BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kaur S, Thankachan S, Begum S, Blanco-Centurion C, Sakurai T, Yanagisawa M, Shiromani PJ. Entrainment of temperature and activity rhythms to restricted feeding in orexin knock out mice. Brain Res 2008;1205:47-54. [PMID: 18343358 DOI: 10.1016/j.brainres.2008.02.026] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 2.9] [Reference Citation Analysis]
Number Citing Articles
1 Jiménez A, Caba M, Escobar C. Food-entrained patterns in orexin cells reveal subregion differential activation. Brain Research 2013;1513:41-50. [DOI: 10.1016/j.brainres.2013.03.031] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
2 Challet E, Mendoza J, Dardente H, Pévet P. Neurogenetics of food anticipation. Eur J Neurosci 2009;30:1676-87. [PMID: 19863658 DOI: 10.1111/j.1460-9568.2009.06962.x] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 3.5] [Reference Citation Analysis]
3 Hunt NJ, Rodriguez ML, Waters KA, Machaalani R. Changes in orexin (hypocretin) neuronal expression with normal aging in the human hypothalamus. Neurobiology of Aging 2015;36:292-300. [DOI: 10.1016/j.neurobiolaging.2014.08.010] [Cited by in Crossref: 49] [Cited by in F6Publishing: 41] [Article Influence: 7.0] [Reference Citation Analysis]
4 Hunt NJ, Waters KA, Rodriguez ML, Machaalani R. Decreased orexin (hypocretin) immunoreactivity in the hypothalamus and pontine nuclei in sudden infant death syndrome. Acta Neuropathol 2015;130:185-98. [PMID: 25953524 DOI: 10.1007/s00401-015-1437-9] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
5 Miyata K, Kuwaki T, Ootsuka Y. The integrated ultradian organization of behavior and physiology in mice and the contribution of orexin to the ultradian patterning. Neuroscience 2016;334:119-33. [PMID: 27491480 DOI: 10.1016/j.neuroscience.2016.07.041] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
6 Perez-Leighton CE, Grace M, Billington CJ, Kotz CM. Role of spontaneous physical activity in prediction of susceptibility to activity based anorexia in male and female rats. Physiol Behav 2014;135:104-11. [PMID: 24912135 DOI: 10.1016/j.physbeh.2014.06.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
7 Nishimura Y, Okabe S, Sasagawa S, Murakami S, Ashikawa Y, Yuge M, Kawaguchi K, Kawase R, Tanaka T. Pharmacological profiling of zebrafish behavior using chemical and genetic classification of sleep-wake modifiers. Front Pharmacol 2015;6:257. [PMID: 26578964 DOI: 10.3389/fphar.2015.00257] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
8 Lamont EW, Patterson Z, Rodrigues T, Vallejos O, Blum ID, Abizaid A. Ghrelin-deficient mice have fewer orexin cells and reduced cFOS expression in the mesolimbic dopamine pathway under a restricted feeding paradigm. Neuroscience 2012;218:12-9. [PMID: 22641088 DOI: 10.1016/j.neuroscience.2012.05.046] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
9 Gunapala KM, Gallardo CM, Hsu CT, Steele AD. Single gene deletions of orexin, leptin, neuropeptide Y, and ghrelin do not appreciably alter food anticipatory activity in mice. PLoS One 2011;6:e18377. [PMID: 21464907 DOI: 10.1371/journal.pone.0018377] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 3.7] [Reference Citation Analysis]
10 Davidson AJ. Lesion studies targeting food-anticipatory activity. Eur J Neurosci 2009;30:1658-64. [PMID: 19863659 DOI: 10.1111/j.1460-9568.2009.06961.x] [Cited by in Crossref: 83] [Cited by in F6Publishing: 80] [Article Influence: 6.4] [Reference Citation Analysis]
11 Xu YX, Liu GY, Jiang Q, Bi HQ, Wang SC, Zhang PP, Gao CB, Chen GH, Cheng WH, Chen GJ, Zhu DF, Zhong MK, Xu Q. Effect of Restricted Feeding on Metabolic Health and Sleep-Wake Rhythms in Aging Mice. Front Neurosci 2021;15:745227. [PMID: 34557073 DOI: 10.3389/fnins.2021.745227] [Reference Citation Analysis]
12 Vivanco P, López-espinoza A, Madariaga AM, Rol MÁ, Madrid JA. NOCTURNALISM INDUCED BY SCHEDULED FEEDING IN DIURNAL OCTODON DEGUS. Chronobiology International 2010;27:233-50. [DOI: 10.3109/07420520903398575] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
13 Burke SL, Prior LJ, Lukoshkova EV, Lim K, Barzel B, Davern PJ, Armitage JA, Head GA. Reduced preprandial dipping accounts for rapid elevation of blood pressure and renal sympathetic nerve activity in rabbits fed a high-fat diet. Chronobiol Int 2013;30:726-38. [PMID: 23688116 DOI: 10.3109/07420528.2013.784771] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
