BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Alhamoud Y, Yang D, Fiati Kenston SS, Liu G, Liu L, Zhou H, Ahmed F, Zhao J. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 2019;141:111418. [PMID: 31228729 DOI: 10.1016/j.bios.2019.111418] [Cited by in Crossref: 74] [Cited by in F6Publishing: 74] [Article Influence: 24.7] [Reference Citation Analysis]
Number Citing Articles
1 Siva S, Jin J, Choi I, Kim M. Nanoliposome based biosensors for probing mycotoxins and their applications for food: A review. Biosensors and Bioelectronics 2023;219:114845. [DOI: 10.1016/j.bios.2022.114845] [Reference Citation Analysis]
2 Chen C, Cao J, Wang X, Chai Q, Zhang Y, Chen H, Zhu X, Pan Y, Liu J. A novel dual-flux immunochromatographic test strip based on luminescence resonance energy transfer for simultaneous detection of ochratoxin A and deoxynivalenol. Microchim Acta 2022;189:466. [DOI: 10.1007/s00604-022-05561-6] [Reference Citation Analysis]
3 Karachaliou CE, Koukouvinos G, Zisis G, Kizis D, Krystalli E, Siragakis G, Goustouridis D, Kakabakos S, Petrou P, Livaniou E, Raptis I. Fast and Accurate Determination of Minute Ochratoxin A Levels in Cereal Flours and Wine with the Label-Free White Light Reflectance Spectroscopy Biosensing Platform. Biosensors (Basel) 2022;12:877. [PMID: 36291014 DOI: 10.3390/bios12100877] [Reference Citation Analysis]
4 Xiao Y, Zhang X, Ma L, Fang H, Yang H, Zhou Y. Fluorescence and absorbance dual-mode immunoassay for detecting Ochratoxin A. Spectrochim Acta A Mol Biomol Spectrosc 2022;279:121440. [PMID: 35660151 DOI: 10.1016/j.saa.2022.121440] [Reference Citation Analysis]
5 Torres-santillan E, Capula-colindres S, Teran G, M. Reza-san German C, Estrada Flores M, Guadalupe Rojas Valencia O. Synthesis of Pt-Mo/WMCNTs Nanostructures Reduced by the Green Chemical Route and Its Electrocatalytic Activity in the ORR. Carbon Nanotubes - Recent Advances, New Perspectives and Potential Applications [Working Title] 2022. [DOI: 10.5772/intechopen.106396] [Reference Citation Analysis]
6 Chen W, Zhang X, Zhang Q, Zhang G, Wu S, Yang H, Zhou Y. Cerium ions triggered dual-readout immunoassay based on aggregation induced emission effect and 3,3′,5,5′-tetramethylbenzidine for fluorescent and colorimetric detection of ochratoxin A. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.340445] [Reference Citation Analysis]
7 Wei J, Liu C, Wu T, Zeng W, Hu B, Zhou S, Wu L. A review of current status of ratiometric molecularly imprinted electrochemical sensors: From design to applications. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.340273] [Reference Citation Analysis]
8 Gao Y, Wei J, Li X, Hu Q, Qian J, Hao N, Wang K. Region separation type bio-photoelectrode based all-solid-state self-powered aptasensor for ochratoxin A and aflatoxin B1 detection. Sensors and Actuators B: Chemical 2022;364:131897. [DOI: 10.1016/j.snb.2022.131897] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2022;:1-25. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wang H, Zhao B, Ye Y, Qi X, Zhang Y, Xia X, Wang X, Zhou N. A fluorescence and surface-enhanced Raman scattering dual-mode aptasensor for rapid and sensitive detection of ochratoxin A. Biosensors and Bioelectronics 2022;207:114164. [DOI: 10.1016/j.bios.2022.114164] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
11 Hu Y, Xie H, Hu J, Yang D. Disposable Electrochemical Aptasensor Based on Graphene Oxide-DNA Complex as Signal Amplifier towards Ultrasensitive Detection of Ochratoxin A. Micromachines 2022;13:834. [DOI: 10.3390/mi13060834] [Reference Citation Analysis]
12 Hu X, Xia Y, Liu Y, Chen Y, Zeng B. An effective ratiometric electrochemical sensor for highly selective and reproducible detection of ochratoxin A: Use of magnetic field improved molecularly imprinted polymer. Sensors and Actuators B: Chemical 2022;359:131582. [DOI: 10.1016/j.snb.2022.131582] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Nemčeková K, Svitková V, Gökçe G. Electrochemical aptasensing for the detection of mycotoxins in food commodities. Monatsh Chem. [DOI: 10.1007/s00706-022-02916-w] [Reference Citation Analysis]
