BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Aston-Jones G, Smith RJ, Sartor GC, Moorman DE, Massi L, Tahsili-Fahadan P, Richardson KA. Lateral hypothalamic orexin/hypocretin neurons: A role in reward-seeking and addiction. Brain Res 2010;1314:74-90. [PMID: 19815001 DOI: 10.1016/j.brainres.2009.09.106] [Cited by in Crossref: 238] [Cited by in F6Publishing: 242] [Article Influence: 18.3] [Reference Citation Analysis]
Number Citing Articles
1 Abbott M, Volkoff H. Thyrotropin Releasing Hormone (TRH) in goldfish (Carassius auratus): Role in the regulation of feeding and locomotor behaviors and interactions with the orexin system and cocaine- and amphetamine regulated transcript (CART). Hormones and Behavior 2011;59:236-45. [DOI: 10.1016/j.yhbeh.2010.12.008] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 3.9] [Reference Citation Analysis]
2 Ho CY, Berridge KC. An orexin hotspot in ventral pallidum amplifies hedonic 'liking' for sweetness. Neuropsychopharmacology 2013;38:1655-64. [PMID: 23463152 DOI: 10.1038/npp.2013.62] [Cited by in Crossref: 77] [Cited by in F6Publishing: 70] [Article Influence: 8.6] [Reference Citation Analysis]
3 Qi K, Wei C, Li Y, Sui N. Orexin receptors within the nucleus accumbens shell mediate the stress but not drug priming-induced reinstatement of morphine conditioned place preference. Front Behav Neurosci 2013;7:144. [PMID: 24133421 DOI: 10.3389/fnbeh.2013.00144] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
4 Richardson KA, Aston-Jones G. Lateral hypothalamic orexin/hypocretin neurons that project to ventral tegmental area are differentially activated with morphine preference. J Neurosci 2012;32:3809-17. [PMID: 22423101 DOI: 10.1523/JNEUROSCI.3917-11.2012] [Cited by in Crossref: 62] [Cited by in F6Publishing: 28] [Article Influence: 6.2] [Reference Citation Analysis]
5 Giardino WJ, de Lecea L. Hypocretin (orexin) neuromodulation of stress and reward pathways. Curr Opin Neurobiol 2014;29:103-8. [PMID: 25050887 DOI: 10.1016/j.conb.2014.07.006] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 7.1] [Reference Citation Analysis]
6 Taylor SB, Lewis CR, Olive MF. The neurocircuitry of illicit psychostimulant addiction: acute and chronic effects in humans. Subst Abuse Rehabil 2013;4:29-43. [PMID: 24648786 DOI: 10.2147/SAR.S39684] [Reference Citation Analysis]
7 Sears RM, Fink AE, Wigestrand MB, Farb CR, de Lecea L, Ledoux JE. Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus. Proc Natl Acad Sci U S A 2013;110:20260-5. [PMID: 24277819 DOI: 10.1073/pnas.1320325110] [Cited by in Crossref: 110] [Cited by in F6Publishing: 101] [Article Influence: 12.2] [Reference Citation Analysis]
8 Di Sebastiano AR, Wilson-pérez HE, Lehman MN, Coolen LM. Lesions of orexin neurons block conditioned place preference for sexual behavior in male rats. Hormones and Behavior 2011;59:1-8. [DOI: 10.1016/j.yhbeh.2010.09.006] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
9 Lu GL, Yau HJ, Chiou LC. Conditioned place preference training prevents hippocampal depotentiation in an orexin-dependent manner. J Biomed Sci 2017;24:69. [PMID: 28877723 DOI: 10.1186/s12929-017-0378-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
10 Askari K, Oryan S, Eidi A, Zaringhalam J, Haghparast A. Modulatory role of the orexin system in stress-induced analgesia: Involvement of the ventral tegmental area. Eur J Pain 2021. [PMID: 34288265 DOI: 10.1002/ejp.1840] [Reference Citation Analysis]
11 Gong L, He C, Yin Y, Wang H, Ye Q, Bai F, Yuan Y, Zhang H, Lv L, Zhang H, Zhang Z, Xie C. Mediating Role of the Reward Network in the Relationship between the Dopamine Multilocus Genetic Profile and Depression. Front Mol Neurosci 2017;10:292. [PMID: 28959185 DOI: 10.3389/fnmol.2017.00292] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
12 Boss C. Orexin receptor antagonists--a patent review (2010 to August 2014). Expert Opin Ther Pat 2014;24:1367-81. [PMID: 25407283 DOI: 10.1517/13543776.2014.978859] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
13 Kalló I, Omrani A, Meye FJ, de Jong H, Liposits Z, Adan RAH. Characterization of orexin input to dopamine neurons of the ventral tegmental area projecting to the medial prefrontal cortex and shell of nucleus accumbens. Brain Struct Funct 2022. [PMID: 35029758 DOI: 10.1007/s00429-021-02449-8] [Reference Citation Analysis]
14 Boss C, Roch C. Orexin research: patent news from 2016. Expert Opinion on Therapeutic Patents 2017;27:1123-33. [DOI: 10.1080/13543776.2017.1344221] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
15 Skibicka KP, Shirazi RH, Hansson C, Dickson SL. Ghrelin Interacts with Neuropeptide Y Y1 and Opioid Receptors to Increase Food Reward. Endocrinology 2012;153:1194-205. [DOI: 10.1210/en.2011-1606] [Cited by in Crossref: 71] [Cited by in F6Publishing: 67] [Article Influence: 7.1] [Reference Citation Analysis]
16 Sun Y, Tisdale RK, Kilduff TS. Hypocretin/Orexin Receptor Pharmacology and Sleep Phases. Front Neurol Neurosci 2021;45:22-37. [PMID: 34052813 DOI: 10.1159/000514963] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Mediavilla C, Cabello V, Risco S. SB-334867-A, a selective orexin-1 receptor antagonist, enhances taste aversion learning and blocks taste preference learning in rats. Pharmacol Biochem Behav 2011;98:385-91. [PMID: 21295056 DOI: 10.1016/j.pbb.2011.01.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
18 Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G. Multiple roles for orexin/hypocretin in addiction. Prog Brain Res 2012;198:79-121. [PMID: 22813971 DOI: 10.1016/B978-0-444-59489-1.00007-0] [Cited by in Crossref: 140] [Cited by in F6Publishing: 76] [Article Influence: 14.0] [Reference Citation Analysis]
19 Lai F, Cucca F, Frau R, Corrias F, Schlich M, Caboni P, Fadda AM, Bassareo V. Systemic Administration of Orexin a Loaded Liposomes Potentiates Nucleus Accumbens Shell Dopamine Release by Sucrose Feeding. Front Psychiatry 2018;9:640. [PMID: 30559683 DOI: 10.3389/fpsyt.2018.00640] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
20 Cason AM, Smith RJ, Tahsili-Fahadan P, Moorman DE, Sartor GC, Aston-Jones G. Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol Behav 2010;100:419-28. [PMID: 20338186 DOI: 10.1016/j.physbeh.2010.03.009] [Cited by in Crossref: 155] [Cited by in F6Publishing: 150] [Article Influence: 12.9] [Reference Citation Analysis]
21 Lopez MF, Moorman DE, Aston-Jones G, Becker HC. The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice. Brain Res 2016;1636:74-80. [PMID: 26851547 DOI: 10.1016/j.brainres.2016.01.049] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
22 Shtemberg AS, Kudrin VS, Klodt PM, Narkevich VB, Bazyan AS. The effects of antiorthostatic hypodynamia and overload on discriminant learning and monoamine exchange in the brain structures of mice. Neurochem J 2012;6:291-8. [DOI: 10.1134/s1819712412030130] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
23 Farahimanesh S, Zarrabian S, Haghparast A. Role of orexin receptors in the ventral tegmental area on acquisition and expression of morphine-induced conditioned place preference in the rats. Neuropeptides 2017;66:45-51. [PMID: 28890208 DOI: 10.1016/j.npep.2017.08.003] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
24 Kastman HE, Blasiak A, Walker L, Siwiec M, Krstew EV, Gundlach AL, Lawrence AJ. Nucleus incertus Orexin2 receptors mediate alcohol seeking in rats. Neuropharmacology 2016;110:82-91. [PMID: 27395787 DOI: 10.1016/j.neuropharm.2016.07.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
25 Latifi B, Adamantidis A, Bassetti C, Schmidt MH. Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization. Front Neurol 2018;9:790. [PMID: 30344503 DOI: 10.3389/fneur.2018.00790] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
26 Govare A, Leroux E. Licit and illicit drug use in cluster headache. Curr Pain Headache Rep 2014;18:413. [PMID: 24715619 DOI: 10.1007/s11916-014-0413-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
27 Erami E, Azhdari-Zarmehri H, Ghasemi-Dashkhasan E, Esmaeili MH, Semnanian S. Intra-paragigantocellularis lateralis injection of orexin-A has an antinociceptive effect on hot plate and formalin tests in rat. Brain Res 2012;1478:16-23. [PMID: 22906776 DOI: 10.1016/j.brainres.2012.08.013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.6] [Reference Citation Analysis]
28 Chen J, Kawamura T, Sethi MK, Zaia J, Repunte-Canonigo V, Sanna PP. Heparan sulfate: Resilience factor and therapeutic target for cocaine abuse. Sci Rep 2017;7:13931. [PMID: 29066725 DOI: 10.1038/s41598-017-13960-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
29 Sahafzadeh M, Karimi-Haghighi S, Mousavi Z, Haghparast A. Role of the orexin receptors within the nucleus accumbens in the drug priming-induced reinstatement of morphine seeking in the food deprived rats. Brain Res Bull 2018;137:217-24. [PMID: 29258865 DOI: 10.1016/j.brainresbull.2017.12.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
30 Yeoh JW, Campbell EJ, James MH, Graham BA, Dayas CV. Orexin antagonists for neuropsychiatric disease: progress and potential pitfalls. Front Neurosci 2014;8:36. [PMID: 24616658 DOI: 10.3389/fnins.2014.00036] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 7.4] [Reference Citation Analysis]
31 McKenna JT, Yang C, Bellio T, Anderson-Chernishof MB, Gamble MC, Hulverson A, McCoy JG, Winston S, Hodges E, Katsuki F, McNally JM, Basheer R, Brown RE. Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior. Brain Struct Funct 2021;226:1755-78. [PMID: 33997911 DOI: 10.1007/s00429-021-02288-7] [Reference Citation Analysis]
