1 |
Tian Y, Yi W, Shao Q, Ma M, Bai L, Song R, Zhang P, Si J, Hou X, Fan J. Automatic-degradable Mo-doped W18O49 based nanotheranostics for CT/FL imaging guided synergistic chemo/photothermal/chemodynamic therapy. Chemical Engineering Journal 2023;462:142156. [DOI: 10.1016/j.cej.2023.142156] [Reference Citation Analysis]
|
2 |
Xiao J, Sun Q, Ran L, Wang Y, Qin X, Xu X, Tang C, Liu L, Zhang G. pH-Responsive Selenium Nanoplatform for Highly Efficient Cancer Starvation Therapy by Atorvastatin Delivery. ACS Biomater Sci Eng 2023;9:809-20. [PMID: 36622161 DOI: 10.1021/acsbiomaterials.2c01500] [Reference Citation Analysis]
|
3 |
Basu A, Nayak AK. Advances in biomedical polymers and composites: Drug delivery systems. Advances in Biomedical Polymers and Composites 2023. [DOI: 10.1016/b978-0-323-88524-9.00009-7] [Reference Citation Analysis]
|
4 |
Lu J, Yang Y, Xu Q, Lin Y, Feng S, Mao Y, Wang D, Wang S, Zhao Q. Recent advances in multi-configurable nanomaterials for improved chemodynamic therapy. Coordination Chemistry Reviews 2023;474:214861. [DOI: 10.1016/j.ccr.2022.214861] [Reference Citation Analysis]
|
5 |
Ojha A, Jaiswal S, Bharti P, Mishra SK. Nanoparticles and Nanomaterials-Based Recent Approaches in Upgraded Targeting and Management of Cancer: A Review. Cancers (Basel) 2022;15. [PMID: 36612158 DOI: 10.3390/cancers15010162] [Reference Citation Analysis]
|
6 |
Chen M, Dong C, Shi S. An Overview of Recent Advancements on Manganese-Based Nanostructures and Their Application for ROS-Mediated Tumor Therapy. ACS Materials Lett 2022;4:2415-2433. [DOI: 10.1021/acsmaterialslett.2c00689] [Reference Citation Analysis]
|
7 |
Zhang S, Li Z, Xu Z, Tang Y, Duan C, Dai H, Dai X, Wei X, Liu Y, Xu C, Han B. Reactive oxygen species-based nanotherapeutics for head and neck squamous cell carcinoma. Materials & Design 2022;223:111194. [DOI: 10.1016/j.matdes.2022.111194] [Reference Citation Analysis]
|
8 |
Li H, Zha S, Li H, Liu H, Wong KL, All AH. Polymeric Dendrimers as Nanocarrier Vectors for Neurotheranostics. Small 2022;18:e2203629. [PMID: 36084240 DOI: 10.1002/smll.202203629] [Reference Citation Analysis]
|
9 |
Yadav K, Singh D, Singh MR, Pradhan M. Nano-constructs targeting the primary cellular energy source of cancer cells for modulating tumor progression. OpenNano 2022. [DOI: 10.1016/j.onano.2022.100107] [Reference Citation Analysis]
|
10 |
Gambhir RP, Rohiwal SS, Tiwari AP. Multifunctional surface functionalized magnetic iron oxide nanoparticles for biomedical applications: A review. Applied Surface Science Advances 2022;11:100303. [DOI: 10.1016/j.apsadv.2022.100303] [Reference Citation Analysis]
|
11 |
Wu Q, Du Q, Sun X, Niu M, Tan L, Fu C, Ren X, Zheng Y, Liang T, Zhao J, Lv X, Liang P, Yang D, Meng X, Yu J. MnMOF-based microwave-glutathione dual-responsive nano-missile for enhanced microwave Thermo-dynamic chemotherapy of drug-resistant tumors. Chemical Engineering Journal 2022;439:135582. [DOI: 10.1016/j.cej.2022.135582] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
12 |
Yang X, Xiao J, Jiang L, Ran L, Fan Y, Zhang M, Xu Y, Yao C, An B, Yang Y, Yang C, Tian G, Zhang G, Zhang Y. A Multifunctional Vanadium-Iron-Oxide Nanoparticle Eradicates Hepatocellular Carcinoma via Targeting Tumor and Endothelial Cells. ACS Appl Mater Interfaces 2022. [PMID: 35698257 DOI: 10.1021/acsami.2c03474] [Reference Citation Analysis]
|
13 |