14 Guo J, Cheng J, Wei T, Wu F, Tang G, He Q. An Immuno-Separated Assay for Ochratoxin Detection Coupled with a Nano-Affinity Cleaning-Up for LC-Confirmation. Foods 2022;11:1155. [DOI: 10.3390/foods11081155] [Reference Citation Analysis]
15 Ye J, Guo J, Li T, Tian J, Yu M, Wang X, Majeed U, Song W, Xiao J, Luo Y, Yue T. Phage-based technologies for highly sensitive luminescent detection of foodborne pathogens and microbial toxins: A review. Compr Rev Food Sci Food Saf 2022. [PMID: 35142431 DOI: 10.1111/1541-4337.12908] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 He K, Sun L, Wang L, Li W, Hu G, Ji X, Zhang Y, Xu X. Engineering DNA G-quadruplex assembly for label-free detection of Ochratoxin A in colorimetric and fluorescent dual modes. J Hazard Mater 2022;423:126962. [PMID: 34464866 DOI: 10.1016/j.jhazmat.2021.126962] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
17 Villalonga A, Sánchez A, Mayol B, Reviejo J, Villalonga R. Electrochemical biosensors for food bioprocess monitoring. Current Opinion in Food Science 2022;43:18-26. [DOI: 10.1016/j.cofs.2021.09.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
18 Ali Q, Zheng H, Rao MJ, Ali M, Hussain A, Saleem MH, Nehela Y, Sohail MA, Ahmed AM, Kubar KA, Ali S, Usman K, Manghwar H, Zhou L. Advances, limitations, and prospects of biosensing technology for detecting phytopathogenic bacteria. Chemosphere 2022;:133773. [PMID: 35114264 DOI: 10.1016/j.chemosphere.2022.133773] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
19 Hitabatuma A, Wang P, Su X, Ma M. Metal-Organic Frameworks-Based Sensors for Food Safety. Foods 2022;11:382. [DOI: 10.3390/foods11030382] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
20 Farías ME, Correa NM, Sosa L, Niebylski AM, Molina PG. A simple electrochemical immunosensor for sensitive detection of transgenic soybean protein CP4-EPSPS in seeds. Talanta 2022;237:122910. [PMID: 34736647 DOI: 10.1016/j.talanta.2021.122910] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Huo D, Zhang Y, Li N, Ma W, Liu H, Xu G, Li Z, Yang M, Hou C. Three-dimensional graphene/amino-functionalized metal–organic framework for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II), and Hg(II). Anal Bioanal Chem. [DOI: 10.1007/s00216-021-03779-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Zhang N, Li J, Liu B, Zhang D, Zhang C, Guo Y, Chu X, Wang W, Wang H, Yan X, Li Z. Signal enhancing strategies in aptasensors for the detection of small molecular contaminants by nanomaterials and nucleic acid amplification. Talanta 2022;236:122866. [PMID: 34635248 DOI: 10.1016/j.talanta.2021.122866] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 15.0] [Reference Citation Analysis]
23 Roy S, Arshad F, Eissa S, Safavieh M, Alattas SG, Ahmed MU, Zourob M. Recent developments towards portable point-of-care diagnostic devices for pathogen detection. Sens Diagn 2022;1:87-105. [DOI: 10.1039/d1sd00017a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
24 Lv L, Hu J, Chen Q, Xu M, Jing C, Wang X. A switchable electrochemical hairpin-aptasensor for ochratoxin A detection based on the double signal amplification effect of gold nanospheres. New J Chem 2022;46:4126-33. [DOI: 10.1039/d1nj05729d] [Reference Citation Analysis]
25 Gong C, Fan Y, Zhao H. Recent advances and perspectives of enzyme-based optical biosensing for organophosphorus pesticides detection. Talanta 2021;240:123145. [PMID: 34968808 DOI: 10.1016/j.talanta.2021.123145] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Castro RC, Saraiva MLM, Santos JL, Ribeiro DS. Multiplexed detection using quantum dots as photoluminescent sensing elements or optical labels. Coordination Chemistry Reviews 2021;448:214181. [DOI: 10.1016/j.ccr.2021.214181] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
