BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ubaldi M, Giordano A, Severi I, Li H, Kallupi M, de Guglielmo G, Ruggeri B, Stopponi S, Ciccocioppo R, Cannella N. Activation of Hypocretin-1/Orexin-A Neurons Projecting to the Bed Nucleus of the Stria Terminalis and Paraventricular Nucleus Is Critical for Reinstatement of Alcohol Seeking by Neuropeptide S. Biol Psychiatry 2016;79:452-62. [PMID: 26055195 DOI: 10.1016/j.biopsych.2015.04.021] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Ubaldi M, Cannella N, Ciccocioppo R. Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics. Prog Brain Res 2016;224:251-84. [PMID: 26822362 DOI: 10.1016/bs.pbr.2015.07.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
2 Campbell EJ, Norman A, Bonomo Y, Lawrence AJ. Suvorexant to treat alcohol use disorder and comorbid insomnia: Plan for a phase II trial. Brain Res 2020;1728:146597. [PMID: 31837287 DOI: 10.1016/j.brainres.2019.146597] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
3 Campbell EJ, Marchant NJ, Lawrence AJ. A sleeping giant: Suvorexant for the treatment of alcohol use disorder? Brain Res 2020;1731:145902. [PMID: 30081035 DOI: 10.1016/j.brainres.2018.08.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
4 Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018;9:84-104. [PMID: 30238023 DOI: 10.1016/j.ynstr.2018.08.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
5 Pan JS, Zheng K, Liu JH, Gao ZY, Ye YG, Ye MJ, Tang W, Liu LJ, Zhu C. Orexin might Predict Status of Alcohol Dependence. Chin Med J (Engl) 2018;131:2866-7. [PMID: 30511692 DOI: 10.4103/0366-6999.246068] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
6 Lee MT, Chiu YT, Chiu YC, Hor CC, Lee HJ, Guerrini R, Calo G, Chiou LC. Neuropeptide S-initiated sequential cascade mediated by OX1, NK1, mGlu5 and CB1 receptors: a pivotal role in stress-induced analgesia. J Biomed Sci 2020;27:7. [PMID: 31915019 DOI: 10.1186/s12929-019-0590-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
7 Kourosh-arami M, Gholami M, Alavi-kakhki SS, Komaki A. Neural correlates and potential targets for the contribution of orexin to addiction in cortical and subcortical areas. Neuropeptides 2022. [DOI: 10.1016/j.npep.2022.102259] [Reference Citation Analysis]
8 Cannella N, Ubaldi M, Masi A, Bramucci M, Roberto M, Bifone A, Ciccocioppo R. Building better strategies to develop new medications in Alcohol Use Disorder: Learning from past success and failure to shape a brighter future. Neurosci Biobehav Rev 2019;103:384-98. [PMID: 31112713 DOI: 10.1016/j.neubiorev.2019.05.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
9 Martin EL, Doncheck EM, Reichel CM, McRae-Clark AL. Consideration of sex as a biological variable in the translation of pharmacotherapy for stress-associated drug seeking. Neurobiol Stress 2021;15:100364. [PMID: 34345636 DOI: 10.1016/j.ynstr.2021.100364] [Reference Citation Analysis]
10 Piwowarczyk-Nowak A, Pałasz A, Suszka-Świtek A, Della Vecchia A, Grajoszek A, Krzystanek M, Worthington JJ. Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling. Pharmacol Rep 2022. [PMID: 35653031 DOI: 10.1007/s43440-022-00374-z] [Reference Citation Analysis]
11 Kodani S, Soya S, Sakurai T. Excitation of GABAergic Neurons in the Bed Nucleus of the Stria Terminalis Triggers Immediate Transition from Non-Rapid Eye Movement Sleep to Wakefulness in Mice. J Neurosci 2017;37:7164-76. [PMID: 28642284 DOI: 10.1523/JNEUROSCI.0245-17.2017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 5.2] [Reference Citation Analysis]
12 Liu X, Si W, Garau C, Jüngling K, Pape HC, Schulz S, Reinscheid RK. Neuropeptide S precursor knockout mice display memory and arousal deficits. Eur J Neurosci 2017;46:1689-700. [PMID: 28548278 DOI: 10.1111/ejn.13613] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
13 Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018;235:1663-80. [PMID: 29508004 DOI: 10.1007/s00213-018-4871-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
