BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ma D, Zhao Y, Huang L, Xiao Z, Chen B, Shi Y, Shen H, Dai J. A novel hydrogel-based treatment for complete transection spinal cord injury repair is driven by microglia/macrophages repopulation. Biomaterials 2020;237:119830. [PMID: 32036301 DOI: 10.1016/j.biomaterials.2020.119830] [Cited by in Crossref: 14] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Lee CY, Chooi WH, Ng S, Chew SY. Modulating neuroinflammation through molecular, cellular and biomaterial‐based approaches to treat spinal cord injury. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10389] [Reference Citation Analysis]
2 Wang Z, Zhao H, Tang X, Meng T, Khutsishvili D, Xu B, Ma S. CNS Organoid Surpasses Cell-Laden Microgel Assembly to Promote Spinal Cord Injury Repair. Research 2022;2022:1-16. [DOI: 10.34133/2022/9832128] [Reference Citation Analysis]
3 Shi W, Zhang J, Shang Z, Zhang Y, Xia Y, Fu H, Yu T. Restorative therapy using microglial depletion and repopulation for central nervous system injuries and diseases. Front Immunol 2022;13:969127. [DOI: 10.3389/fimmu.2022.969127] [Reference Citation Analysis]
4 Gong L, Gu Y, Han X, Luan C, Liu C, Wang X, Sun Y, Zheng M, Fang M, Yang S, Xu L, Sun H, Yu B, Gu X, Zhou S. Spatiotemporal Dynamics of the Molecular Expression Pattern and Intercellular Interactions in the Glial Scar Response to Spinal Cord Injury. Neurosci Bull 2022. [PMID: 35788904 DOI: 10.1007/s12264-022-00897-8] [Reference Citation Analysis]
5 Xia L, Qi J, Tang M, Liu J, Zhang D, Zhu Y, Hu B. Continual Deletion of Spinal Microglia Reforms Astrocyte Scar Favoring Axonal Regeneration. Front Pharmacol 2022;13:881195. [DOI: 10.3389/fphar.2022.881195] [Reference Citation Analysis]
6 Deng J, Meng F, Zhang K, Gao J, Liu Z, Li M, Liu X, Li J, Wang Y, Zhang L, Tang P. Emerging Roles of Microglia Depletion in the Treatment of Spinal Cord Injury. Cells 2022;11:1871. [PMID: 35741000 DOI: 10.3390/cells11121871] [Reference Citation Analysis]
7 Zhao Y, Shao G, Liu X, Li Z. Assessment of the Therapeutic Potential of Melatonin for the Treatment of Osteoporosis Through a Narrative Review of Its Signaling and Preclinical and Clinical Studies. Front Pharmacol 2022;13:866625. [PMID: 35645810 DOI: 10.3389/fphar.2022.866625] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Chen L, Li L, Mo Q, Zhang X, Chen C, Wu Y, Zeng X, Deng K, Liu N, Zhu P, Liu M, Xiao Y. An injectable gelatin/sericin hydrogel loaded with human umbilical cord mesenchymal stem cells for the treatment of uterine injury. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10328] [Reference Citation Analysis]
9 Fan L, Liu C, Chen X, Zheng L, Zou Y, Wen H, Guan P, Lu F, Luo Y, Tan G, Yu P, Chen D, Deng C, Sun Y, Zhou L, Ning C. Exosomes-Loaded Electroconductive Hydrogel Synergistically Promotes Tissue Repair after Spinal Cord Injury via Immunoregulation and Enhancement of Myelinated Axon Growth. Adv Sci (Weinh) 2022;9:e2105586. [PMID: 35253394 DOI: 10.1002/advs.202105586] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Lv B, Shen N, Cheng Z, Chen Y, Ding H, Yuan J, Zhao K, Zhang Y. Strategies for Biomaterial-Based Spinal Cord Injury Repair via the TLR4-NF-κB Signaling Pathway. Front Bioeng Biotechnol 2022;9:813169. [DOI: 10.3389/fbioe.2021.813169] [Reference Citation Analysis]
11 Ko W, Kim SJ, Han GH, Lee D, Jeong D, Lee SJ, Han I, Hong JB, Sheen SH, Sohn S. Transplantation of neuron‐inducing grafts embedding positively charged gold nanoparticles for the treatment of spinal cord injury. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10326] [Reference Citation Analysis]