32 Ubaldi M, Giordano A, Severi I, Li H, Kallupi M, de Guglielmo G, Ruggeri B, Stopponi S, Ciccocioppo R, Cannella N. Activation of Hypocretin-1/Orexin-A Neurons Projecting to the Bed Nucleus of the Stria Terminalis and Paraventricular Nucleus Is Critical for Reinstatement of Alcohol Seeking by Neuropeptide S. Biol Psychiatry 2016;79:452-62. [PMID: 26055195 DOI: 10.1016/j.biopsych.2015.04.021] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
33 Stuber GD, Britt JP, Bonci A. Optogenetic modulation of neural circuits that underlie reward seeking. Biol Psychiatry 2012;71:1061-7. [PMID: 22196983 DOI: 10.1016/j.biopsych.2011.11.010] [Cited by in Crossref: 76] [Cited by in F6Publishing: 77] [Article Influence: 6.9] [Reference Citation Analysis]
34 Ranjbar-slamloo Y, Azizi H, Fathollahi Y, Semnanian S. Orexin receptor type-1 antagonist SB-334867 inhibits the development of morphine analgesic tolerance in rats. Peptides 2012;35:56-9. [DOI: 10.1016/j.peptides.2012.02.023] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
35 Coccurello R. Anhedonia in depression symptomatology: Appetite dysregulation and defective brain reward processing. Behavioural Brain Research 2019;372:112041. [DOI: 10.1016/j.bbr.2019.112041] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
36 Stettner GM, Kubin L, Volgin DV. Antagonism of orexin 1 receptors eliminates motor hyperactivity and improves homing response acquisition in juvenile rats exposed to alcohol during early postnatal period. Behav Brain Res 2011;221:324-8. [PMID: 21420437 DOI: 10.1016/j.bbr.2011.03.028] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
37 Wheeler DS, Wan S, Miller A, Angeli N, Adileh B, Hu W, Holland PC. Role of lateral hypothalamus in two aspects of attention in associative learning. Eur J Neurosci 2014;40:2359-77. [PMID: 24750426 DOI: 10.1111/ejn.12592] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
38 Wang P, Wang M, Zhang L, Zhong S, Jiang W, Wang Z, Sun C, Zhang S, Liu Z. Functional characterization of an orexin neuropeptide in amphioxus reveals an ancient origin of orexin/orexin receptor system in chordate. Sci China Life Sci 2019;62:1655-69. [PMID: 30945108 DOI: 10.1007/s11427-018-9421-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Brom M, Both S, Laan E, Everaerd W, Spinhoven P. The role of conditioning, learning and dopamine in sexual behavior: a narrative review of animal and human studies. Neurosci Biobehav Rev 2014;38:38-59. [PMID: 24211372 DOI: 10.1016/j.neubiorev.2013.10.014] [Cited by in Crossref: 50] [Cited by in F6Publishing: 36] [Article Influence: 5.6] [Reference Citation Analysis]
40 Navarro G, Medrano M, Aguinaga D, Vega-Quiroga I, Lillo A, Jiménez J, Casanovas M, Canela EI, Mallol J, Gysling K, Franco R. Differential effect of amphetamine over the corticotropin-releasing factor CRF2 receptor, the orexin OX1 receptor and the CRF2-OX1 heteroreceptor complex. Neuropharmacology 2019;152:102-11. [PMID: 30465812 DOI: 10.1016/j.neuropharm.2018.11.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
41 Larson EB, Wissman AM, Loriaux AL, Kourrich S, Self DW. Optogenetic stimulation of accumbens shell or shell projections to lateral hypothalamus produce differential effects on the motivation for cocaine. J Neurosci 2015;35:3537-43. [PMID: 25716852 DOI: 10.1523/JNEUROSCI.1524-14.2015] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
42 McClung CA. Circadian rhythms and mood regulation: insights from pre-clinical models. Eur Neuropsychopharmacol 2011;21 Suppl 4:S683-93. [PMID: 21835596 DOI: 10.1016/j.euroneuro.2011.07.008] [Cited by in Crossref: 99] [Cited by in F6Publishing: 96] [Article Influence: 9.0] [Reference Citation Analysis]
43 Sokołowska P, Urbańska A, Biegańska K, Wagner W, Ciszewski W, Namiecińska M, Zawilska JB. Orexins protect neuronal cell cultures against hypoxic stress: an involvement of Akt signaling. J Mol Neurosci 2014;52:48-55. [PMID: 24243084 DOI: 10.1007/s12031-013-0165-7] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 4.6] [Reference Citation Analysis]
44 Low LA, Fitzgerald M. Acute pain and a motivational pathway in adult rats: influence of early life pain experience. PLoS One 2012;7:e34316. [PMID: 22470556 DOI: 10.1371/journal.pone.0034316] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 3.2] [Reference Citation Analysis]
45 Koekkoek LL, Mul JD, la Fleur SE. Glucose-Sensing in the Reward System. Front Neurosci 2017;11:716. [PMID: 29311793 DOI: 10.3389/fnins.2017.00716] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
46 Teske JA, Billington CJ, Kotz CM. Mechanisms underlying obesity resistance associated with high spontaneous physical activity. Neuroscience 2014;256:91-100. [PMID: 24161277 DOI: 10.1016/j.neuroscience.2013.10.028] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
47 Ponté C, Giron A, Crequy M, Lapeyre-Mestre M, Fabre N, Salles J. Cluster Headache in Subjects With Substance Use Disorder: A Case Series and a Review of the Literature. Headache 2019;59:576-89. [PMID: 30957220 DOI: 10.1111/head.13516] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Edalat P, Kavianpour M, Zarrabian S, Haghparast A. Role of orexin-1 and orexin-2 receptors in the CA1 region of hippocampus in the forced swim stress- and food deprivation-induced reinstatement of morphine seeking behaviors in rats. Brain Research Bulletin 2018;142:25-32. [DOI: 10.1016/j.brainresbull.2018.06.016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
49 Anderson RI, Becker HC, Adams BL, Jesudason CD, Rorick-Kehn LM. Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models. Front Neurosci 2014;8:33. [PMID: 24616657 DOI: 10.3389/fnins.2014.00033] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 6.0] [Reference Citation Analysis]
50 Burgess CR, Scammell TE. Narcolepsy: neural mechanisms of sleepiness and cataplexy. J Neurosci 2012;32:12305-11. [PMID: 22956821 DOI: 10.1523/JNEUROSCI.2630-12.2012] [Cited by in Crossref: 82] [Cited by in F6Publishing: 35] [Article Influence: 8.2] [Reference Citation Analysis]
51 Berthoud HR, Münzberg H. The lateral hypothalamus as integrator of metabolic and environmental needs: from electrical self-stimulation to opto-genetics. Physiol Behav. 2011;104:29-39. [PMID: 21549732 DOI: 10.1016/j.physbeh.2011.04.051] [Cited by in Crossref: 136] [Cited by in F6Publishing: 131] [Article Influence: 12.4] [Reference Citation Analysis]
52 Thompson MD, Xhaard H, Sakurai T, Rainero I, Kukkonen JP. OX1 and OX2 orexin/hypocretin receptor pharmacogenetics. Front Neurosci 2014;8:57. [PMID: 24834023 DOI: 10.3389/fnins.2014.00057] [Cited by in Crossref: 34] [Cited by in F6Publishing: 40] [Article Influence: 4.3] [Reference Citation Analysis]
53 Yip SW, Potenza MN. Application of Research Domain Criteria to childhood and adolescent impulsive and addictive disorders: Implications for treatment. Clin Psychol Rev 2018;64:41-56. [PMID: 27876165 DOI: 10.1016/j.cpr.2016.11.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
54 Karimi S, Hamidi G, Fatahi Z, Haghparast A. Orexin 1 receptors in the anterior cingulate and orbitofrontal cortex regulate cost and benefit decision-making. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2019;89:227-35. [DOI: 10.1016/j.pnpbp.2018.09.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
55 Pantazis CB, James MH, Bentzley BS, Aston-Jones G. The number of lateral hypothalamus orexin/hypocretin neurons contributes to individual differences in cocaine demand. Addict Biol 2020;25:e12795. [PMID: 31297913 DOI: 10.1111/adb.12795] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
56 Cason AM, Aston-Jones G. Role of orexin/hypocretin in conditioned sucrose-seeking in rats. Psychopharmacology (Berl) 2013;226:155-65. [PMID: 23096770 DOI: 10.1007/s00213-012-2902-y] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 7.3] [Reference Citation Analysis]
57 Hasanpour Razmanjani N, Reisi P. Effects of selective orexin receptor-2 and cannabinoid receptor-1 antagonists on the response of medial prefrontal cortex neurons to tramadol. Synapse 2022. [PMID: 35313383 DOI: 10.1002/syn.22232] [Reference Citation Analysis]
58 Burt J, Alberto CO, Parsons MP, Hirasawa M. Local network regulation of orexin neurons in the lateral hypothalamus. Am J Physiol Regul Integr Comp Physiol 2011;301:R572-80. [PMID: 21697524 DOI: 10.1152/ajpregu.00674.2010] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 4.5] [Reference Citation Analysis]
59 RayatSanati K, Jamali S, Hassanlou AA, Haghparast A. Blockade of orexin receptors in the hippocampal dentate gyrus reduced the extinction latency of morphine-induced place preference in male rats. Neurosci Lett 2021;756:135946. [PMID: 33974952 DOI: 10.1016/j.neulet.2021.135946] [Reference Citation Analysis]
60 Ezzatpanah S, Babapour V, Haghparast A. Differential contribution of orexin receptors within the ventral tegmental area to modulation of persistent inflammatory pain. Eur J Pain 2016;20:1090-101. [DOI: 10.1002/ejp.833] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
61 Plaza-Zabala A, Flores Á, Martín-García E, Saravia R, Maldonado R, Berrendero F. A role for hypocretin/orexin receptor-1 in cue-induced reinstatement of nicotine-seeking behavior. Neuropsychopharmacology 2013;38:1724-36. [PMID: 23518606 DOI: 10.1038/npp.2013.72] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 4.9] [Reference Citation Analysis]
62 Moorman DE, Aston-Jones G. Orexin/hypocretin modulates response of ventral tegmental dopamine neurons to prefrontal activation: diurnal influences. J Neurosci 2010;30:15585-99. [PMID: 21084614 DOI: 10.1523/JNEUROSCI.2871-10.2010] [Cited by in Crossref: 71] [Cited by in F6Publishing: 46] [Article Influence: 5.9] [Reference Citation Analysis]
63 Gatfield J, Brisbare-Roch C, Jenck F, Boss C. Orexin receptor antagonists: a new concept in CNS disorders? ChemMedChem 2010;5:1197-214. [PMID: 20544785 DOI: 10.1002/cmdc.201000132] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 5.0] [Reference Citation Analysis]