14 Hsu TM, Suarez AN, Kanoski SE. Ghrelin: A link between memory and ingestive behavior. Physiol Behav 2016;162:10-7. [PMID: 27072509 DOI: 10.1016/j.physbeh.2016.03.039] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
15 Dunn JP, Abumrad NN, Kessler RM, Patterson BW, Li R, Marks-Shulman P, Tamboli RA. Caloric Restriction-Induced Decreases in Dopamine Receptor Availability are Associated with Leptin Concentration. Obesity (Silver Spring) 2017;25:1910-5. [PMID: 28944597 DOI: 10.1002/oby.22023] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
16 Pendergast JS, Yamazaki S. The Mysterious Food-Entrainable Oscillator: Insights from Mutant and Engineered Mouse Models. J Biol Rhythms 2018;33:458-74. [PMID: 30033846 DOI: 10.1177/0748730418789043] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
17 Szentirmai E, Kapás L, Sun Y, Smith RG, Krueger JM. Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice. Am J Physiol Regul Integr Comp Physiol 2010;298:R467-77. [PMID: 19939974 DOI: 10.1152/ajpregu.00557.2009] [Cited by in Crossref: 59] [Cited by in F6Publishing: 48] [Article Influence: 4.5] [Reference Citation Analysis]
18 Page AJ, Christie S, Symonds E, Li H. Circadian regulation of appetite and time restricted feeding. Physiol Behav 2020;220:112873. [PMID: 32194073 DOI: 10.1016/j.physbeh.2020.112873] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
19 Lim K, Burke SL, Armitage JA, Head GA. Comparison of blood pressure and sympathetic activity of rabbits in their home cage and the laboratory environment. Exp Physiol 2012;97:1263-71. [PMID: 22613739 DOI: 10.1113/expphysiol.2012.064972] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
20 Fuller PM, Lu J, Saper CB. Standards of evidence in chronobiology: A response. J Circadian Rhythms 2009;7:9. [PMID: 19624818 DOI: 10.1186/1740-3391-7-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
21 Patton DF, Mistlberger RE. Circadian adaptations to meal timing: neuroendocrine mechanisms. Front Neurosci. 2013;7:185. [PMID: 24133410 DOI: 10.3389/fnins.2013.00185] [Cited by in Crossref: 100] [Cited by in F6Publishing: 96] [Article Influence: 11.1] [Reference Citation Analysis]
22 Ribeiro AC, LeSauter J, Dupré C, Pfaff DW. Relationship of arousal to circadian anticipatory behavior: ventromedial hypothalamus: one node in a hunger-arousal network. Eur J Neurosci 2009;30:1730-8. [PMID: 19863654 DOI: 10.1111/j.1460-9568.2009.06969.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.2] [Reference Citation Analysis]
23 Mistlberger RE, Buijs RM, Challet E, Escobar C, Landry GJ, Kalsbeek A, Pevet P, Shibata S. Food anticipation in Bmal1-/- and AAV-Bmal1 rescued mice: a reply to Fuller et al. J Circadian Rhythms 2009;7:11. [PMID: 19664274 DOI: 10.1186/1740-3391-7-11] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
24 Agostino PV, Golombek DA, Meck WH. Unwinding the molecular basis of interval and circadian timing. Front Integr Neurosci 2011;5:64. [PMID: 22022309 DOI: 10.3389/fnint.2011.00064] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 3.5] [Reference Citation Analysis]
25 Mistlberger RE. Neurobiology of food anticipatory circadian rhythms. Physiol Behav 2011;104:535-45. [PMID: 21527266 DOI: 10.1016/j.physbeh.2011.04.015] [Cited by in Crossref: 212] [Cited by in F6Publishing: 186] [Article Influence: 19.3] [Reference Citation Analysis]
26 Clark EL, Baumann CR, Cano G, Scammell TE, Mochizuki T. Feeding-elicited cataplexy in orexin knockout mice. Neuroscience 2009;161:970-7. [PMID: 19362119 DOI: 10.1016/j.neuroscience.2009.04.007] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 2.9] [Reference Citation Analysis]
27 Pjetri E, Adan RA, Herzog H, de Haas R, Oppelaar H, Spierenburg HA, Olivier B, Kas MJ. NPY receptor subtype specification for behavioral adaptive strategies during limited food access. Genes Brain Behav 2012;11:105-12. [PMID: 21923762 DOI: 10.1111/j.1601-183X.2011.00732.x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
28 Gallardo CM, Hsu CT, Gunapala KM, Parfyonov M, Chang CH, Mistlberger RE, Steele AD. Behavioral and neural correlates of acute and scheduled hunger in C57BL/6 mice. PLoS One 2014;9:e95990. [PMID: 24806659 DOI: 10.1371/journal.pone.0095990] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