12 Wang Y, Lv HQ, Chao X, Xu WX, Liu Y, Ling GX, Zhang P. Multimodal therapy strategies based on hydrogels for the repair of spinal cord injury. Mil Med Res 2022;9:16. [PMID: 35410314 DOI: 10.1186/s40779-022-00376-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Sharma KD, Alghazali KM, Hamzah RN, Pandanaboina SC, Nima Alsudani ZA, Muhi M, Watanabe F, Zhou G, Biris AS, Xie JY. Gold Nanorod Substrate for Rat Fetal Neural Stem Cell Differentiation into Oligodendrocytes. Nanomaterials 2022;12:929. [DOI: 10.3390/nano12060929] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wang Y, Yang Z, Zhu H, Qiu H, Li S, Yang K, Xu J. Antibacterial self-fused supramolecular polymer hydrogel for infected wound healing. Mater Res Express 2022;9:035401. [DOI: 10.1088/2053-1591/ac5953] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Ma Y, Yang S, He Q, Zhang D, Chang J. The Role of Immune Cells in Post-Stroke Angiogenesis and Neuronal Remodeling: The Known and the Unknown. Front Immunol 2021;12:784098. [PMID: 34975872 DOI: 10.3389/fimmu.2021.784098] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
16 Xu L, Wang J, Ding Y, Wang L, Zhu YJ. Current Knowledge of Microglia in Traumatic Spinal Cord Injury. Front Neurol 2021;12:796704. [PMID: 35087472 DOI: 10.3389/fneur.2021.796704] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
17 Dervan A, Franchi A, Almeida-Gonzalez FR, Dowling JK, Kwakyi OB, McCoy CE, O'Brien FJ, Hibbitts A. Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics 2021;13:2161. [PMID: 34959446 DOI: 10.3390/pharmaceutics13122161] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
18 Shen H, Fan C, You Z, Xiao Z, Zhao Y, Dai J. Advances in Biomaterial‐Based Spinal Cord Injury Repair. Adv Funct Materials 2022;32:2110628. [DOI: 10.1002/adfm.202110628] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Shen H, Xu B, Yang C, Xue W, You Z, Wu X, Ma D, Shao D, Leong K, Dai J. A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Biomaterials 2022;280:121279. [PMID: 34847433 DOI: 10.1016/j.biomaterials.2021.121279] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 14.0] [Reference Citation Analysis]
20 Walsh CM, Wychowaniec JK, Brougham DF, Dooley D. Functional hydrogels as therapeutic tools for spinal cord injury: New perspectives on immunopharmacological interventions. Pharmacol Ther 2021;:108043. [PMID: 34813862 DOI: 10.1016/j.pharmthera.2021.108043] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
21 Lai BQ, Zeng X, Han WT, Che MT, Ding Y, Li G, Zeng YS. Stem cell-derived neuronal relay strategies and functional electrical stimulation for treatment of spinal cord injury. Biomaterials 2021;279:121211. [PMID: 34710795 DOI: 10.1016/j.biomaterials.2021.121211] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Zhang B, Su Y, Zhou J, Zheng Y, Zhu D. Toward a Better Regeneration through Implant-Mediated Immunomodulation: Harnessing the Immune Responses. Adv Sci (Weinh) 2021;8:e2100446. [PMID: 34117732 DOI: 10.1002/advs.202100446] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 15.0] [Reference Citation Analysis]
23 Yang Y, Gao B, Hu Y, Wei H, Zhang C, Chai R, Gu Z. Ordered inverse-opal scaffold based on bionic transpiration to create a biomimetic spine. Nanoscale 2021;13:8614-22. [PMID: 33929471 DOI: 10.1039/d1nr00731a] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