27 Liao Z, Yao L, Liu Y, Wu Y, Wang Y, Ning G. Progress on nanomaterials based-signal amplification strategies for the detection of zearalenone. Biosensors and Bioelectronics: X 2021;9:100084. [DOI: 10.1016/j.biosx.2021.100084] [Reference Citation Analysis]
28 Wang D, Jiang J, Cao M, Xie S, Li Y, Chen L, Zhao J, Yang G. An unprecedented dumbbell-shaped pentadeca-nuclear W-Er heterometal cluster stabilizing nanoscale hexameric arsenotungstate aggregate and electrochemical sensing properties of its conductive hybrid film-modified electrode. Nano Res 2022;15:3628-37. [DOI: 10.1007/s12274-021-3940-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 13.0] [Reference Citation Analysis]
29 Cancelliere R, Albano D, Brugnoli B, Buonasera K, Leo G, Margonelli A, Rea G. Electrochemical and morphological layer-by-layer characterization of electrode interfaces during a label-free impedimetric immunosensor build-up: The case of ochratoxin A. Applied Surface Science 2021;567:150791. [DOI: 10.1016/j.apsusc.2021.150791] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
30 Zheng B, Yu Y, Wang M, Wang J, Xu H. Qualitative-quantitative analysis of multi-mycotoxin in milk using the high-performance liquid chromatography-tandem mass spectrometry coupled with the quick, easy, cheap, effective, rugged and safe method. J Sep Sci 2021. [PMID: 34716661 DOI: 10.1002/jssc.202100641] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. Biosensors (Basel) 2021;11:410. [PMID: 34821626 DOI: 10.3390/bios11110410] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
32 Li R, Wen Y, Wang F, He P. Recent advances in immunoassays and biosensors for mycotoxins detection in feedstuffs and foods. J Anim Sci Biotechnol 2021;12:108. [PMID: 34629116 DOI: 10.1186/s40104-021-00629-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
33 Al-dhahebi AM, Chandra Bose Gopinath S, Mohamed Saheed MS, Mustapha M. Detection of Ochratoxin A using Cellulose Acetate Nanofibers Modified with Silver Nanoparticle. 2021 IEEE International Conference on Sensors and Nanotechnology (SENNANO) 2021. [DOI: 10.1109/sennano51750.2021.9642404] [Reference Citation Analysis]
34 Iftikhar T, Asif M, Aziz A, Ashraf G, Jun S, Li G, Liu H. Topical advances in nanomaterials based electrochemical sensors for resorcinol detection. Trends in Environmental Analytical Chemistry 2021;31:e00138. [DOI: 10.1016/j.teac.2021.e00138] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 16.0] [Reference Citation Analysis]
35 Huang H, Wang D, Zhou Y, Wu D, Liao X, Xiong W, Du J, Hong Y. Multiwalled carbon nanotubes modified two dimensional MXene with high antifouling property for sensitive detection of ochratoxin A. Nanotechnology 2021;32. [PMID: 34343976 DOI: 10.1088/1361-6528/ac1a42] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Sun F, Zhang J, Yang Q, Wu W. Quantum dot biosensor combined with antibody and aptamer for tracing food-borne pathogens. Food Quality and Safety 2021;5:fyab019. [DOI: 10.1093/fqsafe/fyab019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
37 Majer-Baranyi K, Adányi N, Székács A. Biosensors for Deoxynivalenol and Zearalenone Determination in Feed Quality Control. Toxins (Basel) 2021;13:499. [PMID: 34357971 DOI: 10.3390/toxins13070499] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
38 Hu X, Liu Y, Xia Y, Zhao F, Zeng B. A novel ratiometric electrochemical sensor for the selective detection of citrinin based on molecularly imprinted poly(thionine) on ionic liquid decorated boron and nitrogen co-doped hierarchical porous carbon. Food Chem 2021;363:130385. [PMID: 34153678 DOI: 10.1016/j.foodchem.2021.130385] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 21.0] [Reference Citation Analysis]
39 Rong Y, Hassan MM, Ouyang Q, Chen Q. Lanthanide ion (Ln3+ )-based upconversion sensor for quantification of food contaminants: A review. Compr Rev Food Sci Food Saf 2021;20:3531-78. [PMID: 34076359 DOI: 10.1111/1541-4337.12765] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 15.0] [Reference Citation Analysis]
