TE. Histone acetylation in the nucleus accumbens shell modulates ethanol-induced locomotor activity in DBA/2J mice. Alcohol Clin Exp Res 2014;38:2377-86. [PMID: 25130590 DOI: 10.1111/acer.12502] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
287 Touzani K, Bodnar RJ, Sclafani A. Acquisition of glucose-conditioned flavor preference requires the activation of dopamine D1-like receptors within the medial prefrontal cortex in rats. Neurobiol Learn Mem 2010;94:214-9. [PMID: 20566378 DOI: 10.1016/j.nlm.2010.05.009] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 3.3] [Reference Citation Analysis]
288 Smagin DA, Babenko VN, Redina OE, Kovalenko IL, Galyamina AG, Kudryavtseva NN. Reduced Expression of Slc Genes in the VTA and NAcc of Male Mice with Positive Fighting Experience. Genes (Basel) 2021;12:1099. [PMID: 34356115 DOI: 10.3390/genes12071099] [Reference Citation Analysis]
289 Karelina K, Gaier KR, Weil ZM. Traumatic brain injuries during development disrupt dopaminergic signaling. Exp Neurol 2017;297:110-7. [PMID: 28802560 DOI: 10.1016/j.expneurol.2017.08.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
290 Valenti O, Lodge DJ, Grace AA. Aversive stimuli alter ventral tegmental area dopamine neuron activity via a common action in the ventral hippocampus. J Neurosci 2011;31:4280-9. [PMID: 21411669 DOI: 10.1523/JNEUROSCI.5310-10.2011] [Cited by in Crossref: 98] [Cited by in F6Publishing: 75] [Article Influence: 8.9] [Reference Citation Analysis]
291 Nakao K, Jeevakumar V, Jiang SZ, Fujita Y, Diaz NB, Pretell Annan CA, Eskow Jaunarajs KL, Hashimoto K, Belforte JE, Nakazawa K. Schizophrenia-Like Dopamine Release Abnormalities in a Mouse Model of NMDA Receptor Hypofunction. Schizophr Bull 2019;45:138-47. [PMID: 29394409 DOI: 10.1093/schbul/sby003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
292 Gallagher JJ, Zhang X, Hall FS, Uhl GR, Bearer EL, Jacobs RE. Altered reward circuitry in the norepinephrine transporter knockout mouse. PLoS One 2013;8:e57597. [PMID: 23469209 DOI: 10.1371/journal.pone.0057597] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
293 Barak S, Carnicella S, Yowell QV, Ron D. Glial cell line-derived neurotrophic factor reverses alcohol-induced allostasis of the mesolimbic dopaminergic system: implications for alcohol reward and seeking. J Neurosci 2011;31:9885-94. [PMID: 21734280 DOI: 10.1523/JNEUROSCI.1750-11.2011] [Cited by in Crossref: 57] [Cited by in F6Publishing: 40] [Article Influence: 5.2] [Reference Citation Analysis]
294 Motahari AA, Sahraei H, Meftahi GH. Role of Nitric Oxide on Dopamine Release and Morphine-Dependency. Basic Clin Neurosci 2016;7:283-90. [PMID: 27872689 DOI: 10.15412/J.BCN.03070401] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
295 Lothmann K, Amunts K, Herold C. The Neurotransmitter Receptor Architecture of the Mouse Olfactory System. Front Neuroanat 2021;15:632549. [PMID: 33967704 DOI: 10.3389/fnana.2021.632549] [Reference Citation Analysis]
296 Dalton VS, Zavitsanou K. Differential treatment regimen-related effects of cannabinoids on D1 and D2 receptors in adolescent and adult rat brain. J Chem Neuroanat 2010;40:272-80. [PMID: 20673846 DOI: 10.1016/j.jchemneu.2010.07.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
297 Matsumoto M, Hikosaka O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 2009;459:837-41. [PMID: 19448610 DOI: 10.1038/nature08028] [Cited by in Crossref: 772] [Cited by in F6Publishing: 769] [Article Influence: 59.4] [Reference Citation Analysis]
298 Birgner C, Nordenankar K, Lundblad M, Mendez JA, Smith C, le Grevès M, Galter D, Olson L, Fredriksson A, Trudeau LE, Kullander K, Wallén-Mackenzie A. VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation. Proc Natl Acad Sci U S A 2010;107:389-94. [PMID: 20018672 DOI: 10.1073/pnas.0910986107] [Cited by in Crossref: 81] [Cited by in F6Publishing: 89] [Article Influence: 6.2] [Reference Citation Analysis]
299 Machado A, Haber S, Sears N, Greenberg B, Malone D, Rezai A. Functional topography of the ventral striatum and anterior limb of the internal capsule determined by electrical stimulation of awake patients. Clinical Neurophysiology 2009;120:1941-8. [DOI: 10.1016/j.clinph.2009.05.030] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 2.4] [Reference Citation Analysis]
300 Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 2016;17:524-32. [PMID: 27256556 DOI: 10.1038/nrn.2016.57] [Cited by in Crossref: 399] [Cited by in F6Publishing: 350] [Article Influence: 66.5] [Reference Citation Analysis]
301 Bossert JM, Adhikary S, St Laurent R, Marchant NJ, Wang HL, Morales M, Shaham Y. Role of projections from ventral subiculum to nucleus accumbens shell in context-induced reinstatement of heroin seeking in rats. Psychopharmacology (Berl) 2016;233:1991-2004. [PMID: 26344108 DOI: 10.1007/s00213-015-4060-5] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 6.9] [Reference Citation Analysis]
302 Unal B, Ibáñez-Sandoval O, Shah F, Abercrombie ED, Tepper JM. Distribution of tyrosine hydroxylase-expressing interneurons with respect to anatomical organization of the neostriatum. Front Syst Neurosci 2011;5:41. [PMID: 21713112 DOI: 10.3389/fnsys.2011.00041] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
303 Drui G, Carnicella S, Carcenac C, Favier M, Bertrand A, Boulet S, Savasta M. Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson's disease. Mol Psychiatry 2014;19:358-67. [PMID: 23399912 DOI: 10.1038/mp.2013.3] [Cited by in Crossref: 103] [Cited by in F6Publishing: 94] [Article Influence: 11.4] [Reference Citation Analysis]
304 Jhou TC, Geisler S, Marinelli M, Degarmo BA, Zahm DS. The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J Comp Neurol 2009;513:566-96. [PMID: 19235216 DOI: 10.1002/cne.21891] [Cited by in Crossref: 289] [Cited by in F6Publishing: 306] [Article Influence: 22.2] [Reference Citation Analysis]
305 Suzuki M, Hamaguchi T, Matsunaga A. Nonequivalent modulation of corticospinal excitability by positive and negative outcomes. Brain Behav 2018;8:e00862. [PMID: 29568678 DOI: 10.1002/brb3.862] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
306 Fabbricatore AT, Ghitza UE, Prokopenko VF, West MO. Electrophysiological evidence of mediolateral functional dichotomy in the rat accumbens during cocaine self-administration: tonic firing patterns. Eur J Neurosci 2009;30:2387-400. [PMID: 20092580 DOI: 10.1111/j.1460-9568.2009.07033.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
307 Engleman EA, Rodd ZA, Bell RL, Murphy JM. The role of 5-HT3 receptors in drug abuse and as a target for pharmacotherapy. CNS Neurol Disord Drug Targets 2008;7:454-67. [PMID: 19128203 DOI: 10.2174/187152708786927886] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 3.8] [Reference Citation Analysis]
308 Simola N, Brudzynski SM. Rat 50-kHz ultrasonic vocalizations as a tool in studying neurochemical mechanisms that regulate positive emotional states. J Neurosci Methods 2018;310:33-44. [PMID: 29959002 DOI: 10.1016/j.jneumeth.2018.06.018] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
309 Zhang J, Song X, Ma S, Wang X, Wang W, Chen Z. A novel sodium dodecyl benzene sulfonate modified expanded graphite paste electrode for sensitive and selective determination of dopamine in the presence of ascorbic acid and uric acid. Journal of Electroanalytical Chemistry 2017;795:10-6. [DOI: 10.1016/j.jelechem.2017.04.035] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 3.4] [Reference Citation Analysis]
310 Gazit T, Friedman A, Lax E, Samuel M, Zahut R, Katz M, Abraham L, Tischler H, Teicher M, Yadid G. Programmed deep brain stimulation synchronizes VTA gamma band field potential and alleviates depressive-like behavior in rats. Neuropharmacology 2015;91:135-41. [PMID: 25497452 DOI: 10.1016/j.neuropharm.2014.12.003] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 2.8] [Reference Citation Analysis]
311 Nelson CL, Milovanovic M, Wetter JB, Ford KA, Wolf ME. Behavioral sensitization to amphetamine is not accompanied by changes in glutamate receptor surface expression in the rat nucleus accumbens. J Neurochem 2009;109:35-51. [PMID: 19183251 DOI: 10.1111/j.1471-4159.2009.05911.x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 3.2] [Reference Citation Analysis]
312 Watkins DS, True JD, Mosley AL, Baucum AJ 2nd. Proteomic Analysis of the Spinophilin Interactome in Rodent Striatum Following Psychostimulant Sensitization. Proteomes 2018;6:53. [PMID: 30562941 DOI: 10.3390/proteomes6040053] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
313 Wouterlood FG, Engel A, Daal M, Houwen G, Meinderts A, Jordà Siquier T, Beliën JAM, van Dongen YC, Scheel-Krüger J, Thierry AM, Groenewegen HJ, Deniau JM. Mesencephalic dopamine neurons interfacing the shell of nucleus accumbens and the dorsolateral striatum in the rat. J Neurosci Res 2018;96:1518-42. [PMID: 29696690 DOI: 10.1002/jnr.24242] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
314 Hendrickson LM, Guildford MJ, Tapper AR. Neuronal nicotinic acetylcholine receptors: common molecular substrates of nicotine and alcohol dependence. Front Psychiatry 2013;4:29. [PMID: 23641218 DOI: 10.3389/fpsyt.2013.00029] [Cited by in Crossref: 66] [Cited by in F6Publishing: 70] [Article Influence: 7.3] [Reference Citation Analysis]
315 White KA, Zhang YF, Zhang Z, Bhattarai JP, Moberly AH, In 't Zandt EE, Pena-Bravo JI, Mi H, Jia X, Fuccillo MV, Xu F, Ma M, Wesson DW. Glutamatergic Neurons in the Piriform Cortex Influence the Activity of D1- and D2-Type Receptor-Expressing Olfactory Tubercle Neurons. J Neurosci 2019;39:9546-59. [PMID: 31628176 DOI: 10.1523/JNEUROSCI.1444-19.2019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
316 Mingote S, Chuhma N, Kalmbach A, Thomsen GM, Wang Y, Mihali A, Sferrazza C, Zucker-Scharff I, Siena AC, Welch MG, Lizardi-Ortiz J, Sulzer D, Moore H, Gaisler-Salomon I, Rayport S. Dopamine neuron dependent behaviors mediated by glutamate cotransmission. Elife 2017;6:e27566. [PMID: 28703706 DOI: 10.7554/eLife.27566] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 4.6] [Reference Citation Analysis]
317 Cao G, Meng G, Zhu L, Zhu J, Dong N, Zhou X, Zhang S, Zhang Y. Susceptibility to chronic immobilization stress-induced depressive-like behaviour in middle-aged female mice and accompanying changes in dopamine D1 and GABAA receptors in related brain regions. Behav Brain Funct 2021;17:2. [PMID: 33863350 DOI: 10.1186/s12993-021-00175-z] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
318 Hong S. Dopamine system: manager of neural pathways. Front Hum Neurosci 2013;7:854. [PMID: 24367324 DOI: 10.3389/fnhum.2013.00854] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
319 Thomas TS, Baimel C, Borgland SL. Opioid and hypocretin neuromodulation of ventral tegmental area neuronal subpopulations. Br J Pharmacol 2018;175:2825-33. [PMID: 28849596 DOI: 10.1111/bph.13993] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
320 Kender RG, Harte SE, Munn EM, Borszcz GS. Affective analgesia following muscarinic activation of the ventral tegmental area in rats. J Pain 2008;9:597-605. [PMID: 18387853 DOI: 10.1016/j.jpain.2008.01.334] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
321 Belin-Rauscent A, Fouyssac M, Bonci A, Belin D. How Preclinical Models Evolved to Resemble the Diagnostic Criteria of Drug Addiction. Biol Psychiatry 2016;79:39-46. [PMID: 25747744 DOI: 10.1016/j.biopsych.2015.01.004] [Cited by in Crossref: 68] [Cited by in F6Publishing: 60] [Article Influence: 9.7] [Reference Citation Analysis]
322 Hall H, Reyes S, Landeck N, Bye C, Leanza G, Double K, Thompson L, Halliday G, Kirik D. Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson’s disease. Brain 2014;137:2493-508. [DOI: 10.1093/brain/awu193] [Cited by in Crossref: 145] [Cited by in F6Publishing: 141] [Article Influence: 18.1] [Reference Citation Analysis]
323 Thabit MN, Nakatsuka M, Koganemaru S, Fawi G, Fukuyama H, Mima T. Momentary reward induce changes in excitability of primary motor cortex. Clin Neurophysiol 2011;122:1764-70. [PMID: 21439903 DOI: 10.1016/j.clinph.2011.02.021] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
324 Rodríguez-López C, Clascá F, Prensa L. The Mesoaccumbens Pathway: A Retrograde Labeling and Single-Cell Axon Tracing Analysis in the Mouse. Front Neuroanat 2017;11:25. [PMID: 28396627 DOI: 10.3389/fnana.2017.00025] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
325 Liao C, Zhang M, Niu L, Zheng Z, Yan F. Organic electrochemical transistors with graphene-modified gate electrodes for highly sensitive and selective dopamine sensors. J Mater Chem B 2014;2:191-200. [DOI: 10.1039/c3tb21079k] [Cited by in Crossref: 77] [Cited by in F6Publishing: 6] [Article Influence: 9.6] [Reference Citation Analysis]
326 Li W, Doyon WM, Dani JA. Acute in vivo nicotine administration enhances synchrony among dopamine neurons. Biochem Pharmacol 2011;82:977-83. [PMID: 21684263 DOI: 10.1016/j.bcp.2011.06.006] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 2.2] [Reference Citation Analysis]
327 Rincón-Cortés M, Grace AA. Sex-Dependent Effects of Stress on Immobility Behavior and VTA Dopamine Neuron Activity: Modulation by Ketamine. Int J Neuropsychopharmacol 2017;20:823-32. [PMID: 28591782 DOI: 10.1093/ijnp/pyx048] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 10.3] [Reference Citation Analysis]
328 Mattfeld AT, Gluck MA, Stark CE. Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment. Learn Mem 2011;18:703-11. [PMID: 22021252 DOI: 10.1101/lm.022889.111] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 4.4] [Reference Citation Analysis]
329 Chandra R, Lenz JD, Gancarz AM, Chaudhury D, Schroeder GL, Han MH, Cheer JF, Dietz DM, Lobo MK. Optogenetic inhibition of D1R containing nucleus accumbens neurons alters cocaine-mediated regulation of Tiam1. Front Mol Neurosci 2013;6:13. [PMID: 23745104 DOI: 10.3389/fnmol.2013.00013] [Cited by in Crossref: 45] [Cited by in F6Publishing: 51] [Article Influence: 5.0] [Reference Citation Analysis]
330 Si Y, Song Z, Sun X, Wang JH. microRNA and mRNA profiles in nucleus accumbens underlying depression versus resilience in response to chronic stress. Am J Med Genet B Neuropsychiatr Genet 2018;177:563-79. [PMID: 30105773 DOI: 10.1002/ajmg.b.32651] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
331 De Ridder D. A Heuristic Pathophysiological Model of Tinnitus. In: Møller AR, Langguth B, De Ridder D, Kleinjung T, editors. Textbook of Tinnitus. New York: Springer; 2011. pp. 171-97. [DOI: 10.1007/978-1-60761-145-5_21] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
332 Doly S, Quentin E, Eddine R, Tolu S, Fernandez SP, Bertran-Gonzalez J, Valjent E, Belmer A, Viñals X, Callebert J, Faure P, Meye FJ, Hervé D, Robledo P, Mameli M, Launay JM, Maldonado R, Maroteaux L. Serotonin 2B Receptors in Mesoaccumbens Dopamine Pathway Regulate Cocaine Responses. J Neurosci 2017;37:10372-88. [PMID: 28935766 DOI: 10.1523/JNEUROSCI.1354-17.2017] [Cited by in Crossref: 24] [Cited by in F6Publishing: 6] [Article Influence: 4.8] [Reference Citation Analysis]
333 Linke SE, Ciccolo JT, Ussher M, Marcus BH. Exercise-based smoking cessation interventions among women. Womens Health (Lond) 2013;9:69-84. [PMID: 23241156 DOI: 10.2217/whe.12.63] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
334 Kimura E, Kohda M, Maekawa F, Fujii-Kuriyama Y, Tohyama C. Neurons expressing the aryl hydrocarbon receptor in the locus coeruleus and island of Calleja major are novel targets of dioxin in the mouse brain. Histochem Cell Biol 2021;156:147-63. [PMID: 33963922 DOI: 10.1007/s00418-021-01990-1] [Reference Citation Analysis]
335 Aransay A, Rodríguez-López C, García-Amado M, Clascá F, Prensa L. Long-range projection neurons of the mouse ventral tegmental area: a single-cell axon tracing analysis. Front Neuroanat 2015;9:59. [PMID: 26042000 DOI: 10.3389/fnana.2015.00059] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 7.6] [Reference Citation Analysis]
