BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Moorman DE, James MH, Kilroy EA, Aston-Jones G. Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res 2017;1654:34-42. [PMID: 27771284 DOI: 10.1016/j.brainres.2016.10.018] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Mohammadkhani A, Fragale JE, Pantazis CB, Bowrey HE, James MH, Aston-Jones G. Orexin-1 Receptor Signaling in Ventral Pallidum Regulates Motivation for the Opioid Remifentanil. J Neurosci 2019;39:9831-40. [PMID: 31641055 DOI: 10.1523/JNEUROSCI.0255-19.2019] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
2 Khoo SY, McNally GP, Clemens KJ. The dual orexin receptor antagonist TCS1102 does not affect reinstatement of nicotine-seeking. PLoS One 2017;12:e0173967. [PMID: 28296947 DOI: 10.1371/journal.pone.0173967] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
3 Lei K, Kwok C, Darevsky D, Wegner SA, Yu J, Nakayama L, Pedrozo V, Anderson L, Ghotra S, Fouad M, Hopf FW. Nucleus Accumbens Shell Orexin-1 Receptors Are Critical Mediators of Binge Intake in Excessive-Drinking Individuals. Front Neurosci 2019;13:88. [PMID: 30814925 DOI: 10.3389/fnins.2019.00088] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
4 Somkuwar SS, Mandyam CD. Individual Differences in Ethanol Drinking and Seeking Behaviors in Rats Exposed to Chronic Intermittent Ethanol Vapor Exposure is Associated with Altered CaMKII Autophosphorylation in the Nucleus Accumbens Shell. Brain Sci 2019;9:E367. [PMID: 31835746 DOI: 10.3390/brainsci9120367] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
5 Wiskerke J, James MH, Aston-Jones G. The orexin-1 receptor antagonist SB-334867 reduces motivation, but not inhibitory control, in a rat stop signal task. Brain Res 2020;1731:146222. [PMID: 31002819 DOI: 10.1016/j.brainres.2019.04.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
6 Campbell EJ, Marchant NJ, Lawrence AJ. A sleeping giant: Suvorexant for the treatment of alcohol use disorder? Brain Res 2020;1731:145902. [PMID: 30081035 DOI: 10.1016/j.brainres.2018.08.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
7 Cannella N, Ubaldi M, Masi A, Bramucci M, Roberto M, Bifone A, Ciccocioppo R. Building better strategies to develop new medications in Alcohol Use Disorder: Learning from past success and failure to shape a brighter future. Neurosci Biobehav Rev 2019;103:384-98. [PMID: 31112713 DOI: 10.1016/j.neubiorev.2019.05.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
8 Campbell EJ, Norman A, Bonomo Y, Lawrence AJ. Suvorexant to treat alcohol use disorder and comorbid insomnia: Plan for a phase II trial. Brain Res 2020;1728:146597. [PMID: 31837287 DOI: 10.1016/j.brainres.2019.146597] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
9 Hernandez JS, Moorman DE. Orbitofrontal Cortex Encodes Preference for Alcohol. eNeuro 2020;7:ENEURO. [PMID: 32661066 DOI: 10.1523/ENEURO.0402-19.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
10 Barson JR, Leibowitz SF. Orexin/Hypocretin System: Role in Food and Drug Overconsumption. Int Rev Neurobiol 2017;136:199-237. [PMID: 29056152 DOI: 10.1016/bs.irn.2017.06.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
11 James MH, Bowrey HE, Stopper CM, Aston-Jones G. Demand elasticity predicts addiction endophenotypes and the therapeutic efficacy of an orexin/hypocretin-1 receptor antagonist in rats. Eur J Neurosci 2019;50:2602-12. [PMID: 30240516 DOI: 10.1111/ejn.14166] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 5.5] [Reference Citation Analysis]
12 Matzeu A, Martin-Fardon R. Targeting the orexin system for prescription opioid use disorder: Orexin-1 receptor blockade prevents oxycodone taking and seeking in rats. Neuropharmacology 2020;164:107906. [PMID: 31841797 DOI: 10.1016/j.neuropharm.2019.107906] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