40 Wu L, Wang M, Wei D. Advances in gold nanoparticles for mycotoxin analysis. Analyst 2021;146:1793-806. [PMID: 33533762 DOI: 10.1039/d0an02171g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
41 Alhamoud Y, Li Y, Zhou H, Al-Wazer R, Gong Y, Zhi S, Yang D. Label-Free and Highly-Sensitive Detection of Ochratoxin A Using One-Pot Synthesized Reduced Graphene Oxide/Gold Nanoparticles-Based Impedimetric Aptasensor. Biosensors (Basel) 2021;11:87. [PMID: 33808613 DOI: 10.3390/bios11030087] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
42 Li Q, Liang B, Li W, Li W, Sun J, Jiao S, Wang S, Jin Y, Zheng T, Li J. A capillary device made by aptamer-functionalized silica photonic crystal microspheres for the point-of-care detection of Ochratoxin A. Sensors and Actuators B: Chemical 2021;330:129367. [DOI: 10.1016/j.snb.2020.129367] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
43 Li X, Falcone N, Hossain MN, Kraatz HB, Chen X, Huang H. Development of a novel label-free impedimetric electrochemical sensor based on hydrogel/chitosan for the detection of ochratoxin A. Talanta 2021;226:122183. [PMID: 33676715 DOI: 10.1016/j.talanta.2021.122183] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 20.0] [Reference Citation Analysis]
44 Wang X, Li L, Gu X, Yu B, Jiang M. Switchable electrochemical aptasensor for amyloid-β oligomers detection based on triple helix switch coupling with AuNPs@CuMOF labeled signaling displaced-probe. Mikrochim Acta 2021;188:49. [PMID: 33495901 DOI: 10.1007/s00604-021-04704-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
45 Classification and application of nanomaterials for foodborne pathogens analysis. Advanced Food Analysis Tools 2021. [DOI: 10.1016/b978-0-12-820591-4.00005-0] [Reference Citation Analysis]
46 Rodríguez-ramos R, Santana-mayor Á, Socas-rodríguez B, Rodríguez-delgado MÁ. Novel applications of nanotechnology in food safety assessment. Handbook of Nanotechnology Applications 2021. [DOI: 10.1016/b978-0-12-821506-7.00019-3] [Reference Citation Analysis]
47 Song X, Tan L, Wang M, Ren C, Guo C, Yang B, Ren Y, Cao Z, Li Y, Pei J. Myricetin: A review of the most recent research. Biomed Pharmacother 2021;134:111017. [PMID: 33338751 DOI: 10.1016/j.biopha.2020.111017] [Cited by in Crossref: 64] [Cited by in F6Publishing: 68] [Article Influence: 32.0] [Reference Citation Analysis]
48 López-Puertollano D, Agulló C, Mercader JV, Abad-Somovilla A, Abad-Fuentes A. Immunoanalytical methods for ochratoxin A monitoring in wine and must based on innovative immunoreagents. Food Chem 2021;345:128828. [PMID: 33338836 DOI: 10.1016/j.foodchem.2020.128828] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
49 Liu D, Li W, Zhu C, Li Y, Shen X, Li L, Yan X, You T. Recent progress on electrochemical biosensing of aflatoxins: A review. TrAC Trends in Analytical Chemistry 2020;133:115966. [DOI: 10.1016/j.trac.2020.115966] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 16.5] [Reference Citation Analysis]
50 Kumar P, Mahato DK, Sharma B, Borah R, Haque S, Mahmud MC, Shah AK, Rawal D, Bora H, Bui S. Ochratoxins in food and feed: Occurrence and its impact on human health and management strategies. Toxicon 2020;187:151-62. [DOI: 10.1016/j.toxicon.2020.08.031] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 19.0] [Reference Citation Analysis]
51 Rovina K, Nurul Shaeera S, Merrylin Vonnie J, Xin Yi S. Recent Biosensors Technologies for Detection of Mycotoxin in Food Products. Mycotoxins and Food Safety 2020. [DOI: 10.5772/intechopen.89022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