336 Rincón-Cortés M, Grace AA. Antidepressant effects of ketamine on depression-related phenotypes and dopamine dysfunction in rodent models of stress. Behav Brain Res 2020;379:112367. [PMID: 31739001 DOI: 10.1016/j.bbr.2019.112367] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
337 Norrara B, Fiuza FP, Arrais AC, Costa IM, Santos JR, Engelberth RCG, Cavalcante JS, Guzen FP, Cavalcanti JRLP, Freire MAM. Pattern of tyrosine hydroxylase expression during aging of mesolimbic pathway of the rat. Journal of Chemical Neuroanatomy 2018;92:83-91. [DOI: 10.1016/j.jchemneu.2018.05.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
338 Guo N, Zhang L, Fan W, Bai L, Zhang X, Shi Z, Bai J. Inhibition of Geranylgeranylacetone on cholecystokinin-B receptor, BDNF and dopamine D1 receptor induced by morphine. Biochem Biophys Res Commun 2021;588:23-8. [PMID: 34942530 DOI: 10.1016/j.bbrc.2021.12.034] [Reference Citation Analysis]
339 Wendler E, Gaspar JC, Ferreira TL, Barbiero JK, Andreatini R, Vital MA, Blaha CD, Winn P, Da Cunha C. The roles of the nucleus accumbens core, dorsomedial striatum, and dorsolateral striatum in learning: Performance and extinction of Pavlovian fear-conditioned responses and instrumental avoidance responses. Neurobiology of Learning and Memory 2014;109:27-36. [DOI: 10.1016/j.nlm.2013.11.009] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 4.5] [Reference Citation Analysis]
340 Brudzynski SM. The Concept of Ethotransmission: Rapid Emotional Communication. Handbook of Ultrasonic Vocalization - A Window into the Emotional Brain. Elsevier; 2018. pp. 109-15. [DOI: 10.1016/b978-0-12-809600-0.00010-x] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
341 Husband SA, Shimizu T. Calcium-binding protein distributions and fiber connections of the nucleus accumbens in the pigeon (columba livia). J Comp Neurol 2011;519:1371-94. [DOI: 10.1002/cne.22575] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 2.1] [Reference Citation Analysis]
342 Bourdy R, Barrot M. A new control center for dopaminergic systems: pulling the VTA by the tail. Trends in Neurosciences 2012;35:681-90. [DOI: 10.1016/j.tins.2012.06.007] [Cited by in Crossref: 133] [Cited by in F6Publishing: 122] [Article Influence: 13.3] [Reference Citation Analysis]
343 Kardos J, Dobolyi Á, Szabó Z, Simon Á, Lourmet G, Palkovits M, Héja L. Molecular Plasticity of the Nucleus Accumbens Revisited-Astrocytic Waves Shall Rise. Mol Neurobiol 2019;56:7950-65. [PMID: 31134458 DOI: 10.1007/s12035-019-1641-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
344 Kohnomi S, Konishi S. Multiple actions of a D3 dopamine receptor agonist, PD128907, on GABAergic inhibitory transmission between medium spiny neurons in mouse nucleus accumbens shell. Neuroscience Letters 2015;600:17-21. [DOI: 10.1016/j.neulet.2015.05.056] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
345 Lloyd K, Dayan P. Tamping Ramping: Algorithmic, Implementational, and Computational Explanations of Phasic Dopamine Signals in the Accumbens. PLoS Comput Biol 2015;11:e1004622. [PMID: 26699940 DOI: 10.1371/journal.pcbi.1004622] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
346 Kleijn J, Folgering J, van der Hart M, Rollema H, Cremers T, Westerink B. Direct effect of nicotine on mesolimbic dopamine release in rat nucleus accumbens shell. Neuroscience Letters 2011;493:55-8. [DOI: 10.1016/j.neulet.2011.02.035] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 3.3] [Reference Citation Analysis]
347 Geisel O, Banas R, Hellweg R, Müller CA. Altered serum levels of brain-derived neurotrophic factor in patients with pathological gambling. Eur Addict Res 2012;18:297-301. [PMID: 22854676 DOI: 10.1159/000338281] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
348 Dautan D, Souza AS, Huerta-Ocampo I, Valencia M, Assous M, Witten IB, Deisseroth K, Tepper JM, Bolam JP, Gerdjikov TV, Mena-Segovia J. Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nat Neurosci 2016;19:1025-33. [PMID: 27348215 DOI: 10.1038/nn.4335] [Cited by in Crossref: 80] [Cited by in F6Publishing: 71] [Article Influence: 13.3] [Reference Citation Analysis]
349 Orrico A, Martí-Prats L, Cano-Cebrián MJ, Polache A, Zornoza T, Granero L. Disposition of d-penicillamine, a promising drug for preventing alcohol-relapse. Influence of dose, chronic alcohol consumption and age: studies in rats. Biopharm Drug Dispos 2014;35:284-95. [PMID: 24619946 DOI: 10.1002/bdd.1896] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
350 Wesson DW. The Tubular Striatum. J Neurosci 2020;40:7379-86. [PMID: 32968026 DOI: 10.1523/JNEUROSCI.1109-20.2020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
351 Ogawa SK, Watabe-uchida M. Organization of dopamine and serotonin system: Anatomical and functional mapping of monosynaptic inputs using rabies virus. Pharmacology Biochemistry and Behavior 2018;174:9-22. [DOI: 10.1016/j.pbb.2017.05.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
352 Likhtik E, Johansen JP. Neuromodulation in circuits of aversive emotional learning. Nat Neurosci 2019;22:1586-97. [PMID: 31551602 DOI: 10.1038/s41593-019-0503-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 10.7] [Reference Citation Analysis]
353 Gadziola MA, Wesson DW. The Neural Representation of Goal-Directed Actions and Outcomes in the Ventral Striatum's Olfactory Tubercle. J Neurosci 2016;36:548-60. [PMID: 26758844 DOI: 10.1523/JNEUROSCI.3328-15.2016] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
354 Torres DJ, Yorgason JT, Mitchell CC, Hagiwara A, Andres MA, Kurokawa S, Steffensen SC, Bellinger FP. Selenoprotein P Modulates Methamphetamine Enhancement of Vesicular Dopamine Release in Mouse Nucleus Accumbens Via Dopamine D2 Receptors. Front Neurosci 2021;15:631825. [PMID: 33927588 DOI: 10.3389/fnins.2021.631825] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
355 Sackett DA, Moschak TM, Carelli RM. Nucleus accumbens shell dopamine mediates outcome value, but not predicted value, in a magnitude decision-making task. Eur J Neurosci 2020;51:1526-38. [PMID: 31863510 DOI: 10.1111/ejn.14655] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
356 Sasamoto K, Nagai J, Nakabayashi T, He X, Ohshima T. Cdk5 is required for the positioning and survival of GABAergic neurons in developing mouse striatum. Dev Neurobiol 2017;77:483-92. [PMID: 27480591 DOI: 10.1002/dneu.22424] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
357 Neves GA, Grace AA. α7 Nicotinic receptor-modulating agents reverse the hyperdopaminergic tone in the MAM model of schizophrenia. Neuropsychopharmacology 2018;43:1712-20. [PMID: 29695783 DOI: 10.1038/s41386-018-0066-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
358 Xia B, Li Y, Li R, Yin D, Chen X, Li J, Liang W. Effect of Sirtuin-1 on Synaptic Plasticity in Nucleus Accumbens in a Rat Model of Heroin Addiction. Med Sci Monit 2018;24:3789-803. [PMID: 29870523 DOI: 10.12659/MSM.910550] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
359 Alcantara LF, Warren BL, Parise EM, Iñiguez SD, Bolaños-Guzmán CA. Effects of psychotropic drugs on second messenger signaling and preference for nicotine in juvenile male mice. Psychopharmacology (Berl) 2014;231:1479-92. [PMID: 24452697 DOI: 10.1007/s00213-014-3434-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
360 Khodadadi M, Zendehdel M, Baghbanzadeh A, Babapour V. Consequence of dopamine D2 receptor blockade on the hyperphagic effect induced by cannabinoid CB1 and CB2 receptors in layers. Br Poult Sci 2017;58:585-93. [PMID: 28728428 DOI: 10.1080/00071668.2017.1357799] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
361 Gadziola MA, Stetzik LA, Wright KN, Milton AJ, Arakawa K, Del Mar Cortijo M, Wesson DW. A Neural System that Represents the Association of Odors with Rewarded Outcomes and Promotes Behavioral Engagement. Cell Rep 2020;32:107919. [PMID: 32697986 DOI: 10.1016/j.celrep.2020.107919] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
362 Kaufling J, Waltisperger E, Bourdy R, Valera A, Veinante P, Freund-Mercier MJ, Barrot M. Pharmacological recruitment of the GABAergic tail of the ventral tegmental area by acute drug exposure. Br J Pharmacol 2010;161:1677-91. [PMID: 21087442 DOI: 10.1111/j.1476-5381.2010.00984.x] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 4.0] [Reference Citation Analysis]
363 Meye FJ, Ramakers GM, Adan RA. The vital role of constitutive GPCR activity in the mesolimbic dopamine system. Transl Psychiatry 2014;4:e361. [PMID: 24518399 DOI: 10.1038/tp.2013.130] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
364 Zendehdel M, Ghashghayi E, Hassanpour S, Baghbanzadeh A, Jonaidi H. Interaction Between Opioidergic and Dopaminergic Systems on Food Intake in Neonatal Layer Type Chicken. Int J Pept Res Ther 2016;22:83-92. [DOI: 10.1007/s10989-015-9486-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 1.9] [Reference Citation Analysis]
365 Kabir MT, Ferdous Mitu J, Akter R, Akhtar MF, Saleem A, Al-Harrasi A, Bhatia S, Rahman MS, Damiri F, Berrada M, Rahman MH. Therapeutic potential of dopamine agonists in the treatment of type 2 diabetes mellitus. Environ Sci Pollut Res Int 2022. [PMID: 35486279 DOI: 10.1007/s11356-022-20445-1] [Reference Citation Analysis]
366 Cohen BN, Mackey ED, Grady SR, McKinney S, Patzlaff NE, Wageman CR, McIntosh JM, Marks MJ, Lester HA, Drenan RM. Nicotinic cholinergic mechanisms causing elevated dopamine release and abnormal locomotor behavior. Neuroscience 2012;200:31-41. [PMID: 22079576 DOI: 10.1016/j.neuroscience.2011.10.047] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 2.7] [Reference Citation Analysis]
367 Köhler S, Wagner G, Bär KJ. Activation of brainstem and midbrain nuclei during cognitive control in medicated patients with schizophrenia. Hum Brain Mapp 2019;40:202-13. [PMID: 30184301 DOI: 10.1002/hbm.24365] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
368 Adjei S, Wesson DW. Laminar and spatial localization of the islands of Calleja in mice. Neuroscience 2015;287:137-43. [PMID: 25536047 DOI: 10.1016/j.neuroscience.2014.12.019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
369 Wilson DA, East BS. Good scents: A short road from olfaction to satisfaction. Curr Biol 2021;31:R374-6. [PMID: 33905691 DOI: 10.1016/j.cub.2021.01.099] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
370 Mikell CB, McKhann GM, Segal S, McGovern RA, Wallenstein MB, Moore H. The hippocampus and nucleus accumbens as potential therapeutic targets for neurosurgical intervention in schizophrenia. Stereotact Funct Neurosurg 2009;87:256-65. [PMID: 19556835 DOI: 10.1159/000225979] [Cited by in Crossref: 57] [Cited by in F6Publishing: 48] [Article Influence: 4.4] [Reference Citation Analysis]
371 Shin R, Ikemoto S. Administration of the GABAA receptor antagonist picrotoxin into rat supramammillary nucleus induces c-Fos in reward-related brain structures. Supramammillary picrotoxin and c-Fos expression. BMC Neurosci 2010;11:101. [PMID: 20716371 DOI: 10.1186/1471-2202-11-101] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
372 Cacciapaglia F, Wightman RM, Carelli RM. Rapid dopamine signaling differentially modulates distinct microcircuits within the nucleus accumbens during sucrose-directed behavior. J Neurosci 2011;31:13860-9. [PMID: 21957248 DOI: 10.1523/JNEUROSCI.1340-11.2011] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 3.5] [Reference Citation Analysis]
373 Lodge DJ, Grace AA. Divergent activation of ventromedial and ventrolateral dopamine systems in animal models of amphetamine sensitization and schizophrenia. Int J Neuropsychopharmacol 2012;15:69-76. [PMID: 21329556 DOI: 10.1017/S1461145711000113] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]
374 Barker DJ, Root DH, Zhang S, Morales M. Multiplexed neurochemical signaling by neurons of the ventral tegmental area. J Chem Neuroanat 2016;73:33-42. [PMID: 26763116 DOI: 10.1016/j.jchemneu.2015.12.016] [Cited by in Crossref: 55] [Cited by in F6Publishing: 48] [Article Influence: 9.2] [Reference Citation Analysis]
375 Pan Y, Chau L, Liu S, Avshalumov MV, Rice ME, Carr KD. A food restriction protocol that increases drug reward decreases tropomyosin receptor kinase B in the ventral tegmental area, with no effect on brain-derived neurotrophic factor or tropomyosin receptor kinase B protein levels in dopaminergic forebrain regions. Neuroscience 2011;197:330-8. [PMID: 21945647 DOI: 10.1016/j.neuroscience.2011.08.065] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
376 Douma EH, de Kloet ER. Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neuroscience & Biobehavioral Reviews 2020;108:48-77. [DOI: 10.1016/j.neubiorev.2019.10.015] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 22.5] [Reference Citation Analysis]
377 Faure P, Tolu S, Valverde S, Naudé J. Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience 2014;282:86-100. [PMID: 24881574 DOI: 10.1016/j.neuroscience.2014.05.040] [Cited by in Crossref: 65] [Cited by in F6Publishing: 55] [Article Influence: 8.1] [Reference Citation Analysis]
378 D'Souza MS, Markou A. Metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) microinfusions into the nucleus accumbens shell or ventral tegmental area attenuate the reinforcing effects of nicotine in rats. Neuropharmacology 2011;61:1399-405. [PMID: 21896278 DOI: 10.1016/j.neuropharm.2011.08.028] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 2.5] [Reference Citation Analysis]
379 Brignani S, Pasterkamp RJ. Neuronal Subset-Specific Migration and Axonal Wiring Mechanisms in the Developing Midbrain Dopamine System. Front Neuroanat 2017;11:55. [PMID: 28740464 DOI: 10.3389/fnana.2017.00055] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
380 Navratilova E, Xie JY, Okun A, Qu C, Eyde N, Ci S, Ossipov MH, King T, Fields HL, Porreca F. Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. Proc Natl Acad Sci U S A 2012;109:20709-13. [PMID: 23184995 DOI: 10.1073/pnas.1214605109] [Cited by in Crossref: 181] [Cited by in F6Publishing: 182] [Article Influence: 18.1] [Reference Citation Analysis]
381 Gustin SM, Wrigley PJ, Siddall PJ, Henderson LA. Brain anatomy changes associated with persistent neuropathic pain following spinal cord injury. Cereb Cortex 2010;20:1409-19. [PMID: 19815621 DOI: 10.1093/cercor/bhp205] [Cited by in Crossref: 101] [Cited by in F6Publishing: 95] [Article Influence: 7.8] [Reference Citation Analysis]
382 Brown JD, Karimian Azari E, Ayala JE. Oleoylethanolamide: A fat ally in the fight against obesity. Physiology & Behavior 2017;176:50-8. [DOI: 10.1016/j.physbeh.2017.02.034] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
383 Varaschin RK, Morato GS. Selective mu- and kappa-opioid receptor antagonists administered into the nucleus accumbens interfere with rapid tolerance to ethanol in rats. Psychopharmacology 2009;206:85-96. [DOI: 10.1007/s00213-009-1582-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
384 Koulchitsky S, De Backer B, Quertemont E, Charlier C, Seutin V. Differential effects of cocaine on dopamine neuron firing in awake and anesthetized rats. Neuropsychopharmacology 2012;37:1559-71. [PMID: 22298123 DOI: 10.1038/npp.2011.339] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 4.5] [Reference Citation Analysis]
385 Piray P, Keramati MM, Dezfouli A, Lucas C, Mokri A. Individual Differences in Nucleus Accumbens Dopamine Receptors Predict Development of Addiction-Like Behavior: A Computational Approach. Neural Computation 2010;22:2334-68. [DOI: 10.1162/neco_a_00009] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
386 Castro DC, Bruchas MR. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron 2019;102:529-52. [PMID: 31071288 DOI: 10.1016/j.neuron.2019.03.003] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 17.7] [Reference Citation Analysis]