Li B, Han L, Wang H, Zheng Y. Albumin-templated manganese carbonate nanoparticles for precise magnetic resonance imaging of acute myocardial infarction. J Biomater Appl 2022;:8853282221102673. [PMID: 35574609 DOI: 10.1177/08853282221102673] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Xuan Y, Gao Y, Guan M, Zhang S. Application of "smart" multifunctional nanoprobes in tumor diagnosis and treatment. J Mater Chem B 2022. [PMID: 35437560 DOI: 10.1039/d2tb00326k] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
15 |
Jana D, Zhao Y. Strategies for enhancing cancer chemodynamic therapy performance. Exploration 2022;2:20210238. [DOI: 10.1002/exp.20210238] [Cited by in Crossref: 16] [Cited by in F6Publishing: 23] [Article Influence: 16.0] [Reference Citation Analysis]
|
16 |
Shen WY, Jia CP, Liao LY, Chen LL, Hou C, Liu YH, Liang H, Chen ZF. Copper(II) Complexes of Halogenated Quinoline Schiff Base Derivatives Enabled Cancer Therapy through Glutathione-Assisted Chemodynamic Therapy and Inhibition of Autophagy Flux. J Med Chem 2022. [PMID: 35255688 DOI: 10.1021/acs.jmedchem.2c00133] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
|
17 |
Zhao H, Su R, Teng L, Tian Q, Han F, Li H, Cao Z, Xie R, Li G, Liu X, Liu Z. Recent advances in flexible and wearable sensors for monitoring chemical molecules. Nanoscale 2022;14:1653-69. [PMID: 35040855 DOI: 10.1039/d1nr06244a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
|
18 |
Jiang Q, Qiao B, Lin X, Cao J, Zhang N, Guo H, Liu W, Zhu L, Xie X, Wan L, Tang R, Liang B, Wang D, Wang Z, Zhou Y, Ran H, Li P. A hydrogen peroxide economizer for on-demand oxygen production-assisted robust sonodynamic immunotherapy. Theranostics 2022;12:59-75. [PMID: 34987634 DOI: 10.7150/thno.64862] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
|
19 |
Lee D, Ha J, Kang M, Yang Z, Jiang W, Kim BYS. Strategies of Perturbing Ion Homeostasis for Cancer Therapy. Advanced Therapeutics. [DOI: 10.1002/adtp.202100189] [Reference Citation Analysis]
|
20 |
Sk UH, Bhattacharya S. Oxidative Stress in Cancer. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects 2022. [DOI: 10.1007/978-981-15-9411-3_126] [Reference Citation Analysis]
|
21 |
Jiang F, Yang C, Ding B, Liang S, Zhao Y, Cheng Z, Liu M, Xing B, Ma P, Lin J. Tumor microenvironment-responsive MnSiO3-Pt@BSA-Ce6 nanoplatform for synergistic catalysis-enhanced sonodynamic and chemodynamic cancer therapy. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2021.12.096] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
|
22 |
Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coordination Chemistry Reviews 2022;451:214267. [DOI: 10.1016/j.ccr.2021.214267] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 23.0] [Reference Citation Analysis]
|
23 |
Jiang Y, Liu Y, Wang M, Li Z, Su L, Xu X, Xing C, Li J, Lin L, Lu C, Yang H. siRNA-Based Carrier-Free System for Synergistic Chemo/Chemodynamic/RNAi Therapy of Drug-Resistant Tumors. ACS Appl Mater Interfaces 2021. [PMID: 34931793 DOI: 10.1021/acsami.1c20898] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
24 |
Cao S, Li F, Xu Q, Yao M, Wang S, Zhou Y, Cui X, Man R, Li K, Tai X. Synthesis, crystal structure of a novel tetranuclear Cu (Ⅱ) complex and its application in GSH-triggered generation of reactive oxygen species for chemodynamic therapy. Journal of Saudi Chemical Society 2021;25:101372. [DOI: 10.1016/j.jscs.2021.101372] [Reference Citation Analysis]
|
25 |