14 Cannella N, Kallupi M, Li HW, Stopponi S, Cifani C, Ciccocioppo R, Ubaldi M. Neuropeptide S differently modulates alcohol-related behaviors in alcohol-preferring and non-preferring rats. Psychopharmacology (Berl) 2016;233:2915-24. [PMID: 27235017 DOI: 10.1007/s00213-016-4333-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
15 James MH, McNally GP, Li X. Editorial: Role of the Thalamus in Motivated Behavior. Front Behav Neurosci 2021;15:720592. [PMID: 34276320 DOI: 10.3389/fnbeh.2021.720592] [Reference Citation Analysis]
16 Chou YH, Hor CC, Lee MT, Lee HJ, Guerrini R, Calo G, Chiou LC. Stress induces reinstatement of extinguished cocaine conditioned place preference by a sequential signaling via neuropeptide S, orexin, and endocannabinoid. Addict Biol 2021;26:e12971. [PMID: 33078457 DOI: 10.1111/adb.12971] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Reinscheid RK, Ruzza C. Pharmacology, Physiology and Genetics of the Neuropeptide S System. Pharmaceuticals (Basel) 2021;14:401. [PMID: 33922620 DOI: 10.3390/ph14050401] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Campbell EJ, Hill MK, Maddern XJ, Jin S, Pang TY, Lawrence AJ. Orexin-1 receptor signaling within the lateral hypothalamus, but not bed nucleus of the stria terminalis, mediates context-induced relapse to alcohol seeking. J Psychopharmacol 2020;34:1261-70. [PMID: 33063594 DOI: 10.1177/0269881120959638] [Reference Citation Analysis]
19 Ehlers CL, Benedict J, Wills D, Sanchez-Alavez M. PSPH-D-18-00526: Effect of a dual orexin receptor antagonist (DORA-12) on sleep and event-related oscillations in rats exposed to ethanol vapor during adolescence. Psychopharmacology (Berl) 2020;237:2917-27. [PMID: 31659377 DOI: 10.1007/s00213-019-05371-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
20 Ch'ng S, Fu J, Brown RM, Mcdougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2018;87:108-25. [DOI: 10.1016/j.pnpbp.2018.01.005] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 11.8] [Reference Citation Analysis]
21 Walker LC, Ch’ng SS, Lawrence AJ. Role of Lateral Hypothalamic Orexin (Hypocretin) Neurons in Alcohol Use and Abuse: Recent Advances. Curr Pharmacol Rep 2016;2:241-52. [DOI: 10.1007/s40495-016-0069-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
22 Gao XB, Horvath TL. From molecule to behavior: hypocretin/orexin revisited from a sex-dependent perspective. Endocr Rev 2021:bnab042. [PMID: 34792130 DOI: 10.1210/endrev/bnab042] [Reference Citation Analysis]
23 Burnette EM, Nieto SJ, Grodin EN, Meredith LR, Hurley B, Miotto K, Gillis AJ, Ray LA. Novel Agents for the Pharmacological Treatment of Alcohol Use Disorder. Drugs 2022. [PMID: 35133639 DOI: 10.1007/s40265-021-01670-3] [Reference Citation Analysis]
24 Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020;167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
25 Botticelli L, Micioni Di Bonaventura E, Ubaldi M, Ciccocioppo R, Cifani C, Micioni Di Bonaventura MV. The Neural Network of Neuropeptide S (NPS): Implications in Food Intake and Gastrointestinal Functions. Pharmaceuticals (Basel) 2021;14:293. [PMID: 33810221 DOI: 10.3390/ph14040293] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Goode TD, Maren S. Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology (Berl) 2019;236:415-37. [PMID: 30255379 DOI: 10.1007/s00213-018-5024-3] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 8.3] [Reference Citation Analysis]
27 James MH, Mahler SV, Moorman DE, Aston-Jones G. A Decade of Orexin/Hypocretin and Addiction: Where Are We Now? Curr Top Behav Neurosci 2017;33:247-81. [PMID: 28012090 DOI: 10.1007/7854_2016_57] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 16.0] [Reference Citation Analysis]
28 Walker LC, Lawrence AJ. The Role of Orexins/Hypocretins in Alcohol Use and Abuse. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of Orexin/Hypocretin. Cham: Springer International Publishing; 2017. pp. 221-46. [DOI: 10.1007/7854_2016_55] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
29 Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018;248:473-503. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]