13 Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci 2018;11:220. [PMID: 30002617 DOI: 10.3389/fnmol.2018.00220] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 13.8] [Reference Citation Analysis]
14 Richardson K, Sweatt N, Tran H, Apprey V, Uthayathas S, Taylor R, Gupta K. Significant Quantitative Differences in Orexin Neuronal Activation After Pain Assessments in an Animal Model of Sickle Cell Disease. Front Mol Biosci 2020;7:5. [PMID: 32118032 DOI: 10.3389/fmolb.2020.00005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Han Y, Yuan K, Zheng Y, Lu L. Orexin Receptor Antagonists as Emerging Treatments for Psychiatric Disorders. Neurosci Bull 2020;36:432-48. [PMID: 31782044 DOI: 10.1007/s12264-019-00447-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
16 McGinn MA, Pantazis CB, Tunstall BJ, Marchette RCN, Carlson ER, Said N, Koob GF, Vendruscolo LF. Drug addiction co-morbidity with alcohol: Neurobiological insights. Int Rev Neurobiol 2021;157:409-72. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 James MH, Aston-jones G. Orexin reserve: A mechanistic framework for the role of orexins (hypocretins) in addiction. Biological Psychiatry 2022. [DOI: 10.1016/j.biopsych.2022.06.027] [Reference Citation Analysis]
18 Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018;235:1663-80. [PMID: 29508004 DOI: 10.1007/s00213-018-4871-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
19 Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018;7:F1000 Faculty Rev-1421. [PMID: 30254737 DOI: 10.12688/f1000research.15097.1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
20 Fragale JE, James MH, Aston-Jones G. Intermittent self-administration of fentanyl induces a multifaceted addiction state associated with persistent changes in the orexin system. Addict Biol 2021;26:e12946. [PMID: 32798290 DOI: 10.1111/adb.12946] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
21 Vaseghi S, Zarrabian S, Haghparast A. Reviewing the role of the orexinergic system and stressors in modulating mood and reward-related behaviors. Neurosci Biobehav Rev 2021;133:104516. [PMID: 34973302 DOI: 10.1016/j.neubiorev.2021.104516] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 James MH, Mahler SV, Moorman DE, Aston-Jones G. A Decade of Orexin/Hypocretin and Addiction: Where Are We Now? Curr Top Behav Neurosci 2017;33:247-81. [PMID: 28012090 DOI: 10.1007/7854_2016_57] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 16.0] [Reference Citation Analysis]
23 Czora-poczwardowska K, Kujawski R, Słyńko-krzyżostaniak J, Mikołajczak PŁ, Szulc M. Orexin receptor blockers: A tool for lowering alcohol intake and alcohol addictive behavior in the light of preclinical studies. Postępy Higieny i Medycyny Doświadczalnej 2021;75:959-69. [DOI: 10.2478/ahem-2021-0007] [Reference Citation Analysis]
24 Pantazis CB, James MH, O'Connor S, Shin N, Aston-Jones G. Orexin-1 receptor signaling in ventral tegmental area mediates cue-driven demand for cocaine. Neuropsychopharmacology 2021. [PMID: 34635803 DOI: 10.1038/s41386-021-01173-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Seigneur E, de Lecea L. Hypocretin (Orexin) Replacement Therapies. Medicine in Drug Discovery 2020;8:100070. [DOI: 10.1016/j.medidd.2020.100070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Fragale JE, James MH, Avila JA, Spaeth AM, Aurora RN, Langleben D, Aston-Jones G. The Insomnia-Addiction Positive Feedback Loop: Role of the Orexin System. Front Neurol Neurosci 2021;45:117-27. [PMID: 34052815 DOI: 10.1159/000514965] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Campbell EJ, Hill MK, Maddern XJ, Jin S, Pang TY, Lawrence AJ. Orexin-1 receptor signaling within the lateral hypothalamus, but not bed nucleus of the stria terminalis, mediates context-induced relapse to alcohol seeking. J Psychopharmacol 2020;34:1261-70. [PMID: 33063594 DOI: 10.1177/0269881120959638] [Reference Citation Analysis]