387 Badrinarayan A, Wescott SA, Vander Weele CM, Saunders BT, Couturier BE, Maren S, Aragona BJ. Aversive stimuli differentially modulate real-time dopamine transmission dynamics within the nucleus accumbens core and shell. J Neurosci 2012;32:15779-90. [PMID: 23136417 DOI: 10.1523/JNEUROSCI.3557-12.2012] [Cited by in Crossref: 95] [Cited by in F6Publishing: 76] [Article Influence: 10.6] [Reference Citation Analysis]
388 Mameli M, Halbout B, Creton C, Engblom D, Parkitna JR, Spanagel R, Lüscher C. Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat Neurosci 2009;12:1036-41. [PMID: 19597494 DOI: 10.1038/nn.2367] [Cited by in Crossref: 215] [Cited by in F6Publishing: 241] [Article Influence: 16.5] [Reference Citation Analysis]
389 Kim HF, Hikosaka O. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain 2015;138:1776-800. [PMID: 25981958 DOI: 10.1093/brain/awv134] [Cited by in Crossref: 85] [Cited by in F6Publishing: 79] [Article Influence: 12.1] [Reference Citation Analysis]
390 Mingote S, Amsellem A, Kempf A, Rayport S, Chuhma N. Dopamine-glutamate neuron projections to the nucleus accumbens medial shell and behavioral switching. Neurochem Int 2019;129:104482. [PMID: 31170424 DOI: 10.1016/j.neuint.2019.104482] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
391 Ranjbar H, Soti M, Banazadeh M, Saleki K, Kohlmeier KA, Shabani M. Addiction and the cerebellum with a focus on actions of opioid receptors. Neurosci Biobehav Rev 2021;131:229-47. [PMID: 34555385 DOI: 10.1016/j.neubiorev.2021.09.021] [Reference Citation Analysis]
392 Kumakura Y, Gjedde A, Caprioli D, Kienast T, Beck A, Plotkin M, Schlagenhauf F, Vernaleken I, Gründer G, Bartenstein P, Heinz A, Cumming P. Increased turnover of dopamine in caudate nucleus of detoxified alcoholic patients. PLoS One 2013;8:e73903. [PMID: 24040111 DOI: 10.1371/journal.pone.0073903] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
393 Rössger K, Charpin-El Hamri G, Fussenegger M. Reward-based hypertension control by a synthetic brain-dopamine interface. Proc Natl Acad Sci U S A 2013;110:18150-5. [PMID: 24127594 DOI: 10.1073/pnas.1312414110] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 5.9] [Reference Citation Analysis]
394 Gutierrez R, Lobo MK, Zhang F, de Lecea L. Neural integration of reward, arousal, and feeding: Recruitment of VTA, lateral hypothalamus, and ventral striatal neurons. IUBMB Life 2011;63:824-30. [DOI: 10.1002/iub.539] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
395 Belin D, Economidou D, Pelloux Y, Everitt BJ. Habit Formation and Compulsion. In: Olmstead MC, editor. Animal Models of Drug Addiction. Totowa: Humana Press; 2011. pp. 337-78. [DOI: 10.1007/978-1-60761-934-5_13] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
396 Wang X, Liu L, Adams W, Li S, Zhang Q, Li B, Wang M, Cui R. Cocaine exposure alters dopaminergic modulation of prefronto-accumbens transmission. Physiol Behav 2015;145:112-7. [PMID: 25839095 DOI: 10.1016/j.physbeh.2015.03.042] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
397 Zhang W, Zheng J, Tan C, Lin X, Hu S, Chen J, You X, Li S. Designed self-assembled hybrid Au@CdS core–shell nanoparticles with negative charge and their application as highly selective biosensors. J Mater Chem B 2015;3:217-24. [DOI: 10.1039/c4tb01713g] [Cited by in Crossref: 42] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
398 Silverman NS, Popp S, Vialou V, Astafurov K, Nestler EJ, Dow-Edwards D. Effects of gaboxadol on the expression of cocaine sensitization in rats. Exp Clin Psychopharmacol 2016;24:131-41. [PMID: 26901591 DOI: 10.1037/pha0000069] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
399 Kolk SM, Gunput RA, Tran TS, van den Heuvel DM, Prasad AA, Hellemons AJ, Adolfs Y, Ginty DD, Kolodkin AL, Burbach JP, Smidt MP, Pasterkamp RJ. Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting. J Neurosci 2009;29:12542-57. [PMID: 19812329 DOI: 10.1523/JNEUROSCI.2521-09.2009] [Cited by in Crossref: 70] [Cited by in F6Publishing: 53] [Article Influence: 5.4] [Reference Citation Analysis]
400 García-Pérez D, Ferenczi S, Kovács KJ, Milanés MV. Distinct regulation pattern of Egr-1, BDNF and Arc during morphine-withdrawal conditioned place aversion paradigm: Role of glucocorticoids. Behav Brain Res 2019;360:244-54. [PMID: 30550948 DOI: 10.1016/j.bbr.2018.12.026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
401 Bass CE, Grinevich VP, Vance ZB, Sullivan RP, Bonin KD, Budygin EA. Optogenetic control of striatal dopamine release in rats. J Neurochem 2010;114:1344-52. [PMID: 20534006 DOI: 10.1111/j.1471-4159.2010.06850.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 47] [Article Influence: 1.6] [Reference Citation Analysis]
402 Gibson GD, Millan EZ, McNally GP. The nucleus accumbens shell in reinstatement and extinction of drug seeking. Eur J Neurosci 2019;50:2014-22. [PMID: 30044017 DOI: 10.1111/ejn.14084] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
403 Casalini S, Leonardi F, Cramer T, Biscarini F. Organic field-effect transistor for label-free dopamine sensing. Organic Electronics 2013;14:156-63. [DOI: 10.1016/j.orgel.2012.10.027] [Cited by in Crossref: 117] [Cited by in F6Publishing: 73] [Article Influence: 13.0] [Reference Citation Analysis]
404 Willuhn I, Burgeno LM, Everitt BJ, Phillips PE. Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use. Proc Natl Acad Sci USA. 2012;109:20703-20708. [PMID: 23184975 DOI: 10.1073/pnas.1213460109] [Cited by in Crossref: 146] [Cited by in F6Publishing: 136] [Article Influence: 14.6] [Reference Citation Analysis]
405 Figlewicz DP, Bennett-Jay JL, Kittleson S, Sipols AJ, Zavosh A. Sucrose self-administration and CNS activation in the rat. Am J Physiol Regul Integr Comp Physiol 2011;300:R876-84. [PMID: 21307361 DOI: 10.1152/ajpregu.00655.2010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 1.5] [Reference Citation Analysis]
406 Veening JG, Olivier B. Intranasal administration of oxytocin: behavioral and clinical effects, a review. Neurosci Biobehav Rev 2013;37:1445-65. [PMID: 23648680 DOI: 10.1016/j.neubiorev.2013.04.012] [Cited by in Crossref: 116] [Cited by in F6Publishing: 106] [Article Influence: 12.9] [Reference Citation Analysis]
407 Howe MW, Dombeck DA. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 2016;535:505-10. [PMID: 27398617 DOI: 10.1038/nature18942] [Cited by in Crossref: 268] [Cited by in F6Publishing: 213] [Article Influence: 44.7] [Reference Citation Analysis]
408 Pomeranz LE, Ekstrand MI, Latcha KN, Smith GA, Enquist LW, Friedman JM. Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry. J Neurosci 2017;37:4128-44. [PMID: 28283558 DOI: 10.1523/JNEUROSCI.3193-16.2017] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
409 Lukas SE. New perspectives on using brain imaging to study CNS stimulants. Neuropharmacology 2014;87:104-14. [PMID: 25080072 DOI: 10.1016/j.neuropharm.2014.07.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
410 Marie N, Canestrelli C, Noble F. Transfer of neuroplasticity from nucleus accumbens core to shell is required for cocaine reward. PLoS One 2012;7:e30241. [PMID: 22272316 DOI: 10.1371/journal.pone.0030241] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
411 Bell MR, Meerts SH, Sisk CL. Adolescent brain maturation is necessary for adult-typical mesocorticolimbic responses to a rewarding social cue. Dev Neurobiol 2013;73:856-69. [PMID: 23843208 DOI: 10.1002/dneu.22106] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
412 Cunha C, Smiley JF, Chuhma N, Shah R, Bleiwas C, Menezes EC, Seal RP, Edwards RH, Rayport S, Ansorge MS, Castellanos FX, Teixeira CM. Perinatal interference with the serotonergic system affects VTA function in the adult via glutamate co-transmission. Mol Psychiatry 2020. [PMID: 32398719 DOI: 10.1038/s41380-020-0763-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
413 Garcia-Keller C, Martinez SA, Esparza MA, Bollati F, Kalivas PW, Cancela LM. Cross-sensitization between cocaine and acute restraint stress is associated with sensitized dopamine but not glutamate release in the nucleus accumbens. Eur J Neurosci 2013;37:982-95. [PMID: 23360446 DOI: 10.1111/ejn.12121] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.7] [Reference Citation Analysis]
414 Engleman EA, Keen EJ, Tilford SS, Thielen RJ, Morzorati SL. Ethanol drinking reduces extracellular dopamine levels in the posterior ventral tegmental area of nondependent alcohol-preferring rats. Alcohol 2011;45:549-57. [PMID: 21827929 DOI: 10.1016/j.alcohol.2011.02.304] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
415 Alizamini MM, Farzinpour Z, Ezzatpanah S, Haghparast A. Role of intra-accumbal orexin receptors in the acquisition of morphine-induced conditioned place preference in the rats. Neurosci Lett 2017;660:1-5. [PMID: 28889006 DOI: 10.1016/j.neulet.2017.09.007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
416 Waller R, Wagner N. The Sensitivity to Threat and Affiliative Reward (STAR) model and the development of callous-unemotional traits. Neurosci Biobehav Rev 2019;107:656-71. [PMID: 31618611 DOI: 10.1016/j.neubiorev.2019.10.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
417 Brabant C, Alleva L, Quertemont E, Tirelli E. Involvement of the brain histaminergic system in addiction and addiction-related behaviors: a comprehensive review with emphasis on the potential therapeutic use of histaminergic compounds in drug dependence. Prog Neurobiol 2010;92:421-41. [PMID: 20638439 DOI: 10.1016/j.pneurobio.2010.07.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 2.7] [Reference Citation Analysis]
418 Park J, Aragona BJ, Kile BM, Carelli RM, Wightman RM. In vivo voltammetric monitoring of catecholamine release in subterritories of the nucleus accumbens shell. Neuroscience 2010;169:132-42. [PMID: 20451589 DOI: 10.1016/j.neuroscience.2010.04.076] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 4.1] [Reference Citation Analysis]
419 Wenzel JM, Su ZI, Shelton K, Dominguez HM, von Furstenberg VA, Ettenberg A. The dopamine antagonist cis-flupenthixol blocks the expression of the conditioned positive but not the negative effects of cocaine in rats. Pharmacol Biochem Behav 2013;114-115:90-6. [PMID: 24012795 DOI: 10.1016/j.pbb.2013.08.014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
420 Norbury A, Kurth-Nelson Z, Winston JS, Roiser JP, Husain M. Dopamine Regulates Approach-Avoidance in Human Sensation-Seeking. Int J Neuropsychopharmacol 2015;18:pyv041. [PMID: 25857822 DOI: 10.1093/ijnp/pyv041] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
421 Wilson DA, Chapuis J, Sullivan RM. Chapter 10. In: Doty RL, editor. Handbook of Olfaction and Gustation. Hoboken: John Wiley & Sons, Inc; 2015. pp. 209-24. [DOI: 10.1002/9781118971758.ch10] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
422 Shi X, Li Y, Yan P, Shi Y, Lai J. Weighted gene co-expression network analysis to explore the mechanism of heroin addiction in human nucleus accumbens. J Cell Biochem 2020;121:1870-9. [PMID: 31692007 DOI: 10.1002/jcb.29422] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
423 Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 2012;76:790-803. [PMID: 23177963 DOI: 10.1016/j.neuron.2012.09.040] [Cited by in Crossref: 388] [Cited by in F6Publishing: 398] [Article Influence: 43.1] [Reference Citation Analysis]
424 Kim HR, Malik AN, Mikhael JG, Bech P, Tsutsui-Kimura I, Sun F, Zhang Y, Li Y, Watabe-Uchida M, Gershman SJ, Uchida N. A Unified Framework for Dopamine Signals across Timescales. Cell 2020;183:1600-1616.e25. [PMID: 33248024 DOI: 10.1016/j.cell.2020.11.013] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
425 Nagayama S, Enerva A, Fletcher ML, Masurkar AV, Igarashi KM, Mori K, Chen WR. Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Front Neural Circuits 2010;4:120. [PMID: 20941380 DOI: 10.3389/fncir.2010.00120] [Cited by in Crossref: 104] [Cited by in F6Publishing: 110] [Article Influence: 8.7] [Reference Citation Analysis]
426 Ho TJ, Lee CW, Lu ZY, Lane HY, Tsai MH, Ho IK, Huang CL, Chiang YC. Effects of Electroacupuncture on Methamphetamine-Induced Behavioral Changes in Mice. Evid Based Complement Alternat Med 2017;2017:5642708. [PMID: 28400844 DOI: 10.1155/2017/5642708] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
427 Halliday G, Reyes S, Double K. Substantia Nigra, Ventral Tegmental Area, and Retrorubral Fields. The Human Nervous System. Elsevier; 2012. pp. 439-55. [DOI: 10.1016/b978-0-12-374236-0.10013-6] [Cited by in Crossref: 12] [Article Influence: 1.2] [Reference Citation Analysis]
428 Canseco-Alba A, Schanz N, Sanabria B, Zhao J, Lin Z, Liu QR, Onaivi ES. Behavioral effects of psychostimulants in mutant mice with cell-type specific deletion of CB2 cannabinoid receptors in dopamine neurons. Behav Brain Res 2019;360:286-97. [PMID: 30508607 DOI: 10.1016/j.bbr.2018.11.043] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
429 Croy I, Hummel T. Olfaction as a marker for depression. J Neurol 2017;264:631-8. [DOI: 10.1007/s00415-016-8227-8] [Cited by in Crossref: 71] [Cited by in F6Publishing: 64] [Article Influence: 11.8] [Reference Citation Analysis]
430 Miyamoto Y, Ishikawa Y, Iegaki N, Sumi K, Fu K, Sato K, Furukawa-hibi Y, Muramatsu S, Nabeshima T, Uno K, Nitta A. Overexpression of Shati/Nat8l, an N-acetyltransferase, in the nucleus accumbens attenuates the response to methamphetamine via activation of group II mGluRs in mice. Int J Neuropsychopharm 2014;17:1283-94. [DOI: 10.1017/s146114571400011x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
431 Winn P, Wilson DI, Redgrave P. Subcortical Connections of the Basal Ganglia. Handbook of Basal Ganglia Structure and Function. Elsevier; 2010. pp. 397-408. [DOI: 10.1016/b978-0-12-374767-9.00023-8] [Cited by in Crossref: 5] [Article Influence: 0.4] [Reference Citation Analysis]
432 Assar N, Mahmoudi D, Mousavi Z, Zarrabian S, Haghparast A. Role of orexin-1 and -2 receptors within the nucleus accumbens in the acquisition of sensitization to morphine in rats. Behav Brain Res 2019;373:112090. [PMID: 31325517 DOI: 10.1016/j.bbr.2019.112090] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
433 Pereira PA, Coelho J, Silva A, Madeira MD. Effects of aging on the cholinergic innervation of the rat ventral tegmental area: A stereological study. Exp Gerontol 2021;148:111298. [PMID: 33652122 DOI: 10.1016/j.exger.2021.111298] [Reference Citation Analysis]
434 Everitt BJ, Robbins TW. From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci Biobehav Rev 2013;37:1946-54. [PMID: 23438892 DOI: 10.1016/j.neubiorev.2013.02.010] [Cited by in Crossref: 381] [Cited by in F6Publishing: 352] [Article Influence: 42.3] [Reference Citation Analysis]
435 Oude Ophuis RJ, Boender AJ, van Rozen AJ, Adan RA. Cannabinoid, melanocortin and opioid receptor expression on DRD1 and DRD2 subpopulations in rat striatum. Front Neuroanat 2014;8:14. [PMID: 24723856 DOI: 10.3389/fnana.2014.00014] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
436 Buck SA, Torregrossa MM, Logan RW, Freyberg Z. Roles of dopamine and glutamate co-release in the nucleus accumbens in mediating the actions of drugs of abuse. FEBS J 2021;288:1462-74. [PMID: 32702182 DOI: 10.1111/febs.15496] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
437 García-Pérez D, López-Bellido R, Rodríguez RE, Laorden ML, Núñez C, Milanés MV. Dysregulation of dopaminergic regulatory mechanisms in the mesolimbic pathway induced by morphine and morphine withdrawal. Brain Struct Funct 2015;220:1901-19. [PMID: 24706046 DOI: 10.1007/s00429-014-0761-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
