1 |
Wiskerke J, James MH, Aston-Jones G. The orexin-1 receptor antagonist SB-334867 reduces motivation, but not inhibitory control, in a rat stop signal task. Brain Res 2020;1731:146222. [PMID: 31002819 DOI: 10.1016/j.brainres.2019.04.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
2 |
Panin F, Peana AT. Sleep and the Pharmacotherapy of Alcohol Use Disorder: Unfortunate Bedfellows. A Systematic Review With Meta-Analysis. Front Pharmacol 2019;10:1164. [PMID: 31680952 DOI: 10.3389/fphar.2019.01164] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
3 |
Hwang YT, Piguet O, Hodges JR, Grunstein R, Burrell JR. Sleep and orexin: A new paradigm for understanding behavioural-variant frontotemporal dementia? Sleep Medicine Reviews 2020;54:101361. [DOI: 10.1016/j.smrv.2020.101361] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
4 |
James MH, Bowrey HE, Stopper CM, Aston-Jones G. Demand elasticity predicts addiction endophenotypes and the therapeutic efficacy of an orexin/hypocretin-1 receptor antagonist in rats. Eur J Neurosci 2019;50:2602-12. [PMID: 30240516 DOI: 10.1111/ejn.14166] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 5.5] [Reference Citation Analysis]
|
5 |
McGinn MA, Pantazis CB, Tunstall BJ, Marchette RCN, Carlson ER, Said N, Koob GF, Vendruscolo LF. Drug addiction co-morbidity with alcohol: Neurobiological insights. Int Rev Neurobiol 2021;157:409-72. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
6 |
Gorka SM, Phan KL. Orexin modulation of stress reactivity as a novel targeted treatment for anxiety and alcohol use disorder. Neuropsychopharmacology 2021. [PMID: 34341494 DOI: 10.1038/s41386-021-01120-4] [Reference Citation Analysis]
|
7 |
Al-Kuraishy HM, Abdulhadi MH, Hussien NR, Al-Niemi MS, Rasheed HA, Al-Gareeb AI. Involvement of orexinergic system in psychiatric and neurodegenerative disorders: A scoping review. Brain Circ 2020;6:70-80. [PMID: 33033776 DOI: 10.4103/bc.bc_42_19] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
8 |
Sanchez-Alavez M, Benedict J, Wills DN, Ehlers CL. Effect of suvorexant on event-related oscillations and EEG sleep in rats exposed to chronic intermittent ethanol vapor and protracted withdrawal. Sleep 2019;42:zsz020. [PMID: 30715515 DOI: 10.1093/sleep/zsz020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
|
9 |
Jacobson LH, Hoyer D, de Lecea L. Hypocretins (orexins): The ultimate translational neuropeptides. J Intern Med 2022. [PMID: 35043499 DOI: 10.1111/joim.13406] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
10 |
Greenwald MK, Moses TEH, Roehrs TA. At the intersection of sleep deficiency and opioid use: mechanisms and therapeutic opportunities. Transl Res 2021;234:58-73. [PMID: 33711513 DOI: 10.1016/j.trsl.2021.03.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
James MH, Fragale JE, Aurora RN, Cooperman NA, Langleben DD, Aston-Jones G. Repurposing the dual orexin receptor antagonist suvorexant for the treatment of opioid use disorder: why sleep on this any longer? Neuropsychopharmacology 2020;45:717-9. [PMID: 31986520 DOI: 10.1038/s41386-020-0619-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
|
12 |
James MH, Aston-Jones G. Introduction to the Special Issue: "Making orexin-based therapies for addiction a reality: What are the steps from here?". Brain Res 2020;1731:146665. [PMID: 31930996 DOI: 10.1016/j.brainres.2020.146665] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
|
13 |
Matzeu A, Martin-fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022;15:787595. [DOI: 10.3389/fnbeh.2021.787595] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Ehlers CL, Benedict J, Wills D, Sanchez-Alavez M. PSPH-D-18-00526: Effect of a dual orexin receptor antagonist (DORA-12) on sleep and event-related oscillations in rats exposed to ethanol vapor during adolescence. Psychopharmacology (Berl) 2020;237:2917-27. [PMID: 31659377 DOI: 10.1007/s00213-019-05371-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
15 |
Mohammadkhani A, James MH, Pantazis CB, Aston-Jones G. Persistent effects of the orexin-1 receptor antagonist SB-334867 on motivation for the fast acting opioid remifentanil. Brain Res 2020;1731:146461. [PMID: 31526801 DOI: 10.1016/j.brainres.2019.146461] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
|
16 |
James MH, Fragale JE, O'Connor SL, Zimmer BA, Aston-Jones G. The orexin (hypocretin) neuropeptide system is a target for novel therapeutics to treat cocaine use disorder with alcohol coabuse. Neuropharmacology 2021;183:108359. [PMID: 33091458 DOI: 10.1016/j.neuropharm.2020.108359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
17 |
Brown RM, Dayas CV, James MH, Smith RJ. New directions in modelling dysregulated reward seeking for food and drugs. Neurosci Biobehav Rev 2021:S0149-7634(21)00485-1. [PMID: 34736883 DOI: 10.1016/j.neubiorev.2021.10.043] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|