28 Burnette EM, Nieto SJ, Grodin EN, Meredith LR, Hurley B, Miotto K, Gillis AJ, Ray LA. Novel Agents for the Pharmacological Treatment of Alcohol Use Disorder. Drugs 2022. [PMID: 35133639 DOI: 10.1007/s40265-021-01670-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
29 Thompson JB, Conrad SE, Peterman JL, Papini MR. Reinforcing properties of alcohol in rats: Progressive ratio licking performance reinforced with 66% alcohol. Physiol Behav 2021;235:113393. [PMID: 33757779 DOI: 10.1016/j.physbeh.2021.113393] [Reference Citation Analysis]
30 Cannella N, Borruto AM, Petrella M, Micioni Di Bonaventura MV, Soverchia L, Cifani C, De Carlo S, Domi E, Ubaldi M. A Role for Neuropeptide S in Alcohol and Cocaine Seeking. Pharmaceuticals 2022;15:800. [DOI: 10.3390/ph15070800] [Reference Citation Analysis]
31 James MH, Fragale JE, O'Connor SL, Zimmer BA, Aston-Jones G. The orexin (hypocretin) neuropeptide system is a target for novel therapeutics to treat cocaine use disorder with alcohol coabuse. Neuropharmacology 2021;183:108359. [PMID: 33091458 DOI: 10.1016/j.neuropharm.2020.108359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
32 Pulver A, Kiive E, Kanarik M, Harro J. Association of orexin/hypocretin receptor gene (HCRTR1) with reward sensitivity, and interaction with gender. Brain Res 2020;1746:147013. [PMID: 32652147 DOI: 10.1016/j.brainres.2020.147013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
33 Tavakkolifard M, Vousooghi N, Mahboubi S, Golab F, Ejtemaei Mehr S, Zarrindast MR. Evaluation of the relationship between the gene expression level of orexin-1 receptor in the rat blood and prefrontal cortex, novelty-seeking, and proneness to methamphetamine dependence: A candidate biomarker. Peptides 2020;131:170368. [PMID: 32668268 DOI: 10.1016/j.peptides.2020.170368] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Mohammadkhani A, James MH, Pantazis CB, Aston-Jones G. Persistent effects of the orexin-1 receptor antagonist SB-334867 on motivation for the fast acting opioid remifentanil. Brain Res 2020;1731:146461. [PMID: 31526801 DOI: 10.1016/j.brainres.2019.146461] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
35 Khoo SY, Clemens KJ, Mcnally GP. Palatable food self-administration and reinstatement are not affected by dual orexin receptor antagonism. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2018;87:147-57. [DOI: 10.1016/j.pnpbp.2017.06.028] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
36 Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018;248:473-503. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
37 Zlebnik NE, Holtz NA, Lepak VC, Saykao AT, Zhang Y, Carroll ME. Age-specific treatment effects of orexin/hypocretin-receptor antagonism on methamphetamine-seeking behavior. Drug Alcohol Depend 2021;224:108719. [PMID: 33940327 DOI: 10.1016/j.drugalcdep.2021.108719] [Reference Citation Analysis]
38 Lei K, Kwok C, Hopf FW. Nucleus accumbens shell Orexin-1 receptors are not needed for single-bottle limited daily access alcohol intake in C57BL/6 mice. Alcohol 2020;89:139-46. [PMID: 32987129 DOI: 10.1016/j.alcohol.2020.09.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Suchting R, Yoon JH, Miguel GGS, Green CE, Weaver MF, Vincent JN, Fries GR, Schmitz JM, Lane SD. Preliminary examination of the orexin system on relapse-related factors in cocaine use disorder. Brain Res 2020;1731:146359. [PMID: 31374218 DOI: 10.1016/j.brainres.2019.146359] [Cited by in Crossref: 9] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
40 Matzeu A, Martin-fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022;15:787595. [DOI: 10.3389/fnbeh.2021.787595] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 [DOI: 10.1101/2020.04.25.061887] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