438 Höglinger GU, Arias-carrión O, Ipach B, Oertel WH. Origin of the dopaminergic innervation of adult neurogenic areas: Dopaminergic innervation of neurogenic areas. J Comp Neurol 2014;522:2336-48. [DOI: 10.1002/cne.23537] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
439 Martinez-Marcos A. On the organization of olfactory and vomeronasal cortices. Prog Neurobiol 2009;87:21-30. [PMID: 18929620 DOI: 10.1016/j.pneurobio.2008.09.010] [Cited by in Crossref: 81] [Cited by in F6Publishing: 79] [Article Influence: 5.8] [Reference Citation Analysis]
440 Been LE, Staffend NA, Tucker A, Meisel RL. Vesicular glutamate transporter 2 and tyrosine hydroxylase are not co-localized in Syrian hamster nucleus accumbens afferents. Neurosci Lett 2013;550:41-5. [PMID: 23850605 DOI: 10.1016/j.neulet.2013.07.001] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
441 Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR. Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci 2011;31:2481-7. [PMID: 21325515 DOI: 10.1523/JNEUROSCI.5411-10.2011] [Cited by in Crossref: 199] [Cited by in F6Publishing: 121] [Article Influence: 18.1] [Reference Citation Analysis]
442 Kramer DJ, Risso D, Kosillo P, Ngai J, Bateup HS. Combinatorial Expression of Grp and Neurod6 Defines Dopamine Neuron Populations with Distinct Projection Patterns and Disease Vulnerability. eNeuro 2018;5:ENEURO. [PMID: 30135866 DOI: 10.1523/ENEURO.0152-18.2018] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 5.8] [Reference Citation Analysis]
443 Saebi Rad F, Haghparast A, Eliassi A. Ventral Tegmental Area Microinjected-SKF38393 Increases Regular Chow Intake in 18 Hours Food-Deprived Rats. Basic Clin Neurosci 2020;11:773-80. [PMID: 33850614 DOI: 10.32598/bcn.11.6.2226.1] [Reference Citation Analysis]
444 Midroit M, Chalençon L, Renier N, Milton A, Thevenet M, Sacquet J, Breton M, Forest J, Noury N, Richard M, Raineteau O, Ferdenzi C, Fournel A, Wesson DW, Bensafi M, Didier A, Mandairon N. Neural processing of the reward value of pleasant odorants. Curr Biol 2021;31:1592-1605.e9. [PMID: 33607032 DOI: 10.1016/j.cub.2021.01.066] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
445 Bimpisidis Z, König N, Stagkourakis S, Zell V, Vlcek B, Dumas S, Giros B, Broberger C, Hnasko TS, Wallén-Mackenzie Å. The NeuroD6 Subtype of VTA Neurons Contributes to Psychostimulant Sensitization and Behavioral Reinforcement. eNeuro 2019;6:ENEURO. [PMID: 31097625 DOI: 10.1523/ENEURO.0066-19.2019] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
446 Saddoris MP, Wang X, Sugam JA, Carelli RM. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats. J Neurosci 2016;36:235-50. [PMID: 26740664 DOI: 10.1523/JNEUROSCI.3468-15.2016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
447 Touzani K, Bodnar R, Sclafani A. Activation of dopamine D1-like receptors in nucleus accumbens is critical for the acquisition, but not the expression, of nutrient-conditioned flavor preferences in rats. Eur J Neurosci 2008;27:1525-33. [PMID: 18336564 DOI: 10.1111/j.1460-9568.2008.06127.x] [Cited by in Crossref: 64] [Cited by in F6Publishing: 66] [Article Influence: 4.6] [Reference Citation Analysis]
448 Lorenzen A, Scholz-hehn D, Wiesner CD, Wolff S, Bergmann TO, van Eimeren T, Lentfer L, Baving L, Prehn-kristensen A. Chemosensory processing in children with attention-deficit/hyperactivity disorder. Journal of Psychiatric Research 2016;76:121-7. [DOI: 10.1016/j.jpsychires.2016.02.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
449 Murray JE, Belin D, Everitt BJ. Double dissociation of the dorsomedial and dorsolateral striatal control over the acquisition and performance of cocaine seeking. Neuropsychopharmacology 2012;37:2456-66. [PMID: 22739470 DOI: 10.1038/npp.2012.104] [Cited by in Crossref: 87] [Cited by in F6Publishing: 78] [Article Influence: 8.7] [Reference Citation Analysis]
450 Scherma M, Fadda P, Le Foll B, Forget B, Fratta W, Goldberg SR, Tanda G. The endocannabinoid system: a new molecular target for the treatment of tobacco addiction. CNS Neurol Disord Drug Targets 2008;7:468-81. [PMID: 19128204 DOI: 10.2174/187152708786927859] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 2.1] [Reference Citation Analysis]
451 Lazarus M, Chen JF, Urade Y, Huang ZL. Role of the basal ganglia in the control of sleep and wakefulness. Curr Opin Neurobiol 2013;23:780-5. [PMID: 23465424 DOI: 10.1016/j.conb.2013.02.001] [Cited by in Crossref: 86] [Cited by in F6Publishing: 82] [Article Influence: 9.6] [Reference Citation Analysis]
452 Rothwell PE. Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders? Front Neurosci 2016;10:20. [PMID: 26903789 DOI: 10.3389/fnins.2016.00020] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
453 Zernig G, Pinheiro BS. Dyadic social interaction inhibits cocaine-conditioned place preference and the associated activation of the accumbens corridor. Behav Pharmacol 2015;26:580-94. [PMID: 26221832 DOI: 10.1097/FBP.0000000000000167] [Cited by in Crossref: 29] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
454 Ikemoto S, Bonci A. Neurocircuitry of drug reward. Neuropharmacology 2014;76 Pt B:329-41. [PMID: 23664810 DOI: 10.1016/j.neuropharm.2013.04.031] [Cited by in Crossref: 76] [Cited by in F6Publishing: 68] [Article Influence: 8.4] [Reference Citation Analysis]
455 Shin R, Cao J, Webb SM, Ikemoto S. Amphetamine administration into the ventral striatum facilitates behavioral interaction with unconditioned visual signals in rats. PLoS One 2010;5:e8741. [PMID: 20090902 DOI: 10.1371/journal.pone.0008741] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 2.0] [Reference Citation Analysis]
456 Rahimi J, Zendehdel M, Khodadadi M. Mediatory role of the dopaminergic system through D1 receptor on glycine-induced hypophagia in neonatal broiler-type chickens. Amino Acids 2021;53:461-70. [PMID: 33649971 DOI: 10.1007/s00726-021-02963-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
457 Valyear MD, Glovaci I, Zaari A, Lahlou S, Trujillo-Pisanty I, Andrew Chapman C, Chaudhri N. Dissociable mesolimbic dopamine circuits control responding triggered by alcohol-predictive discrete cues and contexts. Nat Commun 2020;11:3764. [PMID: 32724058 DOI: 10.1038/s41467-020-17543-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
458 Lee T, Cai LX, Lelyveld VS, Hai A, Jasanoff A. Molecular-level functional magnetic resonance imaging of dopaminergic signaling. Science 2014;344:533-5. [PMID: 24786083 DOI: 10.1126/science.1249380] [Cited by in Crossref: 88] [Cited by in F6Publishing: 80] [Article Influence: 11.0] [Reference Citation Analysis]
459 Stelly CE, Tritley SC, Rafati Y, Wanat MJ. Acute Stress Enhances Associative Learning via Dopamine Signaling in the Ventral Lateral Striatum. J Neurosci 2020;40:4391-400. [PMID: 32321745 DOI: 10.1523/JNEUROSCI.3003-19.2020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
460 Aberg KC, Kramer EE, Schwartz S. Interplay between midbrain and dorsal anterior cingulate regions arbitrates lingering reward effects on memory encoding. Nat Commun 2020;11:1829. [PMID: 32286275 DOI: 10.1038/s41467-020-15542-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
461 Iñiguez SD, Warren BL, Neve RL, Nestler EJ, Russo SJ, Bolaños-Guzmán CA. Insulin receptor substrate-2 in the ventral tegmental area regulates behavioral responses to cocaine. Behav Neurosci 2008;122:1172-7. [PMID: 18823173 DOI: 10.1037/a0012893] [Cited by in F6Publishing: 19] [Reference Citation Analysis]
462 Frederick A, Goldsmith J, de Zavalia N, Amir S. Mapping the co-localization of the circadian proteins PER2 and BMAL1 with enkephalin and substance P throughout the rodent forebrain. PLoS One 2017;12:e0176279. [PMID: 28423013 DOI: 10.1371/journal.pone.0176279] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
463 Kahl E, Fendt M. Metabotropic Glutamate Receptors 7 within the Nucleus Accumbens are Involved in Relief Learning in Rats. Curr Neuropharmacol 2016;14:405-12. [PMID: 27296637 DOI: 10.2174/1570159x13666150425002017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
464 Zhang Z, Liu Q, Wen P, Zhang J, Rao X, Zhou Z, Zhang H, He X, Li J, Zhou Z, Xu X, Zhang X, Luo R, Lv G, Li H, Cao P, Wang L, Xu F. Activation of the dopaminergic pathway from VTA to the medial olfactory tubercle generates odor-preference and reward. Elife 2017;6:e25423. [PMID: 29251597 DOI: 10.7554/eLife.25423] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 5.2] [Reference Citation Analysis]
465 Yee M, Maal-Bared G, Ting-A-Kee R, Chwalek M, Mackay-Clackett I, Bergamini M, Grieder TE, van der Kooy D. Segregation of caffeine reward and aversion in the rat nucleus accumbens shell versus core. Eur J Neurosci 2020;52:3074-86. [PMID: 32150654 DOI: 10.1111/ejn.14718] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
466 Jang M, Um KB, Jang J, Kim HJ, Cho H, Chung S, Park MK. Coexistence of glutamatergic spine synapses and shaft synapses in substantia nigra dopamine neurons. Sci Rep 2015;5:14773. [PMID: 26435058 DOI: 10.1038/srep14773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
467 Perra S, Clements MA, Bernier BE, Morikawa H. In vivo ethanol experience increases D(2) autoinhibition in the ventral tegmental area. Neuropsychopharmacology 2011;36:993-1002. [PMID: 21248720 DOI: 10.1038/npp.2010.237] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
468 Chen C, Wang HL, Wu SH, Huang H, Zou JL, Chen J, Jiang TZ, Zhou Y, Wang GH. Abnormal Degree Centrality of Bilateral Putamen and Left Superior Frontal Gyrus in Schizophrenia with Auditory Hallucinations: A Resting-state Functional Magnetic Resonance Imaging Study. Chin Med J (Engl) 2015;128:3178-84. [PMID: 26612293 DOI: 10.4103/0366-6999.170269] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
469 Nolan BC, Liu S, Hammerslag LR, Cheung TH, Lenz J, Mach RH, Luedtke RR, Neisewander JL. Fos expression in response to dopamine D3-preferring phenylpiperazine drugs given with and without cocaine. Synapse 2013;67:847-55. [PMID: 23766142 DOI: 10.1002/syn.21691] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
470 Gmaz JM, Carmichael JE, van der Meer MA. Persistent coding of outcome-predictive cue features in the rat nucleus accumbens. Elife 2018;7:e37275. [PMID: 30234485 DOI: 10.7554/eLife.37275] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
471 West R. The multiple facets of cigarette addiction and what they mean for encouraging and helping smokers to stop. COPD 2009;6:277-83. [PMID: 19811387 DOI: 10.1080/15412550903049181] [Cited by in Crossref: 86] [Cited by in F6Publishing: 74] [Article Influence: 7.2] [Reference Citation Analysis]
472 Swardfager W, Rosenblat JD, Benlamri M, McIntyre RS. Mapping inflammation onto mood: Inflammatory mediators of anhedonia. Neurosci Biobehav Rev 2016;64:148-66. [PMID: 26915929 DOI: 10.1016/j.neubiorev.2016.02.017] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 10.0] [Reference Citation Analysis]
473 Hutchinson MR, Northcutt AL, Hiranita T, Wang X, Lewis SS, Thomas J, van Steeg K, Kopajtic TA, Loram LC, Sfregola C, Galer E, Miles NE, Bland ST, Amat J, Rozeske RR, Maslanik T, Chapman TR, Strand KA, Fleshner M, Bachtell RK, Somogyi AA, Yin H, Katz JL, Rice KC, Maier SF, Watkins LR. Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci 2012;32:11187-200. [PMID: 22895704 DOI: 10.1523/JNEUROSCI.0684-12.2012] [Cited by in Crossref: 180] [Cited by in F6Publishing: 103] [Article Influence: 18.0] [Reference Citation Analysis]
474 Wagner G, de la Cruz F, Köhler S, Bär KJ. Treatment Associated Changes of Functional Connectivity of Midbrain/Brainstem Nuclei in Major Depressive Disorder. Sci Rep 2017;7:8675. [PMID: 28819132 DOI: 10.1038/s41598-017-09077-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
475 Uno K, Miyanishi H, Sodeyama K, Fujiwara T, Miyazaki T, Muramatsu SI, Nitta A. Vulnerability to depressive behavior induced by overexpression of striatal Shati/Nat8l via the serotonergic neuronal pathway in mice. Behav Brain Res 2019;376:112227. [PMID: 31520691 DOI: 10.1016/j.bbr.2019.112227] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
476 Koos T, Tecuapetla F, Tepper JM. Glutamatergic signaling by midbrain dopaminergic neurons: recent insights from optogenetic, molecular and behavioral studies. Curr Opin Neurobiol 2011;21:393-401. [PMID: 21632236 DOI: 10.1016/j.conb.2011.05.010] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.6] [Reference Citation Analysis]
477 Wakabayashi KT, Bruno MJ, Bass CE, Park J. Application of fast-scan cyclic voltammetry for the in vivo characterization of optically evoked dopamine in the olfactory tubercle of the rat brain. Analyst 2016;141:3746-55. [DOI: 10.1039/c6an00196c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
478 Yamaguchi M. Functional Sub-Circuits of the Olfactory System Viewed from the Olfactory Bulb and the Olfactory Tubercle. Front Neuroanat 2017;11:33. [PMID: 28443001 DOI: 10.3389/fnana.2017.00033] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
479 Chen JX, Huang KM, Liu M, Jiang JX, Liu JP, Zhang YX, Yang C, Xin WJ, Zhang XQ. Activation of TLR4/STAT3 signaling in VTA contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Behav Brain Res 2017;335:151-7. [PMID: 28827130 DOI: 10.1016/j.bbr.2017.08.022] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
480 Baumann MH, Bukhari MO, Lehner KR, Anizan S, Rice KC, Concheiro M, Huestis MA. Neuropharmacology of 3,4-Methylenedioxypyrovalerone (MDPV), Its Metabolites, and Related Analogs. Curr Top Behav Neurosci 2017;32:93-117. [PMID: 27830575 DOI: 10.1007/7854_2016_53] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 10.6] [Reference Citation Analysis]
481 Aarts E, van Holstein M, Cools R. Striatal Dopamine and the Interface between Motivation and Cognition. Front Psychol 2011;2:163. [PMID: 21808629 DOI: 10.3389/fpsyg.2011.00163] [Cited by in Crossref: 90] [Cited by in F6Publishing: 87] [Article Influence: 8.2] [Reference Citation Analysis]
482 Berridge KC, Robinson TE, Aldridge JW. Dissecting components of reward: 'liking', 'wanting', and learning. Curr Opin Pharmacol 2009;9:65-73. [PMID: 19162544 DOI: 10.1016/j.coph.2008.12.014] [Cited by in Crossref: 942] [Cited by in F6Publishing: 826] [Article Influence: 72.5] [Reference Citation Analysis]
483 Mahzouni M, Zendehdel M, Babapour V, Charkhkar S. Methylamine induced hypophagia is mediated via dopamine D1 and D2 receptors in neonatal meat chicks. Vet Res Commun 2016;40:21-7. [PMID: 26685977 DOI: 10.1007/s11259-015-9649-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
484 Caprioli D, Celentano M, Paolone G, Lucantonio F, Bari A, Nencini P, Badiani A. Opposite environmental regulation of heroin and amphetamine self-administration in the rat. Psychopharmacology 2008;198:395-404. [DOI: 10.1007/s00213-008-1154-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 2.3] [Reference Citation Analysis]
485 Brockett AT, Pribut HJ, Vázquez D, Roesch MR. The impact of drugs of abuse on executive function: characterizing long-term changes in neural correlates following chronic drug exposure and withdrawal in rats. Learn Mem 2018;25:461-73. [PMID: 30115768 DOI: 10.1101/lm.047001.117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
486 Puryear CB, Kim MJ, Mizumori SJ. Conjunctive encoding of movement and reward by ventral tegmental area neurons in the freely navigating rodent. Behav Neurosci 2010;124:234-47. [PMID: 20364883 DOI: 10.1037/a0018865] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 3.0] [Reference Citation Analysis]
487 Romer D, Reyna VF, Satterthwaite TD. Beyond stereotypes of adolescent risk taking: Placing the adolescent brain in developmental context. Dev Cogn Neurosci 2017;27:19-34. [PMID: 28777995 DOI: 10.1016/j.dcn.2017.07.007] [Cited by in Crossref: 115] [Cited by in F6Publishing: 70] [Article Influence: 23.0] [Reference Citation Analysis]