64 Guo F, Gao S, Xu L, Sun X, Zhang N, Gong Y, Luan X. Arcuate Nucleus Orexin-A Signaling Alleviates Cisplatin-Induced Nausea and Vomiting Through the Paraventricular Nucleus of the Hypothalamus in Rats. Front Physiol 2018;9:1811. [PMID: 30618823 DOI: 10.3389/fphys.2018.01811] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
65 Gibbs RB, Chipman AM, Hammond R, Nelson D. Galanthamine plus estradiol treatment enhances cognitive performance in aged ovariectomized rats. Horm Behav 2011;60:607-16. [PMID: 21889940 DOI: 10.1016/j.yhbeh.2011.08.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
66 Łupina M, Tarnowski M, Baranowska-Bosiacka I, Talarek S, Listos P, Kotlińska J, Gutowska I, Listos J. SB-334867 (an Orexin-1 Receptor Antagonist) Effects on Morphine-Induced Sensitization in Mice-a View on Receptor Mechanisms. Mol Neurobiol 2018;55:8473-85. [PMID: 29557083 DOI: 10.1007/s12035-018-0993-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
67 Mendoza-Ruiz LG, Vázquez-León P, Martínez-Mota L, Juan ERS, Miranda-Páez A. Forced ethanol ingestion by Wistar rats from a juvenile age increased voluntary alcohol consumption in adulthood, with the involvement of orexin-A. Alcohol 2018;70:73-80. [PMID: 29803804 DOI: 10.1016/j.alcohol.2018.01.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
68 Boswell RG, Potenza MN, Grilo CM. The Neurobiology of Binge-eating Disorder Compared with Obesity: Implications for Differential Therapeutics. Clin Ther 2021;43:50-69. [PMID: 33257092 DOI: 10.1016/j.clinthera.2020.10.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
69 Chen YW, Barson JR, Chen A, Hoebel BG, Leibowitz SF. Glutamatergic input to the lateral hypothalamus stimulates ethanol intake: role of orexin and melanin-concentrating hormone. Alcohol Clin Exp Res 2013;37:123-31. [PMID: 22823322 DOI: 10.1111/j.1530-0277.2012.01854.x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
70 Matzeu A, Martin-Fardon R. Cocaine-Seeking Behavior Induced by Orexin A Administration in the Posterior Paraventricular Nucleus of the Thalamus Is Not Long-Lasting: Neuroadaptation of the Orexin System During Cocaine Abstinence. Front Behav Neurosci 2021;15:620868. [PMID: 33708078 DOI: 10.3389/fnbeh.2021.620868] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Pizza F, Magnani M, Indrio C, Plazzi G. The hypocretin system and psychiatric disorders. Curr Psychiatry Rep 2014;16:433. [PMID: 24363104 DOI: 10.1007/s11920-013-0433-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
72 Chen J, Zhang R, Chen X, Wang C, Cai X, Liu H, Jiang Y, Liu C, Bai B. Heterodimerization of human orexin receptor 1 and kappa opioid receptor promotes protein kinase A/cAMP-response element binding protein signaling via a Gαs-mediated mechanism. Cell Signal 2015;27:1426-38. [PMID: 25866368 DOI: 10.1016/j.cellsig.2015.03.027] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 5.0] [Reference Citation Analysis]
73 Azhdari-Zarmehri H, Semnanian S, Fathollahi Y. Orexin-a modulates firing of rat rostral ventromedial medulla neurons: an in vitro study. Cell J 2015;17:163-70. [PMID: 25870847 DOI: 10.22074/cellj.2015.524] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
74 Guo SJ, Cui Y, Huang ZZ, Liu H, Zhang XQ, Jiang JX, Xin WJ. Orexin A-mediated AKT signaling in the dentate gyrus contributes to the acquisition, expression and reinstatement of morphine-induced conditioned place preference. Addict Biol 2016;21:547-59. [PMID: 25757577 DOI: 10.1111/adb.12236] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
75 Smith RJ, Aston-Jones G. Orexin / hypocretin 1 receptor antagonist reduces heroin self-administration and cue-induced heroin seeking. Eur J Neurosci 2012;35:798-804. [PMID: 22356621 DOI: 10.1111/j.1460-9568.2012.08013.x] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 7.4] [Reference Citation Analysis]
76 Risco S, Mediavilla C. Orexin A in the ventral tegmental area enhances saccharin-induced conditioned flavor preference: The role of D1 receptors in central nucleus of amygdala. Behavioural Brain Research 2018;348:192-200. [DOI: 10.1016/j.bbr.2018.04.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
77 Berthoud HR. The neurobiology of food intake in an obesogenic environment. Proc Nutr Soc 2012;71:478-87. [PMID: 22800810 DOI: 10.1017/S0029665112000602] [Cited by in Crossref: 155] [Cited by in F6Publishing: 94] [Article Influence: 15.5] [Reference Citation Analysis]
78 Dergacheva O, Philbin K, Bateman R, Mendelowitz D. Hypocretin-1 (orexin A) prevents the effects of hypoxia/hypercapnia and enhances the GABAergic pathway from the lateral paragigantocellular nucleus to cardiac vagal neurons in the nucleus ambiguus. Neuroscience 2011;175:18-23. [PMID: 21134420 DOI: 10.1016/j.neuroscience.2010.11.067] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.6] [Reference Citation Analysis]
79 Born S, Gauvin DV, Mukherjee S, Briscoe R. Preclinical assessment of the abuse potential of the orexin receptor antagonist, suvorexant. Regul Toxicol Pharmacol 2017;86:181-92. [PMID: 28279667 DOI: 10.1016/j.yrtph.2017.03.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
80 Plaza-Zabala A, Li X, Milovanovic M, Loweth JA, Maldonado R, Berrendero F, Wolf ME. An investigation of interactions between hypocretin/orexin signaling and glutamate receptor surface expression in the rat nucleus accumbens under basal conditions and after cocaine exposure. Neurosci Lett 2013;557 Pt B:101-6. [PMID: 24262606 DOI: 10.1016/j.neulet.2013.10.038] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
81 Kenny PJ. Tobacco dependence, the insular cortex and the hypocretin connection. Pharmacol Biochem Behav 2011;97:700-7. [PMID: 20816891 DOI: 10.1016/j.pbb.2010.08.015] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 3.2] [Reference Citation Analysis]
82 Prasad AA, McNally GP. Effects of vivo morpholino knockdown of lateral hypothalamus orexin/hypocretin on renewal of alcohol seeking. PLoS One 2014;9:e110385. [PMID: 25329297 DOI: 10.1371/journal.pone.0110385] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
83 Taylor SB, Lewis CR, Olive MF. The neurocircuitry of illicit psychostimulant addiction: acute and chronic effects in humans. Subst Abuse Rehabil 2013;4:29-43. [PMID: 24648786 DOI: 10.2147/SAR.S39684] [Cited by in Crossref: 4] [Cited by in F6Publishing: 19] [Article Influence: 0.4] [Reference Citation Analysis]
84 Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci 2018;11:220. [PMID: 30002617 DOI: 10.3389/fnmol.2018.00220] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 13.8] [Reference Citation Analysis]
85 Zhang XY, Yang HD, Zhang Q, Wang Z, Wang DH. Increased feeding and food hoarding following food deprivation are associated with activation of dopamine and orexin neurons in male Brandt's voles. PLoS One 2011;6:e26408. [PMID: 22046281 DOI: 10.1371/journal.pone.0026408] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
86 Juarez B, Han MH. Diversity of Dopaminergic Neural Circuits in Response to Drug Exposure. Neuropsychopharmacology 2016;41:2424-46. [PMID: 26934955 DOI: 10.1038/npp.2016.32] [Cited by in Crossref: 70] [Cited by in F6Publishing: 66] [Article Influence: 11.7] [Reference Citation Analysis]
87 Boss C, Roch C. Recent trends in orexin research—2010 to 2015. Bioorganic & Medicinal Chemistry Letters 2015;25:2875-87. [DOI: 10.1016/j.bmcl.2015.05.012] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 6.7] [Reference Citation Analysis]
88 Lessel U, Ferrara M, Heine N, Marelli C, Carrettoni L, Pfau R, Schmidt E, Riether D. Identification of Highly Selective Orexin 1 Receptor Antagonists Driven by Structure-Based Design. J Chem Inf Model 2021;61:5893-905. [PMID: 34817173 DOI: 10.1021/acs.jcim.1c01055] [Reference Citation Analysis]
89 Facciolo RM, Crudo M, Zizza M, Giusi G, Canonaco M. α GABAA subunit-orexin receptor interactions activate learning/motivational pathways in the goldfish. Behavioural Brain Research 2012;234:349-56. [DOI: 10.1016/j.bbr.2012.07.013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
90 Gao XB, Hermes G. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals. Front Syst Neurosci 2015;9:142. [PMID: 26539086 DOI: 10.3389/fnsys.2015.00142] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
91 Akubuiro A, Bridget Zimmerman M, Boles Ponto LL, Walsh SA, Sunderland J, McCormick L, Singh M. Hyperactive hypothalamus, motivated and non-distractible chronic overeating in ADAR2 transgenic mice. Genes Brain Behav 2013;12:311-22. [PMID: 23323881 DOI: 10.1111/gbb.12020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
92 Morgan AJ, Harrod SB, Lacy RT, Stanley EM, Fadel JR. Intravenous prenatal nicotine exposure increases orexin expression in the lateral hypothalamus and orexin innervation of the ventral tegmental area in adult male rats. Drug Alcohol Depend 2013;132:562-70. [PMID: 23664126 DOI: 10.1016/j.drugalcdep.2013.04.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
93 Zhang S, Li CR. Ventral striatal dysfunction in cocaine dependence - difference mapping for subregional resting state functional connectivity. Transl Psychiatry 2018;8:119. [PMID: 29915214 DOI: 10.1038/s41398-018-0164-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
94 Matzeu A, Martin-Fardon R. Targeting the orexin system for prescription opioid use disorder: Orexin-1 receptor blockade prevents oxycodone taking and seeking in rats. Neuropharmacology 2020;164:107906. [PMID: 31841797 DOI: 10.1016/j.neuropharm.2019.107906] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
95 Kuduk SD, Winrow CJ, Coleman PJ. Orexin Receptor Antagonists in Development for Insomnia and CNS Disorders. Elsevier; 2013. pp. 73-87. [DOI: 10.1016/b978-0-12-417150-3.00006-5] [Cited by in Crossref: 9] [Article Influence: 1.0] [Reference Citation Analysis]