24 Liu D, Shen H, Shen Y, Long G, He X, Zhao Y, Yang Z, Dai J, Li X. Dual-Cues Laden Scaffold Facilitates Neurovascular Regeneration and Motor Functional Recovery After Complete Spinal Cord Injury. Adv Healthc Mater 2021;10:e2100089. [PMID: 33739626 DOI: 10.1002/adhm.202100089] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
25 Saika F, Matsuzaki S, Kishioka S, Kiguchi N. Chemogenetic Activation of CX3CR1-Expressing Spinal Microglia Using Gq-DREADD Elicits Mechanical Allodynia in Male Mice. Cells 2021;10:874. [PMID: 33921365 DOI: 10.3390/cells10040874] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
26 Li Y, Wang X, Han Y, Sun HY, Hilborn J, Shi L. Click chemistry-based biopolymeric hydrogels for regenerative medicine. Biomed Mater 2021;16:022003. [PMID: 33049725 DOI: 10.1088/1748-605X/abc0b3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
27 Liu D, Shu M, Liu W, Shen Y, Long G, Zhao Y, Hou X, Xiao Z, Dai J, Li X. Binary scaffold facilitates in situ regeneration of axons and neurons for complete spinal cord injury repair. Biomater Sci 2021;9:2955-71. [PMID: 33634811 DOI: 10.1039/d0bm02212h] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
28 Li X, Shou Y, Tay A. Hydrogels for Engineering the Immune System. Adv NanoBio Res 2021;1:2000073. [DOI: 10.1002/anbr.202000073] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
29 Xiao S, Wang C, Yang Q, Xu H, Lu J, Xu K. Rea regulates microglial polarization and attenuates neuronal apoptosis via inhibition of the NF-κB and MAPK signalings for spinal cord injury repair. J Cell Mol Med 2021;25:1371-82. [PMID: 33369103 DOI: 10.1111/jcmm.16220] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
30 Abbas WA, Ibrahim ME, El-Naggar M, Abass WA, Abdullah IH, Awad BI, Allam NK. Recent Advances in the Regenerative Approaches for Traumatic Spinal Cord Injury: Materials Perspective. ACS Biomater Sci Eng 2020;6:6490-509. [PMID: 33320628 DOI: 10.1021/acsbiomaterials.0c01074] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
31 Jiang X, Shen Z, Chen J, Wang C, Gao Z, Yu S, Yu X, Chen L, Xu L, Chen Z, Ni W. Irisin Protects Against Motor Dysfunction of Rats with Spinal Cord Injury via Adenosine 5'-Monophosphate (AMP)-Activated Protein Kinase-Nuclear Factor Kappa-B Pathway. Front Pharmacol 2020;11:582484. [PMID: 33312127 DOI: 10.3389/fphar.2020.582484] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
32 Han J, Fan Y, Zhou K, Zhu K, Blomgren K, Lund H, Zhang XM, Harris RA. Underestimated Peripheral Effects Following Pharmacological and Conditional Genetic Microglial Depletion. Int J Mol Sci 2020;21:E8603. [PMID: 33203068 DOI: 10.3390/ijms21228603] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
33 Xiao Z, Yao Y, Wang Z, Tian Q, Wang J, Gu L, Li B, Zheng Q, Wu Y. Local Delivery of Taxol From FGL-Functionalized Self-Assembling Peptide Nanofiber Scaffold Promotes Recovery After Spinal Cord Injury. Front Cell Dev Biol 2020;8:820. [PMID: 32974351 DOI: 10.3389/fcell.2020.00820] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
34 Han F, Liu C, Yang C, Sun Y. [Effect of directive differentiation of microglia by SN50 on hypoxia-caused neurons injury in mice]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2020;34:509-17. [PMID: 32291991 DOI: 10.7507/1002-1892.201905131] [Reference Citation Analysis]
35 Xiao L, Lin J, Chen R, Huang Y, Liu Y, Bai J, Ge G, Shi X, Chen Y, Shi J, Aiqing L, Yang H, Geng D, Wang Z. Sustained Release of Melatonin from GelMA Liposomes Reduced Osteoblast Apoptosis and Improved Implant Osseointegration in Osteoporosis. Oxid Med Cell Longev 2020;2020:6797154. [PMID: 32566094 DOI: 10.1155/2020/6797154] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]