488 Gremel CM, Lovinger DM. Associative and sensorimotor cortico-basal ganglia circuit roles in effects of abused drugs. Genes Brain Behav 2017;16:71-85. [PMID: 27457495 DOI: 10.1111/gbb.12309] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 6.7] [Reference Citation Analysis]
489 Morikawa H, Morrisett RA. Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. Int Rev Neurobiol 2010;91:235-88. [PMID: 20813245 DOI: 10.1016/S0074-7742(10)91008-8] [Cited by in Crossref: 86] [Cited by in F6Publishing: 58] [Article Influence: 7.2] [Reference Citation Analysis]
490 Hahn JD, Swanson LW. Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat. J Comp Neurol 2012;520:1831-90. [PMID: 22488503 DOI: 10.1002/cne.23064] [Cited by in Crossref: 48] [Cited by in F6Publishing: 52] [Article Influence: 4.8] [Reference Citation Analysis]
491 Walton ME, Bouret S. What Is the Relationship between Dopamine and Effort? Trends Neurosci 2019;42:79-91. [PMID: 30391016 DOI: 10.1016/j.tins.2018.10.001] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
492 Fitzgerald BJ, Richardson K, Wesson DW. Olfactory tubercle stimulation alters odor preference behavior and recruits forebrain reward and motivational centers. Front Behav Neurosci 2014;8:81. [PMID: 24672445 DOI: 10.3389/fnbeh.2014.00081] [Cited by in Crossref: 21] [Cited by in F6Publishing: 28] [Article Influence: 2.6] [Reference Citation Analysis]
493 Deadwyler SA. Electrophysiological correlates of abused drugs: Relation to natural rewards. Annals of the New York Academy of Sciences 2010;1187:140-7. [DOI: 10.1111/j.1749-6632.2009.05155.x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
494 van Dongen YC, Kolomiets BP, Groenewegen HJ, Thierry A, Deniau J. A Subpopulation of Mesencephalic Dopamine Neurons Interfaces the Shell of Nucleus Accumbens and the Dorsolateral Striatum in Rats. In: Groenewegen HJ, Voorn P, Berendse HW, Mulder AB, Cools AR, editors. The Basal Ganglia IX. New York: Springer; 2009. pp. 119-30. [DOI: 10.1007/978-1-4419-0340-2_10] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
495 Bodea GO, Blaess S. Establishing diversity in the dopaminergic system. FEBS Lett 2015;589:3773-85. [PMID: 26431946 DOI: 10.1016/j.febslet.2015.09.016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 4.4] [Reference Citation Analysis]
496 Su C, Zhou H, Gong L, Teng B, Geng F, Hu Y. Viewing personalized video clips recommended by TikTok activates default mode network and ventral tegmental area. Neuroimage 2021;237:118136. [PMID: 33951514 DOI: 10.1016/j.neuroimage.2021.118136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
497 Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol Neurobiol 2019;39:31-59. [PMID: 30446950 DOI: 10.1007/s10571-018-0632-3] [Cited by in Crossref: 134] [Cited by in F6Publishing: 104] [Article Influence: 33.5] [Reference Citation Analysis]
498 Sedaghat K, Shen P, Finkelstein D, Henderson J, Gundlach A. Leucine-rich repeat-containing G-protein-coupled receptor 8 in the rat brain: Enrichment in thalamic neurons and their efferent projections. Neuroscience 2008;156:319-33. [DOI: 10.1016/j.neuroscience.2008.07.029] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
499 Figlewicz DP, Sipols AJ. Energy regulatory signals and food reward. Pharmacol Biochem Behav. 2010;97:15-24. [PMID: 20230849 DOI: 10.1016/j.pbb.2010.03.002.] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
500 Lucas-neto L, Reimão S, Oliveira E, Rainha-campos A, Sousa J, Nunes RG, Gonçalves-ferreira A, Campos JG. Advanced MR Imaging of the Human Nucleus Accumbens-Additional Guiding Tool for Deep Brain Stimulation: MRI of the Acc-Tools for DBS. Neuromodulation: Technology at the Neural Interface 2015;18:341-8. [DOI: 10.1111/ner.12289] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
501 Payton CA, Wilson DA, Wesson DW. Parallel odor processing by two anatomically distinct olfactory bulb target structures. PLoS One 2012;7:e34926. [PMID: 22496877 DOI: 10.1371/journal.pone.0034926] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 1.7] [Reference Citation Analysis]
502 Doyon WM, Ostroumov A, Ontiveros T, Gonzales RA, Dani JA. Ethanol produces multiple electrophysiological effects on ventral tegmental area neurons in freely moving rats. Addict Biol 2021;26:e12899. [PMID: 32255261 DOI: 10.1111/adb.12899] [Reference Citation Analysis]
503 Zhang H, Qian YL, Li C, Liu D, Wang L, Wang XY, Liu MJ, Liu H, Zhang S, Guo XY, Yang JX, Ding HL, Koo JW, Mouzon E, Deisseroth K, Nestler EJ, Zachariou V, Han MH, Cao JL. Brain-Derived Neurotrophic Factor in the Mesolimbic Reward Circuitry Mediates Nociception in Chronic Neuropathic Pain. Biol Psychiatry 2017;82:608-18. [PMID: 28390647 DOI: 10.1016/j.biopsych.2017.02.1180] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 7.4] [Reference Citation Analysis]
504 Gatica RI, Aguilar-Rivera MÍ, Azocar VH, Fuentealba JA. Individual Differences in Amphetamine Locomotor Sensitization are Accompanied with Changes in Dopamine Release and Firing Pattern in the Dorsolateral Striatum of Rats. Neuroscience 2020;427:116-26. [PMID: 31874242 DOI: 10.1016/j.neuroscience.2019.11.048] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
505 Beckley JT, Evins CE, Fedarovich H, Gilstrap MJ, Woodward JJ. Medial prefrontal cortex inversely regulates toluene-induced changes in markers of synaptic plasticity of mesolimbic dopamine neurons. J Neurosci 2013;33:804-13. [PMID: 23303956 DOI: 10.1523/JNEUROSCI.3729-12.2013] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
506 Ahmadi Soleimani SM, Mohamadi M.a.h MH, Raoufy MR, Azizi H, Nasehi M, Zarrindast MR. Acute morphine administration alters the power of local field potentials in mesolimbic pathway of freely moving rats: Involvement of dopamine receptors. Neuroscience Letters 2018;686:168-74. [DOI: 10.1016/j.neulet.2018.09.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
507 Somalwar AR, Shelkar GP, Subhedar NK, Kokare DM. The role of neuropeptide CART in the lateral hypothalamic-ventral tegmental area (LH-VTA) circuit in motivation. Behavioural Brain Research 2017;317:340-9. [DOI: 10.1016/j.bbr.2016.09.054] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
508 El Mestikawy S, Wallén-Mackenzie A, Fortin GM, Descarries L, Trudeau LE. From glutamate co-release to vesicular synergy: vesicular glutamate transporters. Nat Rev Neurosci. 2011;12:204-216. [PMID: 21415847 DOI: 10.1038/nrn2969] [Cited by in Crossref: 215] [Cited by in F6Publishing: 227] [Article Influence: 19.5] [Reference Citation Analysis]
509 Hoque KE, West AR. Dopaminergic modulation of nitric oxide synthase activity in subregions of the rat nucleus accumbens. Synapse 2012;66:220-31. [DOI: 10.1002/syn.21503] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
510 Ebner SR, Roitman MF, Potter DN, Rachlin AB, Chartoff EH. Depressive-like effects of the kappa opioid receptor agonist salvinorin A are associated with decreased phasic dopamine release in the nucleus accumbens. Psychopharmacology (Berl) 2010;210:241-52. [PMID: 20372879 DOI: 10.1007/s00213-010-1836-5] [Cited by in Crossref: 89] [Cited by in F6Publishing: 97] [Article Influence: 7.4] [Reference Citation Analysis]
511 Brown MT, Bellone C, Mameli M, Labouèbe G, Bocklisch C, Balland B, Dahan L, Luján R, Deisseroth K, Lüscher C. Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation. PLoS One 2010;5:e15870. [PMID: 21209835 DOI: 10.1371/journal.pone.0015870] [Cited by in Crossref: 70] [Cited by in F6Publishing: 77] [Article Influence: 5.8] [Reference Citation Analysis]
512 Meidahl AC, Orlowski D, Sørensen JC, Bjarkam CR. The Retrograde Connections and Anatomical Segregation of the Göttingen Minipig Nucleus Accumbens. Front Neuroanat 2016;10:117. [PMID: 27994542 DOI: 10.3389/fnana.2016.00117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
513 Demiral ŞB, Tomasi D, Wiers CE, Manza P, Shokri-Kojori E, Studentsova Y, Wang GJ, Volkow ND. Methylphenidate's effects on thalamic metabolism and functional connectivity in cannabis abusers and healthy controls. Neuropsychopharmacology 2019;44:1389-97. [PMID: 30504928 DOI: 10.1038/s41386-018-0287-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
514 Pupe S, Wallén-Mackenzie Å. Cre-driven optogenetics in the heterogeneous genetic panorama of the VTA. Trends Neurosci 2015;38:375-86. [PMID: 25962754 DOI: 10.1016/j.tins.2015.04.005] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.1] [Reference Citation Analysis]
515 Komatsu H, Maruyama M, Yao S, Shinohara T, Sakuma K, Imaichi S, Chikatsu T, Kuniyeda K, Siu FK, Peng LS, Zhuo K, Mun LS, Han TM, Matsumoto Y, Hashimoto T, Miyajima N, Itoh Y, Ogi K, Habata Y, Mori M. Anatomical transcriptome of G protein-coupled receptors leads to the identification of a novel therapeutic candidate GPR52 for psychiatric disorders. PLoS One 2014;9:e90134. [PMID: 24587241 DOI: 10.1371/journal.pone.0090134] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 4.4] [Reference Citation Analysis]
516 Murray K, Lin Y, Makary MM, Whang PG, Geha P. Brain Structure and Function of Chronic Low Back Pain Patients on Long-Term Opioid Analgesic Treatment: A Preliminary Study. Mol Pain 2021;17:1744806921990938. [PMID: 33567986 DOI: 10.1177/1744806921990938] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
517 Miendlarzewska EA, Bavelier D, Schwartz S. Influence of reward motivation on human declarative memory. Neuroscience & Biobehavioral Reviews 2016;61:156-76. [DOI: 10.1016/j.neubiorev.2015.11.015] [Cited by in Crossref: 81] [Cited by in F6Publishing: 56] [Article Influence: 13.5] [Reference Citation Analysis]
518 Ouachikh O, Chassain C, Pagès G, Durif F, Hafidi A. mGlu5 receptor antagonist blocks bromocriptine-induced conditioned place preference in bilateral mesolimbic-lesioned rat. Behavioural Brain Research 2017;317:301-10. [DOI: 10.1016/j.bbr.2016.09.030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
519 Zellner MR, Ranaldi R. How conditioned stimuli acquire the ability to activate VTA dopamine cells: a proposed neurobiological component of reward-related learning. Neurosci Biobehav Rev 2010;34:769-80. [PMID: 19914285 DOI: 10.1016/j.neubiorev.2009.11.011] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 3.5] [Reference Citation Analysis]
520 Pritchett D, Jagannath A, Brown LA, Tam SK, Hasan S, Gatti S, Harrison PJ, Bannerman DM, Foster RG, Peirson SN. Deletion of Metabotropic Glutamate Receptors 2 and 3 (mGlu2 & mGlu3) in Mice Disrupts Sleep and Wheel-Running Activity, and Increases the Sensitivity of the Circadian System to Light. PLoS One 2015;10:e0125523. [PMID: 25950516 DOI: 10.1371/journal.pone.0125523] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
521 [DOI: 10.1101/404467] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
522 Gadziola MA, Tylicki KA, Christian DL, Wesson DW. The olfactory tubercle encodes odor valence in behaving mice. J Neurosci 2015;35:4515-27. [PMID: 25788670 DOI: 10.1523/JNEUROSCI.4750-14.2015] [Cited by in Crossref: 56] [Cited by in F6Publishing: 41] [Article Influence: 8.0] [Reference Citation Analysis]
523 Lambert C, Da Silva S, Ceniti AK, Rizvi SJ, Foussias G, Kennedy SH. Anhedonia in depression and schizophrenia: A transdiagnostic challenge. CNS Neurosci Ther 2018;24:615-23. [PMID: 29687627 DOI: 10.1111/cns.12854] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 9.8] [Reference Citation Analysis]
524 Mirza KB, Golden CT, Nikolic K, Toumazou C. Closed-Loop Implantable Therapeutic Neuromodulation Systems Based on Neurochemical Monitoring. Front Neurosci 2019;13:808. [PMID: 31481864 DOI: 10.3389/fnins.2019.00808] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
525 Addy NA, Daberkow DP, Ford JN, Garris PA, Wightman RM. Sensitization of rapid dopamine signaling in the nucleus accumbens core and shell after repeated cocaine in rats. J Neurophysiol 2010;104:922-31. [PMID: 20554845 DOI: 10.1152/jn.00413.2010] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 3.1] [Reference Citation Analysis]
526 Lipinska G, Timol R, Thomas KG. The implications of sleep disruption for cognitive and affective processing in methamphetamine abuse. Med Hypotheses 2015;85:914-21. [PMID: 26384529 DOI: 10.1016/j.mehy.2015.09.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
527 Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res 2009;199:89-102. [PMID: 18950658 DOI: 10.1016/j.bbr.2008.09.027] [Cited by in Crossref: 285] [Cited by in F6Publishing: 274] [Article Influence: 20.4] [Reference Citation Analysis]
528 Oishi Y, Lazarus M. The control of sleep and wakefulness by mesolimbic dopamine systems. Neuroscience Research 2017;118:66-73. [DOI: 10.1016/j.neures.2017.04.008] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 11.0] [Reference Citation Analysis]
529 Fortin SM, Roitman MF. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core. Physiol Behav 2017;176:17-25. [PMID: 28315693 DOI: 10.1016/j.physbeh.2017.03.019] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 6.6] [Reference Citation Analysis]
530 Conio B, Martino M, Magioncalda P, Escelsior A, Inglese M, Amore M, Northoff G. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders. Mol Psychiatry 2020;25:82-93. [PMID: 30953003 DOI: 10.1038/s41380-019-0406-4] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 16.3] [Reference Citation Analysis]
531 Melón LC, Boehm SL 2nd. GABAA receptors in the posterior, but not anterior, ventral tegmental area mediate Ro15-4513-induced attenuation of binge-like ethanol consumption in C57BL/6J female mice. Behav Brain Res 2011;220:230-7. [PMID: 21320533 DOI: 10.1016/j.bbr.2011.02.014] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 2.3] [Reference Citation Analysis]
532 van Nieuwenhuijzen P, Mcgregor I, Chebib M, Hunt G. Regional Fos-expression induced by γ-hydroxybutyrate (GHB): Comparison with γ-butyrolactone (GBL) and effects of co-administration of the GABAB antagonist SCH 50911 and putative GHB antagonist NCS-382. Neuroscience 2014;277:700-15. [DOI: 10.1016/j.neuroscience.2014.07.056] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
533 Quiroz C, Orrú M, Rea W, Ciudad-Roberts A, Yepes G, Britt JP, Ferré S. Local Control of Extracellular Dopamine Levels in the Medial Nucleus Accumbens by a Glutamatergic Projection from the Infralimbic Cortex. J Neurosci 2016;36:851-9. [PMID: 26791215 DOI: 10.1523/JNEUROSCI.2850-15.2016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 5.2] [Reference Citation Analysis]
534 Köhler S, Bär KJ, Wagner G. Differential involvement of brainstem noradrenergic and midbrain dopaminergic nuclei in cognitive control. Hum Brain Mapp 2016;37:2305-18. [PMID: 26970351 DOI: 10.1002/hbm.23173] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
535 Shnitko TA, Robinson DL. Regional variation in phasic dopamine release during alcohol and sucrose self-administration in rats. ACS Chem Neurosci 2015;6:147-54. [PMID: 25493956 DOI: 10.1021/cn500251j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
536 Charlet K, Beck A, Heinz A. The Dopamine System in Mediating Alcohol Effects in Humans. In: Sommer WH, Spanagel R, editors. Behavioral Neurobiology of Alcohol Addiction. Berlin: Springer Berlin Heidelberg; 2013. pp. 461-88. [DOI: 10.1007/978-3-642-28720-6_130] [Cited by in Crossref: 25] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
537 Webb IC, Baltazar RM, Lehman MN, Coolen LM. Bidirectional interactions between the circadian and reward systems: is restricted food access a unique zeitgeber? Eur J Neurosci 2009;30:1739-48. [PMID: 19878278 DOI: 10.1111/j.1460-9568.2009.06966.x] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 3.8] [Reference Citation Analysis]
538 Jeanes ZM, Buske TR, Morrisett RA. Cell type-specific synaptic encoding of ethanol exposure in the nucleus accumbens shell. Neuroscience 2014;277:184-95. [PMID: 25003712 DOI: 10.1016/j.neuroscience.2014.06.063] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