96 Zheng D, Zhao Y, Shen Y, Chang X, Ju S, Guo L. Orexin A-mediated stimulation of 3β-HSD expression and testosterone production through MAPK signaling pathways in primary rat Leydig cells. J Endocrinol Invest 2014;37:285-92. [DOI: 10.1007/s40618-013-0035-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
97 Berridge KC, Ho CY, Richard JM, DiFeliceantonio AG. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res 2010;1350:43-64. [PMID: 20388498 DOI: 10.1016/j.brainres.2010.04.003] [Cited by in Crossref: 487] [Cited by in F6Publishing: 450] [Article Influence: 40.6] [Reference Citation Analysis]
98 Nollet M, Leman S. Role of Orexin in the Pathophysiology of Depression: Potential for Pharmacological Intervention. CNS Drugs 2013;27:411-22. [DOI: 10.1007/s40263-013-0064-z] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 5.9] [Reference Citation Analysis]
99 Srinivasan S, Simms JA, Nielsen CK, Lieske SP, Bito-Onon JJ, Yi H, Hopf FW, Bonci A, Bartlett SE. The dual orexin/hypocretin receptor antagonist, almorexant, in the ventral tegmental area attenuates ethanol self-administration. PLoS One 2012;7:e44726. [PMID: 23028593 DOI: 10.1371/journal.pone.0044726] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 4.3] [Reference Citation Analysis]
100 Karimi S, Mesdaghinia A, Farzinpour Z, Hamidi G, Haghparast A. Reversible inactivation of the lateral hypothalamus reversed high reward choices in cost-benefit decision-making in rats. Neurobiol Learn Mem 2017;145:135-42. [PMID: 28986299 DOI: 10.1016/j.nlm.2017.10.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
101 Rodgers RJ, Wright FL, Snow NF, Taylor LJ. Orexin-1 receptor antagonism fails to reduce anxiety-like behaviour in either plus-maze-naïve or plus-maze-experienced mice. Behav Brain Res 2013;243:213-9. [PMID: 23333844 DOI: 10.1016/j.bbr.2012.12.064] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
102 Campbell EJ, Barker DJ, Nasser HM, Kaganovsky K, Dayas CV, Marchant NJ. Cue-induced food seeking after punishment is associated with increased Fos expression in the lateral hypothalamus and basolateral and medial amygdala. Behav Neurosci 2017;131:155-67. [PMID: 28221079 DOI: 10.1037/bne0000185] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
103 Baimel C, Borgland SL. Hypocretin/Orexin and Plastic Adaptations Associated with Drug Abuse. Curr Top Behav Neurosci 2017;33:283-304. [PMID: 28303403 DOI: 10.1007/7854_2016_44] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
104 Thannickal TC, John J, Shan L, Swaab DF, Wu MF, Ramanathan L, McGregor R, Chew KT, Cornford M, Yamanaka A, Inutsuka A, Fronczek R, Lammers GJ, Worley PF, Siegel JM. Opiates increase the number of hypocretin-producing cells in human and mouse brain and reverse cataplexy in a mouse model of narcolepsy. Sci Transl Med 2018;10:eaao4953. [PMID: 29950444 DOI: 10.1126/scitranslmed.aao4953] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 12.3] [Reference Citation Analysis]
105 Fokidis HB, Ma C, Radin B, Prior NH, Adomat HH, Guns ES, Soma KK. Neuropeptide Y and orexin immunoreactivity in the sparrow brain coincide with seasonal changes in energy balance and steroids. J Comp Neurol 2019;527:347-61. [DOI: 10.1002/cne.24535] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
106 Ch’ng SS, Lawrence AJ. Distribution of the orexin-1 receptor (OX1R) in the mouse forebrain and rostral brainstem: A characterisation of OX1R-eGFP mice. Journal of Chemical Neuroanatomy 2015;66-67:1-9. [DOI: 10.1016/j.jchemneu.2015.03.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
107 Namba MD, Tomek SE, Olive MF, Beckmann JS, Gipson CD. The Winding Road to Relapse: Forging a New Understanding of Cue-Induced Reinstatement Models and Their Associated Neural Mechanisms. Front Behav Neurosci 2018;12:17. [PMID: 29479311 DOI: 10.3389/fnbeh.2018.00017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
108 Plaza-Zabala A, Flores Á, Maldonado R, Berrendero F. Hypocretin/orexin signaling in the hypothalamic paraventricular nucleus is essential for the expression of nicotine withdrawal. Biol Psychiatry 2012;71:214-23. [PMID: 21831361 DOI: 10.1016/j.biopsych.2011.06.025] [Cited by in Crossref: 60] [Cited by in F6Publishing: 59] [Article Influence: 5.5] [Reference Citation Analysis]
109 Li X, Marchant NJ, Shaham Y. Opposing roles of cotransmission of dynorphin and hypocretin on reward and motivation. Proc Natl Acad Sci U S A 2014;111:5765-6. [PMID: 24706899 DOI: 10.1073/pnas.1403603111] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
110 Zhang S, Wang W, Zhornitsky S, Li CR. Resting State Functional Connectivity of the Lateral and Medial Hypothalamus in Cocaine Dependence: An Exploratory Study. Front Psychiatry 2018;9:344. [PMID: 30100886 DOI: 10.3389/fpsyt.2018.00344] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
111 Jäntti MH, Putula J, Turunen PM, Näsman J, Reijonen S, Lindqvist C, Kukkonen JP. Autocrine endocannabinoid signaling through CB1 receptors potentiates OX1 orexin receptor signaling. Mol Pharmacol 2013;83:621-32. [PMID: 23233488 DOI: 10.1124/mol.112.080523] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
112 Schmeichel BE, Berridge CW. Amphetamine acts within the lateral hypothalamic area to elicit affectively neutral arousal and reinstate drug-seeking. Int J Neuropsychopharmacol 2014;17:63-75. [PMID: 23895988 DOI: 10.1017/S1461145713000734] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
113 Farahimanesh S, Karimi S, Haghparast A. Role of orexin-1 receptors in the dorsal hippocampus (CA1 region) in expression and extinction of the morphine-induced conditioned place preference in the rats. Peptides 2018;101:25-31. [DOI: 10.1016/j.peptides.2017.12.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
114 Rashidy-pour A, Moradi M, Fatahi Z, Haghparast A, Haghparast A. Role of intra-hippocampal orexin 1 and orexin 2 receptors in conditioned place preference induced by chemical stimulation of the lateral hypothalamus. Behavioural Brain Research 2015;279:106-11. [DOI: 10.1016/j.bbr.2014.10.051] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
115 Chase MH. A unified survival theory of the functioning of the hypocretinergic system. J Appl Physiol (1985) 2013;115:954-71. [PMID: 23640599 DOI: 10.1152/japplphysiol.00700.2012] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
116 Voorhees CM, Cunningham CL. Involvement of the orexin/hypocretin system in ethanol conditioned place preference. Psychopharmacology (Berl) 2011;214:805-18. [PMID: 21107540 DOI: 10.1007/s00213-010-2082-6] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 3.5] [Reference Citation Analysis]
117 Horn H, Böhme B, Dietrich L, Koch M. Endocannabinoids in Body Weight Control. Pharmaceuticals (Basel) 2018;11:E55. [PMID: 29849009 DOI: 10.3390/ph11020055] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
118 Davis JF, Tracy AL, Schurdak JD, Magrisso IJ, Grayson BE, Seeley RJ, Benoit SC. Roux en Y gastric bypass increases ethanol intake in the rat. Obes Surg 2013;23:920-30. [PMID: 23440511 DOI: 10.1007/s11695-013-0884-4] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
119 Ichinose T, Tanimoto H, Yamagata N. Behavioral Modulation by Spontaneous Activity of Dopamine Neurons. Front Syst Neurosci 2017;11:88. [PMID: 29321731 DOI: 10.3389/fnsys.2017.00088] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
120 Dehkordi O, Rose JE, Dávila-García MI, Millis RM, Mirzaei SA, Manaye KF, Jayam-Trouth A. Neuroanatomical Relationships between Orexin/Hypocretin-Containing Neurons/Nerve Fibers and Nicotine-Induced c-Fos-Activated Cells of the Reward-Addiction Neurocircuitry. J Alcohol Drug Depend 2017;5:273. [PMID: 29038792 DOI: 10.4172/2329-6488.1000273] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
121 Ciriello J, Caverson MM, Li Z. Effects of hypocretin and norepinephrine interaction in bed nucleus of the stria terminalis on arterial pressure. Neuroscience 2013;255:278-91. [PMID: 24070630 DOI: 10.1016/j.neuroscience.2013.09.032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
122 Miller RA, Winrow CJ, Spellman DS, Song Q, Reiss DR, Conway JP, Taylor RR, Coleman PJ, Hendrickson RC, Renger JJ. Quantitative proteomics in laser capture microdissected sleep nuclei from rat brain. J Neurogenet 2014;28:136-45. [PMID: 24579665 DOI: 10.3109/01677063.2014.883389] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
123 Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018;235:1663-80. [PMID: 29508004 DOI: 10.1007/s00213-018-4871-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
124 Pan YP, Liu C, Liu MF, Wang Y, Bian K, Xue Y, Chen L. Involvement of orexin-A in the regulation of neuronal activity and emotional behaviors in central amygdala in rats. Neuropeptides 2020;80:102019. [PMID: 31980205 DOI: 10.1016/j.npep.2020.102019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
125 Naneix F, Darlot F, Coutureau E, Cador M. Long-lasting deficits in hedonic and nucleus accumbens reactivity to sweet rewards by sugar overconsumption during adolescence. Eur J Neurosci 2016;43:671-80. [PMID: 26762310 DOI: 10.1111/ejn.13149] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
126 Sagarkar S, Choudhary AG, Balasubramanian N, Awathale SN, Somalwar AR, Pawar N, Kokare DM, Subhedar NK, Sakharkar AJ. LSD1-BDNF activity in lateral hypothalamus-medial forebrain bundle area is essential for reward seeking behavior. Prog Neurobiol 2021;202:102048. [PMID: 33798614 DOI: 10.1016/j.pneurobio.2021.102048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