29 Du MK, Hunt NJ, Waters KA, Machaalani R. Cumulative effects of repetitive intermittent hypercapnic hypoxia on orexin in the developing piglet hypothalamus. Int J Dev Neurosci 2016;48:1-8. [PMID: 26548856 DOI: 10.1016/j.ijdevneu.2015.10.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
30 Begriche K, Sutton GM, Fang J, Butler AA. The role of melanocortin neuronal pathways in circadian biology: a new homeostatic output involving melanocortin-3 receptors? Obes Rev 2009;10 Suppl 2:14-24. [PMID: 19849798 DOI: 10.1111/j.1467-789X.2009.00662.x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
31 Barson JR, Morganstern I, Leibowitz SF. Neurobiology of consummatory behavior: mechanisms underlying overeating and drug use. ILAR J 2012;53:35-58. [PMID: 23520598 DOI: 10.1093/ilar.53.1.35] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
32 Mendoza J, Albrecht U, Challet E. Behavioural food anticipation in clock genes deficient mice: confirming old phenotypes, describing new phenotypes. Genes Brain Behav 2010;9:467-77. [PMID: 20180860 DOI: 10.1111/j.1601-183X.2010.00576.x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 17] [Article Influence: 0.6] [Reference Citation Analysis]
33 Hsu CT, Dollár P, Chang D, Steele AD. Daily timed sexual interaction induces moderate anticipatory activity in mice. PLoS One 2010;5:e15429. [PMID: 21082027 DOI: 10.1371/journal.pone.0015429] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
34 Tsuneki H, Wada T, Sasaoka T. Role of orexin in the regulation of glucose homeostasis. Acta Physiol (Oxf) 2010;198:335-48. [PMID: 19489767 DOI: 10.1111/j.1748-1716.2009.02008.x] [Cited by in Crossref: 52] [Cited by in F6Publishing: 42] [Article Influence: 4.3] [Reference Citation Analysis]
35 Morganstern I, Barson JR, Leibowitz SF. Regulation of drug and palatable food overconsumption by similar peptide systems. Curr Drug Abuse Rev 2011;4:163-73. [PMID: 21999690 DOI: 10.2174/1874473711104030163] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 2.7] [Reference Citation Analysis]
36 Aguilar-roblero R, Díaz-muñoz M. Chronostatic adaptations in the liver to restricted feeding: The FEO as an emergent oscillator. Sleep and Biological Rhythms 2010;8:9-17. [DOI: 10.1111/j.1479-8425.2009.00415.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
37 Hunt NJ, Waters KA, Machaalani R. Promotion of the Unfolding Protein Response in Orexin/Dynorphin Neurons in Sudden Infant Death Syndrome (SIDS): Elevated pPERK and ATF4 Expression. Mol Neurobiol 2017;54:7171-85. [PMID: 27796753 DOI: 10.1007/s12035-016-0234-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
38 Liu YY, Liu TY, Qu WM, Hong ZY, Urade Y, Huang ZL. Dopamine is involved in food-anticipatory activity in mice. J Biol Rhythms 2012;27:398-409. [PMID: 23010662 DOI: 10.1177/0748730412455913] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 4.3] [Reference Citation Analysis]
39 Tacad DKM, Tovar AP, Richardson CE, Horn WF, Keim NL, Krishnan GP, Krishnan S. Satiety Associated with Calorie Restriction and Time-Restricted Feeding: Central Neuroendocrine Integration. Adv Nutr 2022;13:758-91. [PMID: 35134815 DOI: 10.1093/advances/nmac011] [Reference Citation Analysis]
40 Zhang J, Dulawa SC. The Utility of Animal Models for Studying the Metabo-Psychiatric Origins of Anorexia Nervosa. Front Psychiatry 2021;12:711181. [PMID: 34721100 DOI: 10.3389/fpsyt.2021.711181] [Reference Citation Analysis]
41 Barson JR, Morganstern I, Leibowitz SF. Complementary roles of orexin and melanin-concentrating hormone in feeding behavior. Int J Endocrinol 2013;2013:983964. [PMID: 23935621 DOI: 10.1155/2013/983964] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 5.1] [Reference Citation Analysis]
42 Merkestein M, Verhagen LAW, Adan RAH. Food-Anticipatory Activity: Rat Models and Underlying Mechanisms. In: Avena NM, editor. Animal Models of Eating Disorders. Totowa: Humana Press; 2013. pp. 291-317. [DOI: 10.1007/978-1-62703-104-2_18] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
43 Shibata S, Hirao A, Tahara Y. Restricted feeding-induced entrainment of activity rhythm and peripheral clock rhythm. Sleep and Biological Rhythms 2010;8:18-27. [DOI: 10.1111/j.1479-8425.2009.00417.x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
44 De Nobrega AK, Luz KV, Lyons LC. Resetting the Aging Clock: Implications for Managing Age-Related Diseases. Adv Exp Med Biol 2020;1260:193-265. [PMID: 32304036 DOI: 10.1007/978-3-030-42667-5_9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]