42 Collier AD, Yasmin N, Khalizova N, Campbell S, Onoichenco A, Fam M, Albeg AS, Leibowitz SF. Sexually dimorphic and asymmetric effects of embryonic ethanol exposure on hypocretin/orexin neurons as related to behavioral changes in zebrafish. Sci Rep 2021;11:16078. [PMID: 34373563 DOI: 10.1038/s41598-021-95707-y] [Reference Citation Analysis]
43 Matzeu A, Martin-Fardon R. Blockade of Orexin Receptors in the Posterior Paraventricular Nucleus of the Thalamus Prevents Stress-Induced Reinstatement of Reward-Seeking Behavior in Rats With a History of Ethanol Dependence. Front Integr Neurosci 2020;14:599710. [PMID: 33240054 DOI: 10.3389/fnint.2020.599710] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
44 Matzeu A, Martin-Fardon R. Targeting the Orexin System for Prescription Opioid Use Disorder. Brain Sci 2020;10:E226. [PMID: 32290110 DOI: 10.3390/brainsci10040226] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
45 James MH, Aston-Jones G. Introduction to the Special Issue: "Making orexin-based therapies for addiction a reality: What are the steps from here?". Brain Res 2020;1731:146665. [PMID: 31930996 DOI: 10.1016/j.brainres.2020.146665] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
46 Ehlers CL, Benedict J, Wills D, Sanchez-Alavez M. PSPH-D-18-00526: Effect of a dual orexin receptor antagonist (DORA-12) on sleep and event-related oscillations in rats exposed to ethanol vapor during adolescence. Psychopharmacology (Berl) 2020;237:2917-27. [PMID: 31659377 DOI: 10.1007/s00213-019-05371-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
47 Yeoh JW, James MH, Adams CD, Bains JS, Sakurai T, Aston-Jones G, Graham BA, Dayas CV. Activation of lateral hypothalamic group III metabotropic glutamate receptors suppresses cocaine-seeking following abstinence and normalizes drug-associated increases in excitatory drive to orexin/hypocretin cells. Neuropharmacology 2019;154:22-33. [PMID: 30253175 DOI: 10.1016/j.neuropharm.2018.09.033] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
48 Kwok C, Lei K, Pedrozo V, Anderson L, Ghotra S, Walsh M, Li L, Yu J, Hopf FW. Differential importance of nucleus accumbens Ox1Rs and AMPARs for female and male mouse binge alcohol drinking. Sci Rep 2021;11:231. [PMID: 33420199 DOI: 10.1038/s41598-020-79935-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
49 Hopf FW. Recent perspectives on orexin/hypocretin promotion of addiction-related behaviors. Neuropharmacology 2020;168:108013. [PMID: 32092435 DOI: 10.1016/j.neuropharm.2020.108013] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
50 D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019;10:509. [PMID: 31396113 DOI: 10.3389/fpsyt.2019.00509] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
51 Fragale JE, Pantazis CB, James MH, Aston-Jones G. The role of orexin-1 receptor signaling in demand for the opioid fentanyl. Neuropsychopharmacology 2019;44:1690-7. [PMID: 31112988 DOI: 10.1038/s41386-019-0420-x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 11.7] [Reference Citation Analysis]
52 Radke AK, Sneddon EA, Frasier RM, Hopf FW. Recent Perspectives on Sex Differences in Compulsion-Like and Binge Alcohol Drinking. Int J Mol Sci 2021;22:3788. [PMID: 33917517 DOI: 10.3390/ijms22073788] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
53 Pantazis CB, James MH, Bentzley BS, Aston-Jones G. The number of lateral hypothalamus orexin/hypocretin neurons contributes to individual differences in cocaine demand. Addict Biol 2020;25:e12795. [PMID: 31297913 DOI: 10.1111/adb.12795] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
54 Brown RM, Dayas CV, James MH, Smith RJ. New directions in modelling dysregulated reward seeking for food and drugs. Neurosci Biobehav Rev 2021:S0149-7634(21)00485-1. [PMID: 34736883 DOI: 10.1016/j.neubiorev.2021.10.043] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]