127 Nollet M, Gaillard P, Tanti A, Girault V, Belzung C, Leman S. Neurogenesis-independent antidepressant-like effects on behavior and stress axis response of a dual orexin receptor antagonist in a rodent model of depression. Neuropsychopharmacology 2012;37:2210-21. [PMID: 22713907 DOI: 10.1038/npp.2012.70] [Cited by in Crossref: 91] [Cited by in F6Publishing: 89] [Article Influence: 9.1] [Reference Citation Analysis]
128 Anderson G, Rodriguez M, Reiter RJ. Multiple Sclerosis: Melatonin, Orexin, and Ceramide Interact with Platelet Activation Coagulation Factors and Gut-Microbiome-Derived Butyrate in the Circadian Dysregulation of Mitochondria in Glia and Immune Cells. Int J Mol Sci 2019;20:E5500. [PMID: 31694154 DOI: 10.3390/ijms20215500] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
129 Moorman DE, James MH, Kilroy EA, Aston-Jones G. Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res 2017;1654:34-42. [PMID: 27771284 DOI: 10.1016/j.brainres.2016.10.018] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 8.5] [Reference Citation Analysis]
130 Kallupi M, Cannella N, Economidou D, Ubaldi M, Ruggeri B, Weiss F, Massi M, Marugan J, Heilig M, Bonnavion P, de Lecea L, Ciccocioppo R. Neuropeptide S facilitates cue-induced relapse to cocaine seeking through activation of the hypothalamic hypocretin system. Proc Natl Acad Sci U S A 2010;107:19567-72. [PMID: 20974945 DOI: 10.1073/pnas.1004100107] [Cited by in Crossref: 64] [Cited by in F6Publishing: 64] [Article Influence: 5.3] [Reference Citation Analysis]
131 Hopf FW. Recent perspectives on orexin/hypocretin promotion of addiction-related behaviors. Neuropharmacology 2020;168:108013. [PMID: 32092435 DOI: 10.1016/j.neuropharm.2020.108013] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
132 Kaya E, Gozen O, Ugur M, Koylu EO, Kanit L, Balkan B. Nicotine regulates cocaine-amphetamine-Regulated Transcript (Cart) in the mesocorticolimbic system. Synapse 2016;70:283-92. [PMID: 26990424 DOI: 10.1002/syn.21903] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
133 Dayan P. Twenty-five lessons from computational neuromodulation. Neuron 2012;76:240-56. [PMID: 23040818 DOI: 10.1016/j.neuron.2012.09.027] [Cited by in Crossref: 98] [Cited by in F6Publishing: 83] [Article Influence: 9.8] [Reference Citation Analysis]
134 Morikawa H, Morrisett RA. Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. Int Rev Neurobiol 2010;91:235-88. [PMID: 20813245 DOI: 10.1016/S0074-7742(10)91008-8] [Cited by in Crossref: 86] [Cited by in F6Publishing: 58] [Article Influence: 7.2] [Reference Citation Analysis]
135 Harrington ME. Neurobiological studies of fatigue. Prog Neurobiol 2012;99:93-105. [PMID: 22841649 DOI: 10.1016/j.pneurobio.2012.07.004] [Cited by in Crossref: 65] [Cited by in F6Publishing: 53] [Article Influence: 6.5] [Reference Citation Analysis]
136 Kaplan GB, Lakis GA, Zhoba H. Sleep-Wake and Arousal Dysfunctions in Post-Traumatic Stress Disorder:Role of Orexin Systems. Brain Res Bull 2022:S0361-9230(22)00121-6. [PMID: 35618150 DOI: 10.1016/j.brainresbull.2022.05.006] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
137 Romanova IV, Morina IY, Shpakov AO. Localization of 5-HT2C and 5-HT1B Serotonin Receptors in Orexinergic Neurons of the Hypothlamic Perifornical Area of Rodents. J Evol Biochem Phys 2020;56:153-9. [DOI: 10.1134/s0022093020020076] [Reference Citation Analysis]
138 Rorabaugh JM, Stratford JM, Zahniser NR. A relationship between reduced nucleus accumbens shell and enhanced lateral hypothalamic orexin neuronal activation in long-term fructose bingeing behavior. PLoS One. 2014;9:e95019. [PMID: 24736531 DOI: 10.1371/journal.pone.0095019] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
139 Bueno D, Lima LB, Souza R, Gonçalves L, Leite F, Souza S, Furigo IC, Donato J, Metzger M. Connections of the laterodorsal tegmental nucleus with the habenular‐interpeduncular‐raphe system. J Comp Neurol 2019;527:3046-72. [DOI: 10.1002/cne.24729] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
140 Matzeu A, Martin-fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022;15:787595. [DOI: 10.3389/fnbeh.2021.787595] [Reference Citation Analysis]
141 Adeghate E. Orexins: tissue localization, functions, and its relation to insulin secretion and diabetes mellitus. Vitam Horm. 2012;89:111-133. [PMID: 22640611 DOI: 10.1016/b978-0-12-394623-2.00007-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
142 Furlanetti LL, Döbrössy MD, Aranda IA, Coenen VA. Feasibility and safety of continuous and chronic bilateral deep brain stimulation of the medial forebrain bundle in the naïve Sprague-Dawley rat. Behav Neurol 2015;2015:256196. [PMID: 25960609 DOI: 10.1155/2015/256196] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
143 Stanley EM, Fadel JR. Aging-related alterations in orexin/hypocretin modulation of septo-hippocampal amino acid neurotransmission. Neuroscience 2011;195:70-9. [PMID: 21884758 DOI: 10.1016/j.neuroscience.2011.08.033] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
144 Riahi E, Khodagholi F, Haghparast A. Role of dorsal hippocampal orexin-1 receptors in associating morphine reward with contextual stimuli. Behav Pharmacol 2013;24:237-48. [PMID: 23787292 DOI: 10.1097/FBP.0b013e3283635ee9] [Cited by in Crossref: 26] [Cited by in F6Publishing: 4] [Article Influence: 2.9] [Reference Citation Analysis]
145 Volkow ND, Wang GJ, Tomasi D, Baler RD. Obesity and addiction: neurobiological overlaps. Obes Rev 2013;14:2-18. [PMID: 23016694 DOI: 10.1111/j.1467-789X.2012.01031.x] [Cited by in Crossref: 431] [Cited by in F6Publishing: 229] [Article Influence: 43.1] [Reference Citation Analysis]
146 Castro DC, Cole SL, Berridge KC. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci 2015;9:90. [PMID: 26124708 DOI: 10.3389/fnsys.2015.00090] [Cited by in Crossref: 139] [Cited by in F6Publishing: 122] [Article Influence: 19.9] [Reference Citation Analysis]
147 Assar N, Mahmoudi D, Mousavi Z, Zarrabian S, Haghparast A. Role of orexin-1 and -2 receptors within the nucleus accumbens in the acquisition of sensitization to morphine in rats. Behav Brain Res 2019;373:112090. [PMID: 31325517 DOI: 10.1016/j.bbr.2019.112090] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
148 Chen YW, Barson JR, Chen A, Hoebel BG, Leibowitz SF. Opioids in the perifornical lateral hypothalamus suppress ethanol drinking. Alcohol 2013;47:31-8. [PMID: 23199698 DOI: 10.1016/j.alcohol.2012.11.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
149 Hawkins RD. Possible contributions of a novel form of synaptic plasticity in Aplysia to reward, memory, and their dysfunctions in mammalian brain. Learn Mem 2013;20:580-91. [PMID: 24049187 DOI: 10.1101/lm.031237.113] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
150 Kukkonen JP. Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. Am J Physiol Cell Physiol 2013;304:C2-32. [PMID: 23034387 DOI: 10.1152/ajpcell.00227.2012] [Cited by in Crossref: 93] [Cited by in F6Publishing: 91] [Article Influence: 9.3] [Reference Citation Analysis]
151 Porter-Stransky KA, Bentzley BS, Aston-Jones G. Individual differences in orexin-I receptor modulation of motivation for the opioid remifentanil. Addict Biol 2017;22:303-17. [PMID: 26598295 DOI: 10.1111/adb.12323] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 8.6] [Reference Citation Analysis]
152 Matzeu A, Martin-Fardon R. Targeting the Orexin System for Prescription Opioid Use Disorder. Brain Sci 2020;10:E226. [PMID: 32290110 DOI: 10.3390/brainsci10040226] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
153 Gotter AL, Webber AL, Coleman PJ, Renger JJ, Winrow CJ. International Union of Basic and Clinical Pharmacology. LXXXVI. Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2012;64:389-420. [DOI: 10.1124/pr.111.005546] [Cited by in Crossref: 114] [Cited by in F6Publishing: 107] [Article Influence: 11.4] [Reference Citation Analysis]
154 King S, Isaacs A, O'farrell E, Abizaid A. Motivation to obtain preferred foods is enhanced by ghrelin in the ventral tegmental area. Hormones and Behavior 2011;60:572-80. [DOI: 10.1016/j.yhbeh.2011.08.006] [Cited by in Crossref: 69] [Cited by in F6Publishing: 63] [Article Influence: 6.3] [Reference Citation Analysis]
155 Sakurai T. The role of orexin in motivated behaviours. Nat Rev Neurosci 2014;15:719-31. [DOI: 10.1038/nrn3837] [Cited by in Crossref: 244] [Cited by in F6Publishing: 221] [Article Influence: 30.5] [Reference Citation Analysis]
156 Nangunoori RK, Tomycz ND, Oh MY, Whiting DM. Deep Brain Stimulation for Obesity: From a Theoretical Framework to Practical Application. Neural Plast 2016;2016:7971460. [PMID: 26819774 DOI: 10.1155/2016/7971460] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
157 Huff ML, LaLumiere RT. The rostromedial tegmental nucleus modulates behavioral inhibition following cocaine self-administration in rats. Neuropsychopharmacology 2015;40:861-73. [PMID: 25257212 DOI: 10.1038/npp.2014.260] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
158 Terrill SJ, Hyde KM, Kay KE, Greene HE, Maske CB, Knierim AE, Davis JF, Williams DL. Ventral tegmental area orexin 1 receptors promote palatable food intake and oppose postingestive negative feedback. Am J Physiol Regul Integr Comp Physiol 2016;311:R592-9. [PMID: 27385732 DOI: 10.1152/ajpregu.00097.2016] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 4.7] [Reference Citation Analysis]
159 Lüscher C. Cocaine-evoked synaptic plasticity of excitatory transmission in the ventral tegmental area. Cold Spring Harb Perspect Med 2013;3:a012013. [PMID: 23637310 DOI: 10.1101/cshperspect.a012013] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
160 Maniscalco JW, Rinaman L. Vagal Interoceptive Modulation of Motivated Behavior. Physiology (Bethesda) 2018;33:151-67. [PMID: 29412062 DOI: 10.1152/physiol.00036.2017] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
