BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Amador NJ, Rotella FM, Bernal SY, Malkusz D, Cruz JA, Badalia A, Duenas SM, Hossain M, Gerges M, Kandov S, Touzani K, Sclafani A, Bodnar RJ. Effect of dopamine D1 and D2 receptor antagonism in the lateral hypothalamus on the expression and acquisition of fructose-conditioned flavor preference in rats. Brain Res 2014;1542:70-8. [PMID: 24211237 DOI: 10.1016/j.brainres.2013.10.030] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
Number Citing Articles
1 Ueji K, Minematsu Y, Takeshita D, Yamamoto T. Saccharin Taste Conditions Flavor Preference in Weanling Rats. Chem Senses 2016;41:135-41. [PMID: 26514409 DOI: 10.1093/chemse/bjv064] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Matta R, Tiessen AN, Choleris E. The Role of Dorsal Hippocampal Dopamine D1-Type Receptors in Social Learning, Social Interactions, and Food Intake in Male and Female Mice. Neuropsychopharmacology 2017;42:2344-53. [PMID: 28240292 DOI: 10.1038/npp.2017.43] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
3 Kraft TT, Huang D, Lolier M, Warshaw D, Lamagna S, Natanova E, Sclafani A, Bodnar RJ. NMDA receptor antagonism differentially reduces acquisition and expression of sucrose- and fructose-conditioned flavor preferences in BALB/c and SWR mice. Pharmacology Biochemistry and Behavior 2016;148:76-83. [DOI: 10.1016/j.pbb.2016.06.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
4 Malkusz DC, Bernal SY, Banakos T, Malkusz G, Mohamed A, Vongwattanakit T, Bodnar RJ. Evaluation of saccharin intake and expression of fructose-conditioned flavor preferences following opioid receptor antagonism in the medial prefrontal cortex, amygdala or lateral hypothalamus in rats. Neuroscience Letters 2014;564:94-8. [DOI: 10.1016/j.neulet.2014.02.020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
5 Malkusz DC, Yenko I, Rotella FM, Banakos T, Olsson K, Dindyal T, Vig V, Bodnar RJ. Dopamine receptor signaling in the medial orbital frontal cortex and the acquisition and expression of fructose-conditioned flavor preferences in rats. Brain Res 2015;1596:116-25. [PMID: 25446441 DOI: 10.1016/j.brainres.2014.11.028] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
6 Risco S, Mediavilla C. Orexin A in the ventral tegmental area enhances saccharin-induced conditioned flavor preference: The role of D1 receptors in central nucleus of amygdala. Behavioural Brain Research 2018;348:192-200. [DOI: 10.1016/j.bbr.2018.04.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
7 Rotella FM, Olsson K, Vig V, Yenko I, Pagirsky J, Kohen I, Aminov A, Dindyal T, Bodnar RJ. Muscarinic and nicotinic cholinergic receptor antagonists differentially mediate acquisition of fructose-conditioned flavor preference and quinine-conditioned flavor avoidance in rats. Neurobiology of Learning and Memory 2015;123:239-49. [DOI: 10.1016/j.nlm.2015.07.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
8 Ochoa M, Lallès JP, Malbert CH, Val-Laillet D. Dietary sugars: their detection by the gut-brain axis and their peripheral and central effects in health and diseases. Eur J Nutr 2015;54:1-24. [PMID: 25296886 DOI: 10.1007/s00394-014-0776-y] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 4.5] [Reference Citation Analysis]
9 Rotella FM, Olsson K, Martinez N, Mordo A, Kohen I, Aminov A, Pagirsky J, Yu A, Vig V, Bodnar RJ. Muscarinic, nicotinic and GABAergic receptor signaling differentially mediate fat-conditioned flavor preferences in rats. Pharmacology Biochemistry and Behavior 2016;150-151:14-21. [DOI: 10.1016/j.pbb.2016.09.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
10 Cordeiro RC, Chaves Filho AJM, Gomes NS, Tomaz VS, Medeiros CD, Queiroz AIG, Maes M, Macedo DS, Carvalho AF. Leptin Prevents Lipopolysaccharide-Induced Depressive-Like Behaviors in Mice: Involvement of Dopamine Receptors. Front Psychiatry 2019;10:125. [PMID: 30949073 DOI: 10.3389/fpsyt.2019.00125] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
11 Azogu I, de la Tremblaye PB, Dunbar M, Lebreton M, LeMarec N, Plamondon H. Acute sleep deprivation enhances avoidance learning and spatial memory and induces delayed alterations in neurochemical expression of GR, TH, DRD1, pCREB and Ki67 in rats. Behav Brain Res 2015;279:177-90. [PMID: 25433096 DOI: 10.1016/j.bbr.2014.11.015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
12 Alejandro Borja GP, Alejandro Navarro E, Beatriz GC, Ignacio M, Milagros G. Accumbens and amygdala in taste recognition memory: The role of d1 dopamine receptors. Neurobiol Learn Mem 2020;174:107277. [PMID: 32707274 DOI: 10.1016/j.nlm.2020.107277] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Bodnar RJ. Conditioned flavor preferences in animals: Merging pharmacology, brain sites and genetic variance. Appetite 2018;122:17-25. [PMID: 27988368 DOI: 10.1016/j.appet.2016.12.015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]