52 Duan F, Hu M, Guo C, Song Y, Wang M, He L, Zhang Z, Pettinari R, Zhou L. Chromium-based metal-organic framework embedded with cobalt phthalocyanine for the sensitively impedimetric cytosensing of colorectal cancer (CT26) cells and cell imaging. Chemical Engineering Journal 2020;398:125452. [DOI: 10.1016/j.cej.2020.125452] [Cited by in Crossref: 57] [Cited by in F6Publishing: 61] [Article Influence: 28.5] [Reference Citation Analysis]
53 Becheva ZR, Atanasova MK, Ivanov YL, Godjevargova TI. Magnetic Nanoparticle-Based Fluorescence Immunoassay for Determination of Ochratoxin A in Milk. Food Anal Methods 2020;13:2238-48. [DOI: 10.1007/s12161-020-01848-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
54 Zhang X, Li G, Wu D, Liu J, Wu Y. Recent advances on emerging nanomaterials for controlling the mycotoxin contamination: From detection to elimination. Food Frontiers 2020;1:360-81. [DOI: 10.1002/fft2.42] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
55 Han B, Fang C, Sha L, Jalalah M, Al-Assiri MS, Harraz FA, Cao Y. Cascade strand displacement reaction-assisted aptamer-based highly sensitive detection of ochratoxin A. Food Chem 2021;338:127827. [PMID: 32822900 DOI: 10.1016/j.foodchem.2020.127827] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 9.5] [Reference Citation Analysis]
56 Ma Y, Li J, Han Z, Maeda H, Ma Y. Bragg-Mirror-Assisted High-Contrast Plasmonic Interferometers: Concept and Potential in Terahertz Sensing. Nanomaterials (Basel) 2020;10:E1385. [PMID: 32708603 DOI: 10.3390/nano10071385] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
57 Qiao L, Benzigar MR, Subramony JA, Lovell NH, Liu G. Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS Appl Mater Interfaces 2020;12:34337-61. [DOI: 10.1021/acsami.0c07614] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 19.0] [Reference Citation Analysis]
58 Majdinasab M, Mishra RK, Tang X, Marty JL. Detection of antibiotics in food: New achievements in the development of biosensors. TrAC Trends in Analytical Chemistry 2020;127:115883. [DOI: 10.1016/j.trac.2020.115883] [Cited by in Crossref: 67] [Cited by in F6Publishing: 68] [Article Influence: 33.5] [Reference Citation Analysis]
59 Ijaz H, Zia R, Taj A, Jameel F, Butt FK, Asim T, Jameel N, Abbas W, Iqbal M, Bajwa SZ, Khan WS. Synthesis of BiOCl nanoplatelets as the dual interfaces for the detection of glutathione linked disease biomarkers and biocompatibility assessment in vitro against HCT cell lines model. Appl Nanosci 2020;10:3569-76. [DOI: 10.1007/s13204-020-01461-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
60 Orooji Y, Haddad Irani-nezhad M, Hassandoost R, Khataee A, Rahim Pouran S, Joo SW. Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020;234:118272. [DOI: 10.1016/j.saa.2020.118272] [Cited by in Crossref: 112] [Cited by in F6Publishing: 93] [Article Influence: 56.0] [Reference Citation Analysis]
61 Hejazi D, Liu S, Farnoosh A, Ostadabbas S, Kar S. Development of use-specific high-performance cyber-nanomaterial optical detectors by effective choice of machine learning algorithms. Mach Learn : Sci Technol 2020;1:025007. [DOI: 10.1088/2632-2153/ab8967] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
62 Jiang YY, Zhao X, Chen LJ, Yang C, Yin XB, Yan XP. Persistent luminescence nanorod based luminescence resonance energy transfer aptasensor for autofluorescence-free detection of mycotoxin. Talanta 2020;218:121101. [PMID: 32797868 DOI: 10.1016/j.talanta.2020.121101] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
63 Lv L, Wang X. Recent Advances in Ochratoxin A Electrochemical Biosensors: Recognition Elements, Sensitization Technologies, and Their Applications. J Agric Food Chem 2020;68:4769-87. [PMID: 32243155 DOI: 10.1021/acs.jafc.0c00258] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
64 Chen J, Song Y, Zhang T, Wang W, Liu S. Effect of particle on the lasing threshold of optofluidic laser based on Fabry–Pérot microcavity. Optics Communications 2020;460:125161. [DOI: 10.1016/j.optcom.2019.125161] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Pan Z, Yu F, Li L, Liu M, Song C, Yang J, Li H, Wang C, Pan Y, Wang T. Low-cost electrochemical filtration carbon membrane prepared from coal via self-bonding. Chemical Engineering Journal 2020;385:123928. [DOI: 10.1016/j.cej.2019.123928] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