539 Ehrich JM, Phillips PE, Chavkin C. Kappa opioid receptor activation potentiates the cocaine-induced increase in evoked dopamine release recorded in vivo in the mouse nucleus accumbens. Neuropsychopharmacology 2014;39:3036-48. [PMID: 24971603 DOI: 10.1038/npp.2014.157] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 5.6] [Reference Citation Analysis]
540 Wenzel JM, Rauscher NA, Cheer JF, Oleson EB. A role for phasic dopamine release within the nucleus accumbens in encoding aversion: a review of the neurochemical literature. ACS Chem Neurosci 2015;6:16-26. [PMID: 25491156 DOI: 10.1021/cn500255p] [Cited by in Crossref: 76] [Cited by in F6Publishing: 68] [Article Influence: 9.5] [Reference Citation Analysis]
541 Vigil FA, Carver CM, Shapiro MS. Pharmacological Manipulation of K v 7 Channels as a New Therapeutic Tool for Multiple Brain Disorders. Front Physiol 2020;11:688. [PMID: 32636759 DOI: 10.3389/fphys.2020.00688] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
542 Holly EN, Miczek KA. Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacology (Berl) 2016;233:163-86. [PMID: 26676983 DOI: 10.1007/s00213-015-4151-3] [Cited by in Crossref: 115] [Cited by in F6Publishing: 99] [Article Influence: 16.4] [Reference Citation Analysis]
543 Xia X, Fan L, Hou B, Zhang B, Zhang D, Cheng C, Deng H, Dong Y, Zhao X, Li H, Jiang T. Fine-Grained Parcellation of the Macaque Nucleus Accumbens by High-Resolution Diffusion Tensor Tractography. Front Neurosci 2019;13:709. [PMID: 31354418 DOI: 10.3389/fnins.2019.00709] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
544 Wieland S, Du D, Oswald MJ, Parlato R, Köhr G, Kelsch W. Phasic dopaminergic activity exerts fast control of cholinergic interneuron firing via sequential NMDA, D2, and D1 receptor activation. J Neurosci 2014;34:11549-59. [PMID: 25164653 DOI: 10.1523/JNEUROSCI.1175-14.2014] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
545 Kang SW. Central Nervous System Associated With Light Perception and Physiological Responses of Birds. Front Physiol 2021;12:723454. [PMID: 34744764 DOI: 10.3389/fphys.2021.723454] [Reference Citation Analysis]
546 Campi KL, Jameson CE, Trainor BC. Sexual Dimorphism in the Brain of the Monogamous California Mouse (Peromyscus californicus). Brain Behav Evol 2013;81:236-49. [PMID: 23881046 DOI: 10.1159/000353260] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
547 Chang PC, Pollema-Mays SL, Centeno MV, Procissi D, Contini M, Baria AT, Martina M, Apkarian AV. Role of nucleus accumbens in neuropathic pain: linked multi-scale evidence in the rat transitioning to neuropathic pain. Pain 2014;155:1128-39. [PMID: 24607959 DOI: 10.1016/j.pain.2014.02.019] [Cited by in Crossref: 104] [Cited by in F6Publishing: 102] [Article Influence: 13.0] [Reference Citation Analysis]
548 Ford CP, Williams JT. Mesoprefrontal dopamine neurons distinguish themselves. Neuron 2008;57:631-2. [PMID: 18341984 DOI: 10.1016/j.neuron.2008.02.027] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
549 Pardo-Bellver C, Cádiz-Moretti B, Novejarque A, Martínez-García F, Lanuza E. Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice. Front Neuroanat 2012;6:33. [PMID: 22933993 DOI: 10.3389/fnana.2012.00033] [Cited by in Crossref: 81] [Cited by in F6Publishing: 81] [Article Influence: 8.1] [Reference Citation Analysis]
550 Peña CJ, Neugut YD, Calarco CA, Champagne FA. Effects of maternal care on the development of midbrain dopamine pathways and reward-directed behavior in female offspring. Eur J Neurosci 2014;39:946-56. [DOI: 10.1111/ejn.12479] [Cited by in Crossref: 71] [Cited by in F6Publishing: 66] [Article Influence: 8.9] [Reference Citation Analysis]
551 Kesner AJ, Calva CB, Ikemoto S. Seeking motivation and reward: roles of dopamine, hippocampus and supramammillo-septal pathway. Progress in Neurobiology 2022. [DOI: 10.1016/j.pneurobio.2022.102252] [Reference Citation Analysis]
552 Mortazaei S, Sahraei H, Bahari Z, Meftahi GH, Pirzad Jahromi G, Hatef B. Ventral tegmental area inactivation alters hormonal, metabolic, and locomotor responses to inescapable stress. Archives of Physiology and Biochemistry 2018;125:293-301. [DOI: 10.1080/13813455.2018.1455711] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
553 Peciña S, Berridge KC. Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered 'wanting' for reward: entire core and medial shell mapped as substrates for PIT enhancement. Eur J Neurosci 2013;37:1529-40. [PMID: 23495790 DOI: 10.1111/ejn.12174] [Cited by in Crossref: 109] [Cited by in F6Publishing: 104] [Article Influence: 12.1] [Reference Citation Analysis]
554 Flores G, de Jesús Gómez-villalobos M, Rodríguez-sosa L. Prenatal Amphetamine Exposure Effects on Dopaminergic Receptors and Transporter in Postnatal Rats. Neurochem Res 2011;36:1740-9. [DOI: 10.1007/s11064-011-0489-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
555 Palamarchuk IS, Vaillancourt T. Integrative Brain Dynamics in Childhood Bullying Victimization: Cognitive and Emotional Convergence Associated With Stress Psychopathology. Front Integr Neurosci 2022;16:782154. [DOI: 10.3389/fnint.2022.782154] [Reference Citation Analysis]
556 Li S, Shi Y, Kirouac GJ. The hypothalamus and periaqueductal gray are the sources of dopamine fibers in the paraventricular nucleus of the thalamus in the rat. Front Neuroanat 2014;8:136. [PMID: 25477789 DOI: 10.3389/fnana.2014.00136] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 3.5] [Reference Citation Analysis]
557 Nogi Y, Ahasan MM, Murata Y, Taniguchi M, Sha MFR, Ijichi C, Yamaguchi M. Expression of feeding-related neuromodulatory signalling molecules in the mouse central olfactory system. Sci Rep 2020;10:890. [PMID: 31964903 DOI: 10.1038/s41598-020-57605-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
558 Striano BM, Barker DJ, Pawlak AP, Root DH, Fabbricatore AT, Coffey KR, Stamos JP, West MO. Olfactory tubercle neurons exhibit slow-phasic firing patterns during cocaine self-administration. Synapse 2014;68:321-3. [PMID: 24700541 DOI: 10.1002/syn.21744] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
559 Pavuluri M, Volpe K, Yuen A; Department of Psychiatry, University of Illinois at Chicago, USA. . AIMS Neuroscience 2017;4:52-70. [DOI: 10.3934/neuroscience.2017.1.52] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
560 Bergado Acosta JR, Schneider M, Fendt M. Intra-accumbal blockade of endocannabinoid CB1 receptors impairs learning but not retention of conditioned relief. Neurobiology of Learning and Memory 2017;144:48-52. [DOI: 10.1016/j.nlm.2017.06.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
561 Fotio Y, Ciccocioppo R, Piomelli D. N-acylethanolamine acid amidase (NAAA) inhibition decreases the motivation for alcohol in Marchigian Sardinian alcohol-preferring rats. Psychopharmacology (Berl) 2021;238:249-58. [PMID: 33037452 DOI: 10.1007/s00213-020-05678-7] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
562 Fifel K, Deboer T. Heterogenous electrophysiological responses of functionally distinct striatal subregions to circadian and sleep-related homeostatic processes. Sleep 2021:zsab230. [PMID: 34516641 DOI: 10.1093/sleep/zsab230] [Reference Citation Analysis]
563 Gil M, Nguyen N, Mcdonald M, Albers HE. Social reward: interactions with social status, social communication, aggression, and associated neural activation in the ventral tegmental area. Eur J Neurosci 2013;38:2308-18. [DOI: 10.1111/ejn.12216] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
564 Quintana DS, Alvares GA, Hickie IB, Guastella AJ. Do delivery routes of intranasally administered oxytocin account for observed effects on social cognition and behavior? A two-level model. Neurosci Biobehav Rev 2015;49:182-92. [PMID: 25526824 DOI: 10.1016/j.neubiorev.2014.12.011] [Cited by in Crossref: 101] [Cited by in F6Publishing: 94] [Article Influence: 12.6] [Reference Citation Analysis]
565 Carr KD, Chau LS, Cabeza de Vaca S, Gustafson K, Stouffer M, Tukey DS, Restituito S, Ziff EB. AMPA receptor subunit GluR1 downstream of D-1 dopamine receptor stimulation in nucleus accumbens shell mediates increased drug reward magnitude in food-restricted rats. Neuroscience 2010;165:1074-86. [PMID: 19931598 DOI: 10.1016/j.neuroscience.2009.11.015] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 2.8] [Reference Citation Analysis]
566 Brudzynski SM. Ethotransmission: communication of emotional states through ultrasonic vocalization in rats. Current Opinion in Neurobiology 2013;23:310-7. [DOI: 10.1016/j.conb.2013.01.014] [Cited by in Crossref: 248] [Cited by in F6Publishing: 221] [Article Influence: 27.6] [Reference Citation Analysis]
567 Staffend NA, Hedges VL, Chemel BR, Watts VJ, Meisel RL. Cell-type specific increases in female hamster nucleus accumbens spine density following female sexual experience. Brain Struct Funct 2014;219:2071-81. [PMID: 23934655 DOI: 10.1007/s00429-013-0624-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
568 Zhou G, Lane G, Cooper SL, Kahnt T, Zelano C. Characterizing functional pathways of the human olfactory system. Elife 2019;8:e47177. [PMID: 31339489 DOI: 10.7554/eLife.47177] [Cited by in Crossref: 42] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
569 Borer KT. Counterregulation of insulin by leptin as key component of autonomic regulation of body weight. World J Diabetes 2014; 5(5): 606-629 [PMID: 25317239 DOI: 10.4239/wjd.v5.i5.606] [Cited by in CrossRef: 25] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
570 Saddoris MP, Carelli RM. Cocaine self-administration abolishes associative neural encoding in the nucleus accumbens necessary for higher-order learning. Biol Psychiatry 2014;75:156-64. [PMID: 24035479 DOI: 10.1016/j.biopsych.2013.07.037] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
571 Lüscher C, Malenka RC. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 2011;69:650-63. [PMID: 21338877 DOI: 10.1016/j.neuron.2011.01.017] [Cited by in Crossref: 616] [Cited by in F6Publishing: 605] [Article Influence: 56.0] [Reference Citation Analysis]
572 Burton AC, Bissonette GB, Lichtenberg NT, Kashtelyan V, Roesch MR. Ventral striatum lesions enhance stimulus and response encoding in dorsal striatum. Biol Psychiatry 2014;75:132-9. [PMID: 23790313 DOI: 10.1016/j.biopsych.2013.05.023] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
573 Blaess S, Ang SL. Genetic control of midbrain dopaminergic neuron development. Wiley Interdiscip Rev Dev Biol 2015;4:113-34. [PMID: 25565353 DOI: 10.1002/wdev.169] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 6.1] [Reference Citation Analysis]
574 Orzeł-Gryglewska J, Matulewicz P, Jurkowlaniec E. Brainstem system of hippocampal theta induction: The role of the ventral tegmental area. Synapse 2015;69:553-75. [PMID: 26234671 DOI: 10.1002/syn.21843] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
575 Mahler SV, Vazey EM, Beckley JT, Keistler CR, McGlinchey EM, Kaufling J, Wilson SP, Deisseroth K, Woodward JJ, Aston-Jones G. Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 2014;17:577-85. [PMID: 24584054 DOI: 10.1038/nn.3664] [Cited by in Crossref: 203] [Cited by in F6Publishing: 199] [Article Influence: 25.4] [Reference Citation Analysis]
576 Henschen CW, Palmiter RD, Darvas M. Restoration of dopamine signaling to the dorsal striatum is sufficient for aspects of active maternal behavior in female mice. Endocrinology 2013;154:4316-27. [PMID: 23959937 DOI: 10.1210/en.2013-1257] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
577 Zhang Z, Zhang H, Wen P, Zhu X, Wang L, Liu Q, Wang J, He X, Wang H, Xu F. Whole-Brain Mapping of the Inputs and Outputs of the Medial Part of the Olfactory Tubercle. Front Neural Circuits 2017;11:52. [PMID: 28804450 DOI: 10.3389/fncir.2017.00052] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 5.6] [Reference Citation Analysis]
578 Poulin JF, Caronia G, Hofer C, Cui Q, Helm B, Ramakrishnan C, Chan CS, Dombeck DA, Deisseroth K, Awatramani R. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat Neurosci 2018;21:1260-71. [PMID: 30104732 DOI: 10.1038/s41593-018-0203-4] [Cited by in Crossref: 126] [Cited by in F6Publishing: 103] [Article Influence: 31.5] [Reference Citation Analysis]
579 Silkstone M, Brudzynski SM. Intracerebral injection of R-(-)-Apomorphine into the nucleus accumbens decreased carbachol-induced 22-kHz ultrasonic vocalizations in rats. Behav Brain Res 2019;364:264-73. [PMID: 30690109 DOI: 10.1016/j.bbr.2019.01.044] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
580 Liu ZH, Shin R, Ikemoto S. Dual role of medial A10 dopamine neurons in affective encoding. Neuropsychopharmacology 2008;33:3010-20. [PMID: 18256592 DOI: 10.1038/npp.2008.4] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 3.6] [Reference Citation Analysis]
581 Moreines JL, Owrutsky ZL, Grace AA. Involvement of Infralimbic Prefrontal Cortex but not Lateral Habenula in Dopamine Attenuation After Chronic Mild Stress. Neuropsychopharmacology 2017;42:904-13. [PMID: 27813530 DOI: 10.1038/npp.2016.249] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 7.5] [Reference Citation Analysis]
582 Tobiansky DJ, Will RG, Lominac KD, Turner JM, Hattori T, Krishnan K, Martz JR, Nutsch VL, Dominguez JM. Estradiol in the Preoptic Area Regulates the Dopaminergic Response to Cocaine in the Nucleus Accumbens. Neuropsychopharmacology 2016;41:1897-906. [PMID: 26647972 DOI: 10.1038/npp.2015.360] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 5.4] [Reference Citation Analysis]
583 Blaiss CA, Janak PH. The nucleus accumbens core and shell are critical for the expression, but not the consolidation, of Pavlovian conditioned approach. Behav Brain Res 2009;200:22-32. [PMID: 19159648 DOI: 10.1016/j.bbr.2008.12.024] [Cited by in F6Publishing: 54] [Reference Citation Analysis]
584 Segovia KN, Vontell R, López-Cruz L, Salamone JD, Correa M. c-Fos immunoreactivity in prefrontal, basal ganglia and limbic areas of the rat brain after central and peripheral administration of ethanol and its metabolite acetaldehyde. Front Behav Neurosci 2013;7:48. [PMID: 23745109 DOI: 10.3389/fnbeh.2013.00048] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
585 Wright KN, Wesson DW. The tubular striatum and nucleus accumbens distinctly represent reward-taking and reward-seeking. J Neurophysiol 2021;125:166-83. [PMID: 33174477 DOI: 10.1152/jn.00495.2020] [Reference Citation Analysis]
586 Porter-Stransky KA, Wescott SA, Hershman M, Badrinarayan A, Vander Weele CM, Lovic V, Aragona BJ. Cocaine must enter the brain to evoke unconditioned dopamine release within the nucleus accumbens shell. Neurosci Lett 2011;504:13-7. [PMID: 21888949 DOI: 10.1016/j.neulet.2011.08.028] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
587 Liu Y, Jean-Richard-Dit-Bressel P, Yau JO, Willing A, Prasad AA, Power JM, Killcross S, Clifford CWG, McNally GP. The Mesolimbic Dopamine Activity Signatures of Relapse to Alcohol-Seeking. J Neurosci 2020;40:6409-27. [PMID: 32669355 DOI: 10.1523/JNEUROSCI.0724-20.2020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
588 Bockman CS, Zeng W, Hall J, Mittelstet B, Schwarzkopf L, Stairs DJ. Nicotine drug discrimination and nicotinic acetylcholine receptors in differentially reared rats. Psychopharmacology 2018;235:1415-26. [DOI: 10.1007/s00213-018-4850-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
589 Beloate LN, Coolen LM. Influences of social reward experience on behavioral responses to drugs of abuse: Review of shared and divergent neural plasticity mechanisms for sexual reward and drugs of abuse. Neuroscience & Biobehavioral Reviews 2017;83:356-72. [DOI: 10.1016/j.neubiorev.2017.10.024] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
590 Sinani A, Vassi A, Tsotsokou G, Nikolakopoulou M, Kouvelas ED, Mitsacos A. Early life stress influences basal ganglia dopamine receptors and novel object recognition of adolescent and adult rats. IBRO Neuroscience Reports 2022. [DOI: 10.1016/j.ibneur.2022.04.008] [Reference Citation Analysis]