161 Fatahi Z, Assar N, Mahmoudi D, Pahlevani P, Moradi M, Haghparast A. Functional interaction between the orexin-1 and CB1 receptors within the nucleus accumbens in the conditioned place preference induced by the lateral hypothalamus stimulation. Pharmacology Biochemistry and Behavior 2015;132:42-8. [DOI: 10.1016/j.pbb.2015.02.023] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
162 García-Brito S, Aldavert-Vera L, Huguet G, Kádár E, Segura-Torres P. Orexin-1 receptor blockade differentially affects spatial and visual discrimination memory facilitation by intracranial self-stimulation. Neurobiol Learn Mem 2020;169:107188. [PMID: 32061874 DOI: 10.1016/j.nlm.2020.107188] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
163 Huang SC, Li TL, Lee YH, Dai YE, Chen YC, Hwang LL. Role of the orexin 2 receptor in palatable-food consumption-associated cardiovascular reactivity in spontaneously hypertensive rats. Sci Rep 2018;8:12703. [PMID: 30140065 DOI: 10.1038/s41598-018-30970-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
164 Farahmandfar M, Kadivar M, Rastipisheh S. Blockade of dorsal hippocampal orexin-1 receptors impaired morphine-induced state-dependent learning. Neuropeptides 2016;60:13-9. [DOI: 10.1016/j.npep.2016.10.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
165 Zarepour L, Komaki A, Shahidi S, Sarihi A, Haghparast A. Potentiation of rewarding properties of morphine by concurrent chemical stimulation of lateral hypothalamus in rats. Pharmacology Biochemistry and Behavior 2013;107:36-41. [DOI: 10.1016/j.pbb.2013.03.018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
166 Skibicka KP, Dickson SL. Ghrelin and food reward: the story of potential underlying substrates. Peptides 2011;32:2265-73. [PMID: 21621573 DOI: 10.1016/j.peptides.2011.05.016] [Cited by in Crossref: 69] [Cited by in F6Publishing: 76] [Article Influence: 6.3] [Reference Citation Analysis]
167 Berro LF, Moreira-Junior EDC, Rowlett JK. The dual orexin receptor antagonist almorexant blocks the sleep-disrupting and daytime stimulant effects of methamphetamine in rhesus monkeys. Drug Alcohol Depend 2021;227:108930. [PMID: 34358767 DOI: 10.1016/j.drugalcdep.2021.108930] [Reference Citation Analysis]
168 Duncan MJ, Franklin KM, Peng X, Yun C, Legan SJ. Circadian rhythm disruption by a novel running wheel: roles of exercise and arousal in blockade of the luteinizing hormone surge. Physiol Behav 2014;131:7-16. [PMID: 24727338 DOI: 10.1016/j.physbeh.2014.04.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
169 Mahler SV, Smith RJ, Aston-Jones G. Interactions between VTA orexin and glutamate in cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2013;226:687-98. [PMID: 22411428 DOI: 10.1007/s00213-012-2681-5] [Cited by in Crossref: 96] [Cited by in F6Publishing: 94] [Article Influence: 9.6] [Reference Citation Analysis]
170 Amador A, Wang Y, Banerjee S, Kameneka TM, Solt LA, Burris TP. Pharmacological and Genetic Modulation of REV-ERB Activity and Expression Affects Orexigenic Gene Expression. PLoS One 2016;11:e0151014. [PMID: 26963516 DOI: 10.1371/journal.pone.0151014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
171 Lee YH, Tsai MC, Li TL, Dai YW, Huang SC, Hwang LL. Spontaneously hypertensive rats have more orexin neurons in the hypothalamus and enhanced orexinergic input and orexin 2 receptor-associated nitric oxide signalling in the rostral ventrolateral medulla. Exp Physiol 2015;100:993-1007. [PMID: 26096870 DOI: 10.1113/EP085016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 12] [Article Influence: 4.4] [Reference Citation Analysis]
172 Delaere F, Akaoka H, De Vadder F, Duchampt A, Mithieux G. Portal glucose influences the sensory, cortical and reward systems in rats. Eur J Neurosci 2013;38:3476-86. [DOI: 10.1111/ejn.12354] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
173 Parsania S, Moradi M, Fatahi Z, Haghparast A. Involvement of orexin-1 and orexin-2 receptors within the dentate gyrus of the hippocampus in the acquisition, expression and extinction of lateral hypothalamic-induced conditioned place preference in the rats. Brain Research 2016;1639:149-60. [DOI: 10.1016/j.brainres.2016.03.006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
174 Tung LW, Lu GL, Lee YH, Yu L, Lee HJ, Leishman E, Bradshaw H, Hwang LL, Hung MS, Mackie K, Zimmer A, Chiou LC. Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons. Nat Commun 2016;7:12199. [PMID: 27448020 DOI: 10.1038/ncomms12199] [Cited by in Crossref: 60] [Cited by in F6Publishing: 55] [Article Influence: 10.0] [Reference Citation Analysis]
175 Leri F, Zhou Y, Carmichael B, Cummins E, Kreek MJ. Treatment-like steady-state methadone in rats interferes with incubation of cocaine sensitization and associated alterations in gene expression. Eur Neuropsychopharmacol 2012;22:143-52. [PMID: 21745729 DOI: 10.1016/j.euroneuro.2011.06.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
176 Liu JJ, Mirabella VR, Pang ZP. Cell type- and pathway-specific synaptic regulation of orexin neurocircuitry. Brain Res 2020;1731:145974. [PMID: 30296428 DOI: 10.1016/j.brainres.2018.10.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
177 Mena JD, Selleck RA, Baldo BA. Mu-opioid stimulation in rat prefrontal cortex engages hypothalamic orexin/hypocretin-containing neurons, and reveals dissociable roles of nucleus accumbens and hypothalamus in cortically driven feeding. J Neurosci 2013;33:18540-52. [PMID: 24259576 DOI: 10.1523/JNEUROSCI.3323-12.2013] [Cited by in Crossref: 43] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
178 Valdivia S, Patrone A, Reynaldo M, Perello M. Acute high fat diet consumption activates the mesolimbic circuit and requires orexin signaling in a mouse model. PLoS One 2014;9:e87478. [PMID: 24466352 DOI: 10.1371/journal.pone.0087478] [Cited by in Crossref: 66] [Cited by in F6Publishing: 62] [Article Influence: 8.3] [Reference Citation Analysis]
179 Kozuka C, Yabiku K, Takayama C, Matsushita M, Shimabukuro M. Natural food science based novel approach toward prevention and treatment of obesity and type 2 diabetes: recent studies on brown rice and γ-oryzanol. Obes Res Clin Pract. 2013;7:e165-e172. [PMID: 23697584 DOI: 10.1016/j.orcp.2013.02.003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 5.3] [Reference Citation Analysis]
180 Biegańska K, Sokołowska P, Jöhren O, Zawilska JB. Orexin A suppresses the growth of rat C6 glioma cells via a caspase-dependent mechanism. J Mol Neurosci 2012;48:706-12. [PMID: 22588980 DOI: 10.1007/s12031-012-9799-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
181 Suarez AN, Liu CM, Cortella AM, Noble EE, Kanoski SE. Ghrelin and Orexin Interact to Increase Meal Size Through a Descending Hippocampus to Hindbrain Signaling Pathway. Biol Psychiatry 2020;87:1001-11. [PMID: 31836175 DOI: 10.1016/j.biopsych.2019.10.012] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
182 Sheth C, Furlong TM, Keefe KA, Taha SA. The lateral hypothalamus to lateral habenula projection, but not the ventral pallidum to lateral habenula projection, regulates voluntary ethanol consumption. Behav Brain Res 2017;328:195-208. [PMID: 28432009 DOI: 10.1016/j.bbr.2017.04.029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
183 Castro DC, Berridge KC. Advances in the neurobiological bases for food 'liking' versus 'wanting'. Physiol Behav 2014;136:22-30. [PMID: 24874776 DOI: 10.1016/j.physbeh.2014.05.022] [Cited by in Crossref: 91] [Cited by in F6Publishing: 79] [Article Influence: 11.4] [Reference Citation Analysis]
184 Pourhamzeh M, Mozafari R, Jamali S, Motamedi F, Ahadi R, Haghparast A. Involvement of orexin receptors within the hippocampal dentate gyrus in morphine-induced reinstatement in food-deprived rats. Behav Brain Res 2019;375:112155. [PMID: 31422071 DOI: 10.1016/j.bbr.2019.112155] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
185 Boughton CK, Murphy KG. Can neuropeptides treat obesity? A review of neuropeptides and their potential role in the treatment of obesity. Br J Pharmacol 2013;170:1333-48. [PMID: 23121386 DOI: 10.1111/bph.12037] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
186 Matzeu A, Zamora-Martinez ER, Martin-Fardon R. The paraventricular nucleus of the thalamus is recruited by both natural rewards and drugs of abuse: recent evidence of a pivotal role for orexin/hypocretin signaling in this thalamic nucleus in drug-seeking behavior. Front Behav Neurosci 2014;8:117. [PMID: 24765071 DOI: 10.3389/fnbeh.2014.00117] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 6.1] [Reference Citation Analysis]
187 Plaza-Zabala A, Martín-García E, de Lecea L, Maldonado R, Berrendero F. Hypocretins regulate the anxiogenic-like effects of nicotine and induce reinstatement of nicotine-seeking behavior. J Neurosci 2010;30:2300-10. [PMID: 20147556 DOI: 10.1523/JNEUROSCI.5724-09.2010] [Cited by in Crossref: 124] [Cited by in F6Publishing: 81] [Article Influence: 10.3] [Reference Citation Analysis]
188 Jackson KJ, Muldoon PP, De Biasi M, Damaj MI. New mechanisms and perspectives in nicotine withdrawal. Neuropharmacology 2015;96:223-34. [PMID: 25433149 DOI: 10.1016/j.neuropharm.2014.11.009] [Cited by in Crossref: 56] [Cited by in F6Publishing: 47] [Article Influence: 7.0] [Reference Citation Analysis]
189 Thompson JL, Borgland SL. A role for hypocretin/orexin in motivation. Behav Brain Res 2011;217:446-53. [PMID: 20920531 DOI: 10.1016/j.bbr.2010.09.028] [Cited by in Crossref: 68] [Cited by in F6Publishing: 74] [Article Influence: 6.2] [Reference Citation Analysis]
190 Flores Á, Maldonado R, Berrendero F. The hypocretin/orexin receptor-1 as a novel target to modulate cannabinoid reward. Biol Psychiatry 2014;75:499-507. [PMID: 23896204 DOI: 10.1016/j.biopsych.2013.06.012] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