66 Du H, Li Z, Wang Y, Yang Q, Wu W. Nanomaterial-based Optical Biosensors for the Detection of Foodborne Bacteria. Food Reviews International. [DOI: 10.1080/87559129.2020.1740733] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
67 Li Y, Zhang N, Wang H, Zhao Q. Fluorescence Anisotropy-Based Signal-Off and Signal-On Aptamer Assays Using Lissamine Rhodamine B as a Label for Ochratoxin A. J Agric Food Chem 2020;68:4277-83. [PMID: 32182058 DOI: 10.1021/acs.jafc.0c00549] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
68 Jing X, Chang L, Shi L, Liu X, Zhao Y, Zhang W. Au Film–Au@Ag Core–Shell Nanoparticle Structured Surface-Enhanced Raman Spectroscopy Aptasensor for Accurate Ochratoxin A Detection. ACS Appl Bio Mater 2020;3:2385-91. [DOI: 10.1021/acsabm.0c00120] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
69 Raja AN, Annu, Chauhan P, Jain R. Bismuth Oxide/Graphite/Glassy Carbon Based Platform for the Quantification of Antioxidant Gallic Acid. Analytical Chemistry Letters 2020;10:181-194. [DOI: 10.1080/22297928.2020.1759450] [Reference Citation Analysis]
70 Arce-López B, Lizarraga E, Vettorazzi A, González-Peñas E. Human Biomonitoring of Mycotoxins in Blood, Plasma and Serum in Recent Years: A Review. Toxins (Basel) 2020;12:E147. [PMID: 32121036 DOI: 10.3390/toxins12030147] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 21.0] [Reference Citation Analysis]
71 Tittlemier S, Cramer B, Dall’asta C, Iha M, Lattanzio V, Maragos C, Solfrizzo M, Stranska M, Stroka J, Sumarah M. Developments in mycotoxin analysis: an update for 2018-19. World Mycotoxin Journal 2020;13:3-24. [DOI: 10.3920/wmj2019.2535] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 14.0] [Reference Citation Analysis]
72 Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020;9:E137. [PMID: 32012820 DOI: 10.3390/foods9020137] [Cited by in Crossref: 214] [Cited by in F6Publishing: 222] [Article Influence: 107.0] [Reference Citation Analysis]
73 Doan V, Luc V, Nguyen TL, Nguyen T, Nguyen T. Utilizing waste corn-cob in biosynthesis of noble metallic nanoparticles for antibacterial effect and catalytic degradation of contaminants. Environ Sci Pollut Res 2020;27:6148-62. [DOI: 10.1007/s11356-019-07320-2] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
74 Ullah H, Qadeer A, Rashid M, Rashid MI, Cheng G. Recent advances in nucleic acid-based methods for detection of helminth infections and the perspective of biosensors for future development. Parasitology 2020;147:383-92. [PMID: 31840627 DOI: 10.1017/S0031182019001665] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
75 He Y, Yu Y, Wen X, Shi Y, Wu J, Guan Z, Cui M, Xiao C. A quencher-free 2-aminopurine modified hairpin aptasensor for ultrasensitive detection of Ochratoxin A. Spectrochim Acta A Mol Biomol Spectrosc 2020;228:117780. [PMID: 31753651 DOI: 10.1016/j.saa.2019.117780] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
76 Khan IM, Niazi S, Yu Y, Mohsin A, Mushtaq BS, Iqbal MW, Rehman A, Akhtar W, Wang Z. Aptamer Induced Multicolored AuNCs-WS2 "Turn on" FRET Nano Platform for Dual-Color Simultaneous Detection of AflatoxinB1 and Zearalenone. Anal Chem 2019;91:14085-92. [PMID: 31585033 DOI: 10.1021/acs.analchem.9b03880] [Cited by in Crossref: 63] [Cited by in F6Publishing: 65] [Article Influence: 21.0] [Reference Citation Analysis]
77 Mahmoudpour M, Ezzati Nazhad Dolatabadi J, Torbati M, Pirpour Tazehkand A, Homayouni-rad A, de la Guardia M. Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection. Biosensors and Bioelectronics 2019;143:111603. [DOI: 10.1016/j.bios.2019.111603] [Cited by in Crossref: 63] [Cited by in F6Publishing: 68] [Article Influence: 21.0] [Reference Citation Analysis]