591 Crittenden J, Graybiel A. Disease-Associated Changes in the Striosome and Matrix Compartments of the Dorsal Striatum. Handbook of Basal Ganglia Structure and Function, Second Edition. Elsevier; 2016. pp. 783-802. [DOI: 10.1016/b978-0-12-802206-1.00039-8] [Cited by in Crossref: 7] [Article Influence: 1.2] [Reference Citation Analysis]
592 Gryksa K, Neumann ID. Consequences of pandemic-associated social restrictions: Role of social support and the oxytocin system. Psychoneuroendocrinology 2022;135:105601. [PMID: 34837776 DOI: 10.1016/j.psyneuen.2021.105601] [Reference Citation Analysis]
593 Li Y, Jiang Q, Wang L. Appetite Regulation of TLR4-Induced Inflammatory Signaling. Front Endocrinol (Lausanne) 2021;12:777997. [PMID: 34899611 DOI: 10.3389/fendo.2021.777997] [Reference Citation Analysis]
594 Engel JA, Jerlhag E. Alcohol. Dopamine. Elsevier; 2014. pp. 201-33. [DOI: 10.1016/b978-0-444-63425-2.00009-x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
595 Pavan B, Dalpiaz A. Odorants could elicit repair processes in melanized neuronal and skin cells. Neural Regen Res 2017;12:1401-4. [PMID: 29089976 DOI: 10.4103/1673-5374.215246] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
596 Rampin O, Bellier C, Maurin Y. Electrophysiological responses of rat olfactory tubercle neurons to biologically relevant odours. Eur J Neurosci 2012;35:97-105. [PMID: 22118424 DOI: 10.1111/j.1460-9568.2011.07940.x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
597 Calipari ES, Ferris MJ, Salahpour A, Caron MG, Jones SR. Methylphenidate amplifies the potency and reinforcing effects of amphetamines by increasing dopamine transporter expression. Nat Commun 2013;4:2720. [PMID: 24193139 DOI: 10.1038/ncomms3720] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 5.3] [Reference Citation Analysis]
598 Smiley JF, Bleiwas C, Canals-Baker S, Williams SZ, Sears R, Teixeira CM, Wilson DA, Saito M. Neonatal ethanol causes profound reduction of cholinergic cell number in the basal forebrain of adult animals. Alcohol 2021;97:1-11. [PMID: 34464696 DOI: 10.1016/j.alcohol.2021.08.005] [Reference Citation Analysis]
599 Tan S, Lam WP, Wai MS, Yu WH, Yew DT. Chronic ketamine administration modulates midbrain dopamine system in mice. PLoS One 2012;7:e43947. [PMID: 22937133 DOI: 10.1371/journal.pone.0043947] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 4.6] [Reference Citation Analysis]
600 Melchior JR, Ferris MJ, Stuber GD, Riddle DR, Jones SR. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release. J Neurochem 2015;134:833-44. [PMID: 26011081 DOI: 10.1111/jnc.13177] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 5.1] [Reference Citation Analysis]
601 Xia X, Fan L, Cheng C, Eickhoff SB, Chen J, Li H, Jiang T. Multimodal connectivity-based parcellation reveals a shell-core dichotomy of the human nucleus accumbens. Hum Brain Mapp 2017;38:3878-98. [PMID: 28548226 DOI: 10.1002/hbm.23636] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
602 Cansler HL, Wright KN, Stetzik LA, Wesson DW. Neurochemical organization of the ventral striatum's olfactory tubercle. J Neurochem 2020;152:425-48. [PMID: 31755104 DOI: 10.1111/jnc.14919] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
603 Tomaszycki ML, Aulerich KE, Bowen SE. Repeated toluene exposure increases c-Fos in catecholaminergic cells of the nucleus accumbens shell. Neurotoxicol Teratol 2013;40:28-34. [PMID: 24036183 DOI: 10.1016/j.ntt.2013.09.001] [Cited by in Crossref: 4] [Article Influence: 0.4] [Reference Citation Analysis]
604 Hartung H, Threlfell S, Cragg SJ. Nitric oxide donors enhance the frequency dependence of dopamine release in nucleus accumbens. Neuropsychopharmacology 2011;36:1811-22. [PMID: 21508928 DOI: 10.1038/npp.2011.62] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
605 Matthews GA, Tye KM. Neural mechanisms of social homeostasis. Ann N Y Acad Sci 2019;1457:5-25. [PMID: 30875095 DOI: 10.1111/nyas.14016] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 12.0] [Reference Citation Analysis]
606 Resendez SL, Dome M, Gormley G, Franco D, Nevárez N, Hamid AA, Aragona BJ. μ-Opioid receptors within subregions of the striatum mediate pair bond formation through parallel yet distinct reward mechanisms. J Neurosci 2013;33:9140-9. [PMID: 23699524 DOI: 10.1523/JNEUROSCI.4123-12.2013] [Cited by in Crossref: 58] [Cited by in F6Publishing: 43] [Article Influence: 6.4] [Reference Citation Analysis]
607 de Vaca SC, Peng XX, Concors S, Farin C, Lascu E, Carr KD. Effects of protein kinase A inhibitor and activator on rewarding effects of SKF-82958 microinjected into nucleus accumbens shell of ad libitum fed and food-restricted rats. Psychopharmacology (Berl) 2012;221:589-99. [PMID: 22143580 DOI: 10.1007/s00213-011-2602-z] [Reference Citation Analysis]
608 Mashhoon Y, Tsikitas LA, Kantak KM. Dissociable effects of cocaine-seeking behavior following D1 receptor activation and blockade within the caudal and rostral basolateral amygdala in rats. Eur J Neurosci 2009;29:1641-53. [PMID: 19419427 DOI: 10.1111/j.1460-9568.2009.06705.x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]
609 Kolpakova J, van der Vinne V, Giménez-Gómez P, Le T, You IJ, Zhao-Shea R, Velazquez-Marrero C, Tapper AR, Martin GE. Binge Alcohol Drinking Alters Synaptic Processing of Executive and Emotional Information in Core Nucleus Accumbens Medium Spiny Neurons. Front Cell Neurosci 2021;15:742207. [PMID: 34867199 DOI: 10.3389/fncel.2021.742207] [Reference Citation Analysis]
610 Zachek MK, Takmakov P, Park J, Wightman RM, McCarty GS. Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo. Biosens Bioelectron 2010;25:1179-85. [PMID: 19896822 DOI: 10.1016/j.bios.2009.10.008] [Cited by in Crossref: 59] [Cited by in F6Publishing: 49] [Article Influence: 4.5] [Reference Citation Analysis]
611 Brown A, Machan JT, Hayes L, Zervas M. Molecular organization and timing of Wnt1 expression define cohorts of midbrain dopamine neuron progenitors in vivo. J Comp Neurol 2011;519:2978-3000. [PMID: 21713770 DOI: 10.1002/cne.22710] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
612 Hull E, Rodríguez-manzo G. Male Sexual Behavior. Hormones, Brain and Behavior. Elsevier; 2009. pp. 5-66. [DOI: 10.1016/b978-008088783-8.00001-2] [Cited by in Crossref: 22] [Article Influence: 1.7] [Reference Citation Analysis]
613 Iñiguez SD, Warren BL, Neve RL, Russo SJ, Nestler EJ, Bolaños-Guzmán CA. Viral-mediated expression of extracellular signal-regulated kinase-2 in the ventral tegmental area modulates behavioral responses to cocaine. Behav Brain Res 2010;214:460-4. [PMID: 20561901 DOI: 10.1016/j.bbr.2010.05.040] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 1.3] [Reference Citation Analysis]
614 Wang Y, Zhang Y, Hou C, Liu M. Magnetic Fe 3 O 4 @MOFs decorated graphene nanocomposites as novel electrochemical sensor for ultrasensitive detection of dopamine. RSC Adv 2015;5:98260-8. [DOI: 10.1039/c5ra20996j] [Cited by in Crossref: 45] [Cited by in F6Publishing: 1] [Article Influence: 6.4] [Reference Citation Analysis]
615 Vaseghi S, Zarrabian S, Haghparast A. Reviewing the role of the orexinergic system and stressors in modulating mood and reward-related behaviors. Neurosci Biobehav Rev 2021;133:104516. [PMID: 34973302 DOI: 10.1016/j.neubiorev.2021.104516] [Reference Citation Analysis]
616 Hu P, van Dam A, Wang Y, Lucassen PJ, Zhou J. Retinoic acid and depressive disorders: Evidence and possible neurobiological mechanisms. Neuroscience & Biobehavioral Reviews 2020;112:376-91. [DOI: 10.1016/j.neubiorev.2020.02.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
617 Crittenden JR, Graybiel AM. Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 2011;5:59. [PMID: 21941467 DOI: 10.3389/fnana.2011.00059] [Cited by in Crossref: 243] [Cited by in F6Publishing: 243] [Article Influence: 22.1] [Reference Citation Analysis]
618 Valdivia S, Patrone A, Reynaldo M, Perello M. Acute high fat diet consumption activates the mesolimbic circuit and requires orexin signaling in a mouse model. PLoS One 2014;9:e87478. [PMID: 24466352 DOI: 10.1371/journal.pone.0087478] [Cited by in Crossref: 66] [Cited by in F6Publishing: 62] [Article Influence: 8.3] [Reference Citation Analysis]
619 Shin R, Qin M, Liu ZH, Ikemoto S. Intracranial self-administration of MDMA into the ventral striatum of the rat: differential roles of the nucleus accumbens shell, core, and olfactory tubercle. Psychopharmacology (Berl) 2008;198:261-70. [PMID: 18389222 DOI: 10.1007/s00213-008-1131-x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 1.6] [Reference Citation Analysis]
620 Zlebnik NE, Cheer JF. Drug-Induced Alterations of Endocannabinoid-Mediated Plasticity in Brain Reward Regions. J Neurosci 2016;36:10230-8. [PMID: 27707960 DOI: 10.1523/JNEUROSCI.1712-16.2016] [Cited by in Crossref: 34] [Cited by in F6Publishing: 18] [Article Influence: 6.8] [Reference Citation Analysis]
621 García-Pérez D, López-Bellido R, Hidalgo JM, Rodríguez RE, Laorden ML, Núñez C, Milanés MV. Morphine regulates Argonaute 2 and TH expression and activity but not miR-133b in midbrain dopaminergic neurons. Addict Biol 2015;20:104-19. [PMID: 23927484 DOI: 10.1111/adb.12083] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
622 Navratilova E, Xie JY, King T, Porreca F. Evaluation of reward from pain relief. Ann N Y Acad Sci 2013;1282:1-11. [PMID: 23496247 DOI: 10.1111/nyas.12095] [Cited by in Crossref: 82] [Cited by in F6Publishing: 75] [Article Influence: 9.1] [Reference Citation Analysis]
623 Byrne KA, Patrick CJ, Worthy DA. Striatal Dopamine, Externalizing Proneness, and Substance Abuse: Effects on Wanting and Learning during Reward-Based Decision Making. Clin Psychol Sci 2016;4:760-74. [PMID: 27833790 DOI: 10.1177/2167702615618163] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
624 Franco-Pérez J, Manjarrez-Marmolejo J, Ballesteros-Zebadúa P, Neri-Santos A, Montes S, Suarez-Rivera N, Hernández-Cerón M, Pérez-Koldenkova V. Chronic Consumption of Fructose Induces Behavioral Alterations by Increasing Orexin and Dopamine Levels in the Rat Brain. Nutrients 2018;10:E1722. [PMID: 30423806 DOI: 10.3390/nu10111722] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
625 Murata K, Kanno M, Ieki N, Mori K, Yamaguchi M. Mapping of Learned Odor-Induced Motivated Behaviors in the Mouse Olfactory Tubercle. J Neurosci 2015;35:10581-99. [PMID: 26203152 DOI: 10.1523/JNEUROSCI.0073-15.2015] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 5.4] [Reference Citation Analysis]
626 Murata K. Hypothetical Roles of the Olfactory Tubercle in Odor-Guided Eating Behavior. Front Neural Circuits 2020;14:577880. [PMID: 33262693 DOI: 10.3389/fncir.2020.577880] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
627 Salinas AG, Davis MI, Lovinger DM, Mateo Y. Dopamine dynamics and cocaine sensitivity differ between striosome and matrix compartments of the striatum. Neuropharmacology 2016;108:275-83. [PMID: 27036891 DOI: 10.1016/j.neuropharm.2016.03.049] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]
628 Park J, Wakabayashi KT, Szalkowski C, Bhimani RV. Heterogeneous extracellular dopamine regulation in the subregions of the olfactory tubercle. J Neurochem 2017;142:365-77. [PMID: 28498499 DOI: 10.1111/jnc.14069] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
629 Nikulina EM, Johnston CE, Wang J, Hammer RP Jr. Neurotrophins in the ventral tegmental area: Role in social stress, mood disorders and drug abuse. Neuroscience 2014;282:122-38. [PMID: 24875178 DOI: 10.1016/j.neuroscience.2014.05.028] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 3.5] [Reference Citation Analysis]
630 Mori K, Kim J, Sasaki K. Electrophysiological effects of orexin-B and dopamine on rat nucleus accumbens shell neurons in vitro. Peptides 2011;32:246-52. [DOI: 10.1016/j.peptides.2010.10.023] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
631 Fakhoury M, Rompré PP, Boye SM. Role of the dorsal diencephalic conduction system in the brain reward circuitry. Behav Brain Res 2016;296:431-41. [PMID: 26515931 DOI: 10.1016/j.bbr.2015.10.038] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
632 Redila V, Kinzel C, Jo YS, Puryear CB, Mizumori SJ. A role for the lateral dorsal tegmentum in memory and decision neural circuitry. Neurobiol Learn Mem 2015;117:93-108. [PMID: 24910282 DOI: 10.1016/j.nlm.2014.05.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
633 Mohammadi M, Bergado-Acosta JR, Fendt M. Relief learning is distinguished from safety learning by the requirement of the nucleus accumbens. Behav Brain Res 2014;272:40-5. [PMID: 24995614 DOI: 10.1016/j.bbr.2014.06.053] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
634 Callaghan CK, Rouine J, O'mara SM. Potential roles for opioid receptors in motivation and major depressive disorder. The Opioid System as the Interface between the Brain’s Cognitive and Motivational Systems. Elsevier; 2018. pp. 89-119. [DOI: 10.1016/bs.pbr.2018.07.009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
635 Spoelder M, Hesseling P, Styles M, Baars AM, Lozeman-van 't Klooster JG, Lesscher HM, Vanderschuren LJ. Dopaminergic neurotransmission in ventral and dorsal striatum differentially modulates alcohol reinforcement. Eur J Neurosci 2017;45:147-58. [PMID: 27521051 DOI: 10.1111/ejn.13358] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
636 Gallo EF. Disentangling the diverse roles of dopamine D2 receptors in striatal function and behavior. Neurochem Int 2019;125:35-46. [PMID: 30716356 DOI: 10.1016/j.neuint.2019.01.022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
637 Chang SE, Holland PC. Effects of nucleus accumbens core and shell lesions on autoshaped lever-pressing. Behav Brain Res 2013;256:36-42. [PMID: 23933141 DOI: 10.1016/j.bbr.2013.07.046] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 2.8] [Reference Citation Analysis]
638 Kruyer A, Scofield MD. Astrocytes in Addictive Disorders. Adv Neurobiol 2021;26:231-54. [PMID: 34888837 DOI: 10.1007/978-3-030-77375-5_10] [Reference Citation Analysis]
639 Brandman T, Malach R, Simony E. The surprising role of the default mode network in naturalistic perception. Commun Biol 2021;4:79. [PMID: 33469113 DOI: 10.1038/s42003-020-01602-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
640 Costumero V, Barrós-Loscertales A, Fuentes P, Rosell-Negre P, Bustamante JC, Ávila C. BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations. Brain Imaging Behav 2016;10:869-79. [PMID: 26489979 DOI: 10.1007/s11682-015-9466-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
641 Kokane SS, Perrotti LI. Sex Differences and the Role of Estradiol in Mesolimbic Reward Circuits and Vulnerability to Cocaine and Opiate Addiction. Front Behav Neurosci 2020;14:74. [PMID: 32508605 DOI: 10.3389/fnbeh.2020.00074] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
642 Ely BA, Liu Q, DeWitt SJ, Mehra LM, Alonso CM, Gabbay V. Data-driven parcellation and graph theory analyses to study adolescent mood and anxiety symptoms. Transl Psychiatry 2021;11:266. [PMID: 33941762 DOI: 10.1038/s41398-021-01321-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
643 Roelofs TJM, Verharen JPH, van Tilborg GAF, Boekhoudt L, van der Toorn A, de Jong JW, Luijendijk MCM, Otte WM, Adan RAH, Dijkhuizen RM. A novel approach to map induced activation of neuronal networks using chemogenetics and functional neuroimaging in rats: A proof-of-concept study on the mesocorticolimbic system. Neuroimage 2017;156:109-18. [PMID: 28502844 DOI: 10.1016/j.neuroimage.2017.05.021] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 5.2] [Reference Citation Analysis]