191 Kaufling J, Aston-Jones G. Persistent Adaptations in Afferents to Ventral Tegmental Dopamine Neurons after Opiate Withdrawal. J Neurosci 2015;35:10290-303. [PMID: 26180204 DOI: 10.1523/JNEUROSCI.0715-15.2015] [Cited by in Crossref: 46] [Cited by in F6Publishing: 30] [Article Influence: 6.6] [Reference Citation Analysis]
192 Taslimi Z, Haghparast A, Hassanpour-ezatti M, Safari M. Chemical stimulation of the lateral hypothalamus induces conditioned place preference in rats: Involvement of OX1 and CB1 receptors in the ventral tegmental area. Behavioural Brain Research 2011;217:41-6. [DOI: 10.1016/j.bbr.2010.10.007] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 4.4] [Reference Citation Analysis]
193 Howick K, Griffin BT, Cryan JF, Schellekens H. From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation. Int J Mol Sci 2017;18:E273. [PMID: 28134808 DOI: 10.3390/ijms18020273] [Cited by in Crossref: 70] [Cited by in F6Publishing: 59] [Article Influence: 14.0] [Reference Citation Analysis]
194 James MH, Charnley JL, Levi EM, Jones E, Yeoh JW, Smith DW, Dayas CV. Orexin-1 receptor signalling within the ventral tegmental area, but not the paraventricular thalamus, is critical to regulating cue-induced reinstatement of cocaine-seeking. Int J Neuropsychopharmacol 2011;14:684-90. [PMID: 21447232 DOI: 10.1017/S1461145711000423] [Cited by in Crossref: 89] [Cited by in F6Publishing: 62] [Article Influence: 8.1] [Reference Citation Analysis]
195 Blacktop JM, Todd RP, Sorg BA. Role of perineuronal nets in the anterior dorsal lateral hypothalamic area in the acquisition of cocaine-induced conditioned place preference and self-administration. Neuropharmacology 2017;118:124-36. [PMID: 28322980 DOI: 10.1016/j.neuropharm.2017.03.018] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 5.4] [Reference Citation Analysis]
196 Mantyh WG, Auger RR, Morgenthaler TI, Silber MH, Moore WR. Examining the Frequency of Stimulant Misuse among Patients with Primary Disorders of Hypersomnolence: A Retrospective Cohort Study. J Clin Sleep Med 2016;12:659-62. [PMID: 26943713 DOI: 10.5664/jcsm.5788] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
197 James MH, Mahler SV, Moorman DE, Aston-Jones G. A Decade of Orexin/Hypocretin and Addiction: Where Are We Now? Curr Top Behav Neurosci 2017;33:247-81. [PMID: 28012090 DOI: 10.1007/7854_2016_57] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 16.0] [Reference Citation Analysis]
198 Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Cifani C, Micioni Di Bonaventura MV. Assessing the role of ghrelin and the enzyme ghrelin O-acyltransferase (GOAT) system in food reward, food motivation, and binge eating behavior. Pharmacol Res 2021;172:105847. [PMID: 34438062 DOI: 10.1016/j.phrs.2021.105847] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
199 Zarrabian S, Riahi E, Karimi S, Razavi Y, Haghparast A. The potential role of the orexin reward system in future treatments for opioid drug abuse. Brain Research 2020;1731:146028. [DOI: 10.1016/j.brainres.2018.11.023] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
200 Hata T, Chen J, Ebihara K, Date Y, Ishida Y, Nakahara D. Intra-ventral tegmental area or intracerebroventricular orexin-A increases the intra-cranial self-stimulation threshold via activation of the corticotropin-releasing factor system in rats. Eur J Neurosci 2011;34:816-26. [PMID: 21848921 DOI: 10.1111/j.1460-9568.2011.07808.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
201 Haghparast A, Fatahi Z, Arezoomandan R, Karimi S, Taslimi Z, Zarrabian S. Functional roles of orexin/hypocretin receptors in reward circuit. Prog Brain Res 2017;235:139-54. [PMID: 29054286 DOI: 10.1016/bs.pbr.2017.08.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
202 Chen YW, Barson JR, Chen A, Hoebel BG, Leibowitz SF. Hypothalamic peptides controlling alcohol intake: differential effects on microstructure of drinking bouts. Alcohol 2014;48:657-64. [PMID: 25241055 DOI: 10.1016/j.alcohol.2014.08.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
203 Morales I, Berridge KC. 'Liking' and 'wanting' in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav 2020;227:113152. [PMID: 32846152 DOI: 10.1016/j.physbeh.2020.113152] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]
204 Somalwar AR, Shelkar GP, Subhedar NK, Kokare DM. The role of neuropeptide CART in the lateral hypothalamic-ventral tegmental area (LH-VTA) circuit in motivation. Behavioural Brain Research 2017;317:340-9. [DOI: 10.1016/j.bbr.2016.09.054] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
205 Reissner KJ, Sartor GC, Vazey EM, Dunn TE, Aston-Jones G, Kalivas PW. Use of vivo-morpholinos for control of protein expression in the adult rat brain. J Neurosci Methods 2012;203:354-60. [PMID: 22027492 DOI: 10.1016/j.jneumeth.2011.10.009] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 2.7] [Reference Citation Analysis]
206 Flores A, Maldonado R, Berrendero F. Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far. Front Neurosci 2013;7:256. [PMID: 24391536 DOI: 10.3389/fnins.2013.00256] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
207 Howard D, Negraes P, Voineskos AN, Kaplan AS, Muotri AR, Duvvuri V, French L. Molecular neuroanatomy of anorexia nervosa. Sci Rep 2020;10:11411. [PMID: 32651428 DOI: 10.1038/s41598-020-67692-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
208 Mahmoudi D, Assar N, Mousavi Z, Katebi SN, Azizi P, Haghparast A. The orexin receptors in the ventral tegmental area are involved in the development of sensitization to expression of morphine-induced preference in rats. Behav Pharmacol 2020;31:759-67. [PMID: 32925229 DOI: 10.1097/FBP.0000000000000587] [Reference Citation Analysis]
209 Romanova EV, Rubakhin SS, Ossyra JR, Zombeck JA, Nosek MR, Sweedler JV, Rhodes JS. Differential peptidomics assessment of strain and age differences in mice in response to acute cocaine administration. J Neurochem 2015;135:1038-48. [PMID: 26223348 DOI: 10.1111/jnc.13265] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
210 Plaza-Zabala A, Maldonado R, Berrendero F. The hypocretin/orexin system: implications for drug reward and relapse. Mol Neurobiol 2012;45:424-39. [PMID: 22430644 DOI: 10.1007/s12035-012-8255-z] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.5] [Reference Citation Analysis]
211 Cruz HG, Hoever P, Chakraborty B, Schoedel K, Sellers EM, Dingemanse J. Assessment of the Abuse Liability of a Dual Orexin Receptor Antagonist: A Crossover Study of Almorexant and Zolpidem in Recreational Drug Users. CNS Drugs 2014;28:361-72. [DOI: 10.1007/s40263-014-0150-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
212 Zeng J, Zou Y, Zhang Q. Social competition factor influences the neural response to rewards: an ERP study. Brain Res 2013;1501:12-20. [PMID: 23357471 DOI: 10.1016/j.brainres.2013.01.030] [Cited by in Crossref: 3] [Article Influence: 0.3] [Reference Citation Analysis]
213 Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018;248:473-503. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
214 Ahmadi S, Zobeiri M, Mohammadi Talvar S, Masoudi K, Khanizad A, Fotouhi S, Bradburn S. Differential expression of H19, BC1, MIAT1, and MALAT1 long non-coding RNAs within key brain reward regions after repeated morphine treatment. Behav Brain Res 2021;414:113478. [PMID: 34302875 DOI: 10.1016/j.bbr.2021.113478] [Reference Citation Analysis]
215 Marchant NJ, Rabei R, Kaganovsky K, Caprioli D, Bossert JM, Bonci A, Shaham Y. A critical role of lateral hypothalamus in context-induced relapse to alcohol seeking after punishment-imposed abstinence. J Neurosci 2014;34:7447-57. [PMID: 24872550 DOI: 10.1523/JNEUROSCI.0256-14.2014] [Cited by in Crossref: 44] [Cited by in F6Publishing: 30] [Article Influence: 5.5] [Reference Citation Analysis]
216 Teegala SB, Sheng Z, Dalal MS, Hirschberg PR, Beck KD, Routh VH. Lateral hypothalamic orexin glucose-inhibited neurons may regulate reward-based feeding by modulating glutamate transmission in the ventral tegmental area. Brain Res 2020;1731:145808. [PMID: 29787770 DOI: 10.1016/j.brainres.2018.05.025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
217 Frascella J, Potenza MN, Brown LL, Childress AR. Shared brain vulnerabilities open the way for nonsubstance addictions: carving addiction at a new joint? Ann N Y Acad Sci 2010;1187:294-315. [PMID: 20201859 DOI: 10.1111/j.1749-6632.2009.05420.x] [Cited by in Crossref: 122] [Cited by in F6Publishing: 100] [Article Influence: 10.2] [Reference Citation Analysis]
218 D’addario C, Micioni Di Bonaventura M, Pucci M, Romano A, Gaetani S, Ciccocioppo R, Cifani C, Maccarrone M. Endocannabinoid signaling and food addiction. Neuroscience & Biobehavioral Reviews 2014;47:203-24. [DOI: 10.1016/j.neubiorev.2014.08.008] [Cited by in Crossref: 80] [Cited by in F6Publishing: 69] [Article Influence: 10.0] [Reference Citation Analysis]
219 Di Sebastiano AR, Yong-Yow S, Wagner L, Lehman MN, Coolen LM. Orexin mediates initiation of sexual behavior in sexually naive male rats, but is not critical for sexual performance. Horm Behav 2010;58:397-404. [PMID: 20541554 DOI: 10.1016/j.yhbeh.2010.06.004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
220 Haghparast A, Omranifard A, Arezoomandan R, Ghalandari-shamami M, Taslimi Z, Vafaei AA, Rashidy-pour A. Involvement of dopaminergic receptors of the rat nucleus accumbens in decreasing the conditioned place preference induced by lateral hypothalamus stimulation. Neuroscience Letters 2013;556:10-4. [DOI: 10.1016/j.neulet.2013.09.062] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
221 Baimel C, Borgland SL, Corrigall W. Cocaine and Nicotine Research Illustrates a Range of Hypocretin Mechanisms in Addiction. Sleep Hormones. Elsevier; 2012. pp. 291-313. [DOI: 10.1016/b978-0-12-394623-2.00016-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
222 Cruz F, Alves F, Leão R, Planeta C, Crestani C. Role of the bed nucleus of the stria terminalis in cardiovascular changes following chronic treatment with cocaine and testosterone: A role beyond drug seeking in addiction? Neuroscience 2013;253:29-39. [DOI: 10.1016/j.neuroscience.2013.08.034] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
223 Panhelainen AE, Korpi ER. Evidence for a role of inhibition of orexinergic neurons in the anxiolytic and sedative effects of diazepam: A c-Fos study. Pharmacol Biochem Behav 2012;101:115-24. [PMID: 22210490 DOI: 10.1016/j.pbb.2011.12.011] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.4] [Reference Citation Analysis]
224 Gorwood P, Blanchet-Collet C, Chartrel N, Duclos J, Dechelotte P, Hanachi M, Fetissov S, Godart N, Melchior JC, Ramoz N, Rovere-Jovene C, Tolle V, Viltart O, Epelbaum J. New Insights in Anorexia Nervosa. Front Neurosci 2016;10:256. [PMID: 27445651 DOI: 10.3389/fnins.2016.00256] [Cited by in Crossref: 89] [Cited by in F6Publishing: 46] [Article Influence: 14.8] [Reference Citation Analysis]
225 Yazdi F, Jahangirvand M, Pirasteh A, Moradi M, Haghparast A. Functional interaction between OX2 and CB1 receptors in the ventral tegmental area and the nucleus accumbens in response to place preference induced by chemical stimulation of the lateral hypothalamus. Pharmacology Biochemistry and Behavior 2015;139:39-46. [DOI: 10.1016/j.pbb.2015.10.012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
226 Noritake A, Nakamura K. Encoding prediction signals during appetitive and aversive Pavlovian conditioning in the primate lateral hypothalamus. Journal of Neurophysiology 2019;121:396-417. [DOI: 10.1152/jn.00247.2018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
227 Adeghate E, Lotfy M, D'Souza C, Alseiari SM, Alsaadi AA, Qahtan SA. Hypocretin/orexin modulates body weight and the metabolism of glucose and insulin. Diabetes Metab Res Rev 2020;36:e3229. [PMID: 31655012 DOI: 10.1002/dmrr.3229] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
228 Zarepour L, Fatahi Z, Sarihi A, Haghparast A. Blockade of orexin-1 receptors in the ventral tegmental area could attenuate the lateral hypothalamic stimulation-induced potentiation of rewarding properties of morphine. Neuropeptides 2014;48:179-85. [PMID: 24793540 DOI: 10.1016/j.npep.2014.04.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
229 Zhao D, Zeng Z, Mo H, Hu W, Tian S, Hu D, Gong L, Hu K. Orexin-A inhibits cerebral ischaemic inflammatory injury mediated by the nuclear factor-κB signalling pathway and alleviates stroke-induced immunodepression in mice. Brain Res Bull 2021;174:296-304. [PMID: 34216650 DOI: 10.1016/j.brainresbull.2021.06.021] [Reference Citation Analysis]
230 McGregor R, Thannickal TC, Siegel JM. Pleasure, addiction, and hypocretin (orexin). Handb Clin Neurol 2021;180:359-74. [PMID: 34225941 DOI: 10.1016/B978-0-12-820107-7.00022-7] [Reference Citation Analysis]
231 You ZB, Wang B, Liu QR, Wu Y, Otvos L, Wise RA. Reciprocal Inhibitory Interactions Between the Reward-Related Effects of Leptin and Cocaine. Neuropsychopharmacology 2016;41:1024-33. [PMID: 26243270 DOI: 10.1038/npp.2015.230] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 4.4] [Reference Citation Analysis]
232 Fattore L, Diana M. Drug addiction: An affective-cognitive disorder in need of a cure. Neuroscience & Biobehavioral Reviews 2016;65:341-61. [DOI: 10.1016/j.neubiorev.2016.04.006] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
233 Kim LH, Sharma S, Sharples SA, Mayr KA, Kwok CHT, Whelan PJ. Integration of Descending Command Systems for the Generation of Context-Specific Locomotor Behaviors. Front Neurosci 2017;11:581. [PMID: 29093660 DOI: 10.3389/fnins.2017.00581] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
234 Hirschberg PR, Sarkar P, Teegala SB, Routh VH. Ventromedial hypothalamus glucose-inhibited neurones: A role in glucose and energy homeostasis? J Neuroendocrinol 2020;32:e12773. [PMID: 31329314 DOI: 10.1111/jne.12773] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
235 Hu B, Yang N, Qiao QC, Hu ZA, Zhang J. Roles of the orexin system in central motor control. Neurosci Biobehav Rev 2015;49:43-54. [PMID: 25511388 DOI: 10.1016/j.neubiorev.2014.12.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
236 Kalló I, Molnár CS, Szöke S, Fekete C, Hrabovszky E, Liposits Z. Area-specific analysis of the distribution of hypothalamic neurons projecting to the rat ventral tegmental area, with special reference to the GABAergic and glutamatergic efferents. Front Neuroanat 2015;9:112. [PMID: 26388742 DOI: 10.3389/fnana.2015.00112] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
237 Hernandez NS, Schmidt HD. Central GLP-1 receptors: Novel molecular targets for cocaine use disorder. Physiol Behav 2019;206:93-105. [PMID: 30930091 DOI: 10.1016/j.physbeh.2019.03.026] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
238 Azogu I, Plamondon H. Inhibition of TrkB at the nucleus accumbens, using ANA-12, regulates basal and stress-induced orexin A expression within the mesolimbic system and affects anxiety, sociability and motivation. Neuropharmacology 2017;125:129-45. [PMID: 28705440 DOI: 10.1016/j.neuropharm.2017.07.008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
239 Nocjar C, Zhang J, Feng P, Panksepp J. The social defeat animal model of depression shows diminished levels of orexin in mesocortical regions of the dopamine system, and of dynorphin and orexin in the hypothalamus. Neuroscience 2012;218:138-53. [DOI: 10.1016/j.neuroscience.2012.05.033] [Cited by in Crossref: 66] [Cited by in F6Publishing: 63] [Article Influence: 6.6] [Reference Citation Analysis]
240 Gugula A, Trenk A, Celary A, Cizio K, Tylko G, Blasiak A, Hess G. Early-life stress modifies the reactivity of neurons in the ventral tegmental area and lateral hypothalamus to acute stress in female rats. Neuroscience 2022. [DOI: 10.1016/j.neuroscience.2022.02.017] [Reference Citation Analysis]
241 van Holst RJ, Janssen LK, van Mierlo P, Lammers GJ, Cools R, Overeem S, Aarts E. Enhanced food-related responses in the ventral medial prefrontal cortex in narcolepsy type 1. Sci Rep 2018;8:16391. [PMID: 30401926 DOI: 10.1038/s41598-018-34647-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
242 Sun X, Luquet S, Small DM. DRD2: Bridging the Genome and Ingestive Behavior. Trends Cogn Sci 2017;21:372-84. [PMID: 28372879 DOI: 10.1016/j.tics.2017.03.004] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 4.2] [Reference Citation Analysis]
243 Slater PG, Noches V, Gysling K, Roeper J. Corticotropin-releasing factor type-2 receptor and corticotropin-releasing factor-binding protein coexist in rat ventral tegmental area nerve terminals originated in the lateral hypothalamic area. Eur J Neurosci 2016;43:220-9. [DOI: 10.1111/ejn.13113] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
244 Bellone C, Loureiro M, Lüscher C. Drug-Evoked Synaptic Plasticity of Excitatory Transmission in the Ventral Tegmental Area. Cold Spring Harb Perspect Med 2021;11:a039701. [PMID: 32341062 DOI: 10.1101/cshperspect.a039701] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
245 Silva ESD, Flores RA, Ribas AS, Taschetto AP, Faria MS, Lima LB, Metzger M, Donato J, Paschoalini MA. Injections of the of the α 1 -adrenoceptor antagonist prazosin into the median raphe nucleus increase food intake and Fos expression in orexin neurons of free-feeding rats. Behavioural Brain Research 2017;324:87-95. [DOI: 10.1016/j.bbr.2017.02.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
246 Del Cid-Pellitero E, Garzón M. Hypocretin1/orexinA-immunoreactive axons form few synaptic contacts on rat ventral tegmental area neurons that project to the medial prefrontal cortex. BMC Neurosci 2014;15:105. [PMID: 25194917 DOI: 10.1186/1471-2202-15-105] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
247 Harricharan R, Abboussi O, Daniels WM. Addiction: A dysregulation of satiety and inflammatory processes. Brain Research in Addiction. Elsevier; 2017. pp. 65-91. [DOI: 10.1016/bs.pbr.2017.07.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
248 Perrey DA, Zhang Y. Therapeutics development for addiction: Orexin-1 receptor antagonists. Brain Res 2020;1731:145922. [PMID: 30148984 DOI: 10.1016/j.brainres.2018.08.025] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
249 Berrendero F, Flores Á, Robledo P. When orexins meet cannabinoids: Bidirectional functional interactions. Biochemical Pharmacology 2018;157:43-50. [DOI: 10.1016/j.bcp.2018.08.040] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
250 Risco S, Mediavilla C. Orexin-1 receptor antagonist in central nucleus of the amygdala attenuates the acquisition of flavor-taste preference in rats. Pharmacol Biochem Behav 2014;126:7-12. [PMID: 25223979 DOI: 10.1016/j.pbb.2014.09.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
251 Awathale SN, Choudhary AG, Subhedar NK, Kokare DM. Neuropeptide CART modulates dopamine turnover in the nucleus accumbens: Insights into the anatomy of rewarding circuits. J Neurochem 2021. [PMID: 34287909 DOI: 10.1111/jnc.15479] [Reference Citation Analysis]
252 Pałasz A, Janas-kozik M, Borrow A, Arias-carrión O, Worthington JJ. The potential role of the novel hypothalamic neuropeptides nesfatin-1, phoenixin, spexin and kisspeptin in the pathogenesis of anxiety and anorexia nervosa. Neurochemistry International 2018;113:120-36. [DOI: 10.1016/j.neuint.2017.12.006] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]