644 Allison DW, Wilcox RS, Ellefsen KL, Askew CE, Hansen DM, Wilcox JD, Sandoval SS, Eggett DL, Yanagawa Y, Steffensen SC. Mefloquine effects on ventral tegmental area dopamine and GABA neuron inhibition: a physiologic role for connexin-36 GAP junctions. Synapse 2011;65:804-13. [PMID: 21218452 DOI: 10.1002/syn.20907] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
645 Saalfield J, Spear L. Fos activation patterns related to acute ethanol and conditioned taste aversion in adolescent and adult rats. Alcohol 2019;78:57-68. [PMID: 30797833 DOI: 10.1016/j.alcohol.2019.02.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
646 Figlewicz DP, Bennett JL, Aliakbari S, Zavosh A, Sipols AJ. Insulin acts at different CNS sites to decrease acute sucrose intake and sucrose self-administration in rats. Am J Physiol Regul Integr Comp Physiol 2008;295:R388-94. [PMID: 18525010 DOI: 10.1152/ajpregu.90334.2008] [Cited by in Crossref: 71] [Cited by in F6Publishing: 84] [Article Influence: 5.1] [Reference Citation Analysis]
647 Leemburg S, Canonica T, Luft A. Motor skill learning and reward consumption differentially affect VTA activation. Sci Rep 2018;8:687. [PMID: 29330488 DOI: 10.1038/s41598-017-18716-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
648 Carr KD, Cabeza de Vaca S, Sun Y, Chau LS. Reward-potentiating effects of D-1 dopamine receptor agonist and AMPAR GluR1 antagonist in nucleus accumbens shell and their modulation by food restriction. Psychopharmacology (Berl) 2009;202:731-43. [PMID: 18841347 DOI: 10.1007/s00213-008-1355-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 1.9] [Reference Citation Analysis]
649 Lazarus M, Urade Y. Adenosinergic Regulation of Sleep–Wake Behavior in the Basal Ganglia. In: Morelli M, Simola N, Wardas J, editors. The Adenosinergic System. Cham: Springer International Publishing; 2015. pp. 309-26. [DOI: 10.1007/978-3-319-20273-0_15] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
650 Metzger M, Souza R, Lima LB, Bueno D, Gonçalves L, Sego C, Donato J Jr, Shammah-Lagnado SJ. Habenular connections with the dopaminergic and serotonergic system and their role in stress-related psychiatric disorders. Eur J Neurosci 2021;53:65-88. [PMID: 31833616 DOI: 10.1111/ejn.14647] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
651 van Kerkhof LW, Trezza V, Mulder T, Gao P, Voorn P, Vanderschuren LJ. Cellular activation in limbic brain systems during social play behaviour in rats. Brain Struct Funct 2014;219:1181-211. [PMID: 23670540 DOI: 10.1007/s00429-013-0558-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 35] [Article Influence: 1.3] [Reference Citation Analysis]
652 Norbury A, Husain M. Sensation-seeking: Dopaminergic modulation and risk for psychopathology. Behavioural Brain Research 2015;288:79-93. [DOI: 10.1016/j.bbr.2015.04.015] [Cited by in Crossref: 65] [Cited by in F6Publishing: 46] [Article Influence: 9.3] [Reference Citation Analysis]
653 Kisner A, Stockmann R, Jansen M, Yegin U, Offenhäusser A, Kubota LT, Mourzina Y. Sensing small neurotransmitter–enzyme interaction with nanoporous gated ion-sensitive field effect transistors. Biosensors and Bioelectronics 2012;31:157-63. [DOI: 10.1016/j.bios.2011.10.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
654 Stievenard A, Méquinion M, Andrews ZB, Destée A, Chartier-harlin M, Viltart O, Vanbesien-mailliot CC. Is there a role for ghrelin in central dopaminergic systems? Focus on nigrostriatal and mesocorticolimbic pathways. Neuroscience & Biobehavioral Reviews 2017;73:255-75. [DOI: 10.1016/j.neubiorev.2016.11.021] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
655 Loiodice S, Winlow P, Dremier S, Hanon E, Dardou D, Ouachikh O, Hafidi A, da Costa AN, Durif F. Pramipexole induced place preference after L-dopa therapy and nigral dopaminergic loss: linking behavior to transcriptional modifications. Psychopharmacology (Berl) 2017;234:15-27. [PMID: 27614895 DOI: 10.1007/s00213-016-4430-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
656 Blum K, Febo M, Fahlke C, Archer T, Berggren U, Demetrovics Z, Dushaj K, Badgaiyan RD. Hypothesizing Balancing Endorphinergic and Glutaminergic Systems to Treat and Prevent Relapse to Reward Deficiency Behaviors: Coupling D-Phenylalanine and N-Acetyl-L-Cysteine (NAC) as a Novel Therapeutic Modality. Clin Med Rev Case Rep 2015;2:076. [PMID: 26900600 DOI: 10.23937/2378-3656/1410076] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.1] [Reference Citation Analysis]
657 Tooley J, Marconi L, Alipio JB, Matikainen-Ankney B, Georgiou P, Kravitz AV, Creed MC. Glutamatergic Ventral Pallidal Neurons Modulate Activity of the Habenula-Tegmental Circuitry and Constrain Reward Seeking. Biol Psychiatry 2018;83:1012-23. [PMID: 29452828 DOI: 10.1016/j.biopsych.2018.01.003] [Cited by in Crossref: 50] [Cited by in F6Publishing: 40] [Article Influence: 12.5] [Reference Citation Analysis]
658 Porter-Stransky KA, Seiler JL, Day JJ, Aragona BJ. Development of behavioral preferences for the optimal choice following unexpected reward omission is mediated by a reduction of D2-like receptor tone in the nucleus accumbens. Eur J Neurosci 2013;38:2572-88. [PMID: 23692625 DOI: 10.1111/ejn.12253] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
659 Ballester J, Baker AK, Martikainen IK, Koppelmans V, Zubieta JK, Love TM. Risk for opioid misuse in chronic pain patients is associated with endogenous opioid system dysregulation. Transl Psychiatry 2022;12:20. [PMID: 35022382 DOI: 10.1038/s41398-021-01775-z] [Reference Citation Analysis]
660 Ilango A, Kesner AJ, Broker CJ, Wang DV, Ikemoto S. Phasic excitation of ventral tegmental dopamine neurons potentiates the initiation of conditioned approach behavior: parametric and reinforcement-schedule analyses. Front Behav Neurosci 2014;8:155. [PMID: 24834037 DOI: 10.3389/fnbeh.2014.00155] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
661 Gretenkord S, Olthof BMJ, Stylianou M, Rees A, Gartside SE, LeBeau FEN. Electrical stimulation of the ventral tegmental area evokes sleep-like state transitions under urethane anaesthesia in the rat medial prefrontal cortex via dopamine D1 -like receptors. Eur J Neurosci 2020;52:2915-30. [PMID: 31891427 DOI: 10.1111/ejn.14665] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
662 Chartoff EH, Connery HS. It's MORe exciting than mu: crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system. Front Pharmacol 2014;5:116. [PMID: 24904419 DOI: 10.3389/fphar.2014.00116] [Cited by in Crossref: 68] [Cited by in F6Publishing: 59] [Article Influence: 8.5] [Reference Citation Analysis]
663 Hoekzema E, Tamnes CK, Berns P, Barba-Müller E, Pozzobon C, Picado M, Lucco F, Martínez-García M, Desco M, Ballesteros A, Crone EA, Vilarroya O, Carmona S. Becoming a mother entails anatomical changes in the ventral striatum of the human brain that facilitate its responsiveness to offspring cues. Psychoneuroendocrinology 2020;112:104507. [PMID: 31757430 DOI: 10.1016/j.psyneuen.2019.104507] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
664 Koster R, Seow TX, Dolan RJ, Düzel E. Stimulus Novelty Energizes Actions in the Absence of Explicit Reward. PLoS One 2016;11:e0159120. [PMID: 27415631 DOI: 10.1371/journal.pone.0159120] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
665 Lin R, Liang J, Wang R, Yan T, Zhou Y, Liu Y, Feng Q, Sun F, Li Y, Li A, Gong H, Luo M. The Raphe Dopamine System Controls the Expression of Incentive Memory. Neuron 2020;106:498-514.e8. [PMID: 32145184 DOI: 10.1016/j.neuron.2020.02.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
666 Ungless MA, Grace AA. Are you or aren't you? Challenges associated with physiologically identifying dopamine neurons. Trends Neurosci 2012;35:422-30. [PMID: 22459161 DOI: 10.1016/j.tins.2012.02.003] [Cited by in Crossref: 238] [Cited by in F6Publishing: 247] [Article Influence: 23.8] [Reference Citation Analysis]
667 Baltazar RM, Coolen LM, Webb IC. Diurnal rhythms in neural activation in the mesolimbic reward system: critical role of the medial prefrontal cortex. Eur J Neurosci 2013;38:2319-27. [PMID: 23617901 DOI: 10.1111/ejn.12224] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 3.1] [Reference Citation Analysis]
668 McCutcheon JE, Cone JJ, Sinon CG, Fortin SM, Kantak PA, Witten IB, Deisseroth K, Stuber GD, Roitman MF. Optical suppression of drug-evoked phasic dopamine release. Front Neural Circuits 2014;8:114. [PMID: 25278845 DOI: 10.3389/fncir.2014.00114] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
669 Linke SE, Rutledge T, Myers MG. Intermittent exercise in response to cigarette cravings in the context of an Internet-based smoking cessation program. Ment Health Phys Act 2012;5:85-92. [PMID: 23956792 DOI: 10.1016/j.mhpa.2012.02.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
670 Oakman SA, Faris PL, Kerr PE, Cozzari C, Hartman BK. Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 1995;15:5859-69. [PMID: 7666171 [PMID: 7666171 DOI: 10.1523/jneurosci.15-09-05859.1995] [Cited by in Crossref: 276] [Article Influence: 10.2] [Reference Citation Analysis]
671 Rothkirch M, Schmack K, Schlagenhauf F, Sterzer P. Implicit motivational value and salience are processed in distinct areas of orbitofrontal cortex. Neuroimage 2012;62:1717-25. [PMID: 22728149 DOI: 10.1016/j.neuroimage.2012.06.016] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 3.7] [Reference Citation Analysis]
672 Darvas M, Fadok JP, Palmiter RD. Requirement of dopamine signaling in the amygdala and striatum for learning and maintenance of a conditioned avoidance response. Learn Mem 2011;18:136-43. [PMID: 21325435 DOI: 10.1101/lm.2041211] [Cited by in Crossref: 79] [Cited by in F6Publishing: 85] [Article Influence: 7.2] [Reference Citation Analysis]
673 Herin DV, Bubar MJ, Seitz PK, Thomas ML, Hillman GR, Tarasenko YI, Wu P, Cunningham KA. Elevated Expression of Serotonin 5-HT(2A) Receptors in the Rat Ventral Tegmental Area Enhances Vulnerability to the Behavioral Effects of Cocaine. Front Psychiatry 2013;4:2. [PMID: 23390419 DOI: 10.3389/fpsyt.2013.00002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
674 Enomoto K, Matsumoto N, Inokawa H, Kimura M, Yamada H. Topographic distinction in long-term value signals between presumed dopamine neurons and presumed striatal projection neurons in behaving monkeys. Sci Rep 2020;10:8912. [PMID: 32488042 DOI: 10.1038/s41598-020-65914-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
675 Jones JA, Zuhlsdorff K, Dalley JW. Neurochemical substrates linked to impulsive and compulsive phenotypes in addiction: A preclinical perspective. J Neurochem 2021;157:1525-46. [PMID: 33931861 DOI: 10.1111/jnc.15380] [Reference Citation Analysis]
676 Carlson KS, Dillione MR, Wesson DW. Odor- and state-dependent olfactory tubercle local field potential dynamics in awake rats. J Neurophysiol 2014;111:2109-23. [PMID: 24598519 DOI: 10.1152/jn.00829.2013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
677 Duchesne V, Boye SM. Differential contribution of mesoaccumbens and mesohabenular dopamine to intracranial self-stimulation. Neuropharmacology 2013;70:43-50. [DOI: 10.1016/j.neuropharm.2013.01.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
678 Belliveau S, Kang W, Bovaird S, Hamadjida A, Bédard D, Dancause N, Stroh T, Huot P. Stereological investigation of 5-HT3 receptors in the substantia nigra and dorsal raphe nucleus in the rat. J Chem Neuroanat 2021;111:101881. [PMID: 33160048 DOI: 10.1016/j.jchemneu.2020.101881] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
679 An T, Song Z, Wang JH. Molecular mechanism of reward treatment ameliorating chronic stress-induced depressive-like behavior assessed by sequencing miRNA and mRNA in medial prefrontal cortex. Biochem Biophys Res Commun 2020;528:520-7. [PMID: 32499113 DOI: 10.1016/j.bbrc.2020.05.158] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
680 Geha P, deAraujo I, Green B, Small DM. Decreased food pleasure and disrupted satiety signals in chronic low back pain. Pain 2014;155:712-22. [DOI: 10.1016/j.pain.2013.12.027] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
681 Nasrollahi S, Karimi S, Hamidi G, Naderitehrani M, Abed A. Blockade of the orexin 1 receptors in the nucleus accumbens' shell reversed the reduction effect of olanzapine on motivation for positive reinforcers. Neurosci Lett 2021;762:136137. [PMID: 34311049 DOI: 10.1016/j.neulet.2021.136137] [Reference Citation Analysis]
682 Lane TA, Boerner T, Bannerman DM, Kew JN, Tunbridge EM, Sharp T, Harrison PJ. Decreased striatal dopamine in group II metabotropic glutamate receptor (mGlu2/mGlu3) double knockout mice. BMC Neurosci 2013;14:102. [PMID: 24053122 DOI: 10.1186/1471-2202-14-102] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
683 Silkstone M, Brudzynski SM. Dissimilar interaction between dopaminergic and cholinergic systems in the initiation of emission of 50-kHz and 22-kHz vocalizations. Pharmacology Biochemistry and Behavior 2020;188:172815. [DOI: 10.1016/j.pbb.2019.172815] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
684 Budzinski J, Maschauer S, Kobayashi H, Couvineau P, Vogt H, Gmeiner P, Roggenhofer A, Prante O, Bouvier M, Weikert D. Bivalent ligands promote endosomal trafficking of the dopamine D3 receptor-neurotensin receptor 1 heterodimer. Commun Biol 2021;4:1062. [PMID: 34508168 DOI: 10.1038/s42003-021-02574-4] [Reference Citation Analysis]
685 Nehrenberg DL, Sheikh A, Ghashghaei HT. Identification of neuronal loci involved with displays of affective aggression in NC900 mice. Brain Struct Funct 2013;218:1033-49. [PMID: 22847115 DOI: 10.1007/s00429-012-0445-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
686 Fuchs RA, Ramirez DR, Bell GH. Nucleus accumbens shell and core involvement in drug context-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2008;200:545-56. [PMID: 18597075 DOI: 10.1007/s00213-008-1234-4] [Cited by in Crossref: 74] [Cited by in F6Publishing: 89] [Article Influence: 5.3] [Reference Citation Analysis]
687 Lin CH, Hsiao CY, Hung CH, Lo YR, Lee CC, Su CJ, Lin HC, Ko FH, Huang TY, Yang YS. Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor. Chem Commun (Camb) 2008;:5749-51. [PMID: 19009069 DOI: 10.1039/b812968a] [Cited by in Crossref: 55] [Cited by in F6Publishing: 37] [Article Influence: 3.9] [Reference Citation Analysis]
688 Walls MK, Race N, Zheng L, Vega-Alvarez SM, Acosta G, Park J, Shi R. Structural and biochemical abnormalities in the absence of acute deficits in mild primary blast-induced head trauma. J Neurosurg 2016;124:675-86. [PMID: 26295915 DOI: 10.3171/2015.1.JNS141571] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
689 Luft AR, Schwarz S. Dopaminergic signals in primary motor cortex. Int J Dev Neurosci 2009;27:415-21. [PMID: 19446627 DOI: 10.1016/j.ijdevneu.2009.05.004] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 3.7] [Reference Citation Analysis]
690 Dudek M, Hyytiä P. Alcohol preference and consumption are controlled by the caudal linear nucleus in alcohol-preferring rats. Eur J Neurosci 2016;43:1440-8. [PMID: 27038036 DOI: 10.1111/ejn.13245] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
691 Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D, Katovich K, Mehta H, Patenaude B, Ramakrishnan C, Kalanithi P, Etkin A, Knutson B, Glover GH, Deisseroth K. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science 2016;351:aac9698. [PMID: 26722001 DOI: 10.1126/science.aac9698] [Cited by in Crossref: 273] [Cited by in F6Publishing: 251] [Article Influence: 45.5] [Reference Citation Analysis]
692 Xu X, Mughal MR, Scott Hall F, Perona MT, Pistell PJ, Lathia JD, Chigurupati S, Becker KG, Ladenheim B, Niklason LE, Uhl GR, Cadet JL, Mattson MP. Dietary restriction mitigates cocaine-induced alterations of olfactory bulb cellular plasticity and gene expression, and behavior. J Neurochem 2010;114:323-34. [PMID: 20456017 DOI: 10.1111/j.1471-4159.2010.06782.x]