Yu H, Ma M, Liang K, Shen J, Lan Z, Chen H. A self-assembled metal-polyphenolic nanomedicine for mild photothermal-potentiated chemodynamic therapy of tumors. Applied Materials Today 2021;25:101235. [DOI: 10.1016/j.apmt.2021.101235] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
26 |
Zhou Y, Fan S, Feng L, Huang X, Chen X. Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic-Synergized Multimodal Therapy. Adv Mater 2021;33:e2104223. [PMID: 34580933 DOI: 10.1002/adma.202104223] [Cited by in Crossref: 38] [Cited by in F6Publishing: 47] [Article Influence: 19.0] [Reference Citation Analysis]
|
27 |
Liu M, Wu H, Wang S, Hu J, Sun B. Glutathione-triggered nanoplatform for chemodynamic/metal-ion therapy. J Mater Chem B 2021;9:9413-22. [PMID: 34746940 DOI: 10.1039/d1tb01330k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
28 |
Wang BB, Yan LX, Chen LJ, Zhao X, Yan XP. Responsive nanoplatform for persistent luminescence "turn-on" imaging and "on-demand" synergistic therapy of bacterial infection. J Colloid Interface Sci 2021:S0021-9797(21)02029-4. [PMID: 34863538 DOI: 10.1016/j.jcis.2021.11.125] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
29 |
Liu X, Rong P. Recent Advances of Manganese-Based Hybrid Nanomaterials for Cancer Precision Medicine. Front Oncol 2021;11:707618. [PMID: 34722253 DOI: 10.3389/fonc.2021.707618] [Reference Citation Analysis]
|
30 |
Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. Small 2021;:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Cited by in Crossref: 35] [Cited by in F6Publishing: 43] [Article Influence: 17.5] [Reference Citation Analysis]
|
31 |
Cao W, Jin M, Yang K, Chen B, Xiong M, Li X, Cao G. Fenton/Fenton-like metal-based nanomaterials combine with oxidase for synergistic tumor therapy. J Nanobiotechnology 2021;19:325. [PMID: 34656118 DOI: 10.1186/s12951-021-01074-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
|
32 |
Brito B, Price TW, Gallo J, Bañobre-López M, Stasiuk GJ. Smart magnetic resonance imaging-based theranostics for cancer. Theranostics 2021;11:8706-37. [PMID: 34522208 DOI: 10.7150/thno.57004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
33 |
Tian Q, Xue F, Wang Y, Cheng Y, An L, Yang S, Chen X, Huang G. Recent advances in enhanced chemodynamic therapy strategies. Nano Today 2021;39:101162. [DOI: 10.1016/j.nantod.2021.101162] [Cited by in Crossref: 64] [Cited by in F6Publishing: 43] [Article Influence: 32.0] [Reference Citation Analysis]
|
34 |
Ferro C, Florindo HF, Santos HA. Selenium Nanoparticles for Biomedical Applications: From Development and Characterization to Therapeutics. Adv Healthc Mater 2021;10:e2100598. [PMID: 34121366 DOI: 10.1002/adhm.202100598] [Cited by in Crossref: 44] [Cited by in F6Publishing: 52] [Article Influence: 22.0] [Reference Citation Analysis]
|
35 |
Xiao J, Yan M, Zhou K, Chen H, Xu Z, Gan Y, Hong B, Tian G, Qian J, Zhang G, Wu Z. A nanoselenium-coating biomimetic cytomembrane nanoplatform for mitochondrial targeted chemotherapy- and chemodynamic therapy through manganese and doxorubicin codelivery. J Nanobiotechnology 2021;19:227. [PMID: 34330298 DOI: 10.1186/s12951-021-00971-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
36 |
Chen T, Chu Q, Li M, Han G, Li X. Fe3O4@Pt nanoparticles to enable combinational electrodynamic/chemodynamic therapy. J Nanobiotechnology 2021;19:206. [PMID: 34246260 DOI: 10.1186/s12951-021-00957-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
|
37 |
Xin J, Deng C, Aras O, Zhou M, Wu C, An F. Chemodynamic nanomaterials for cancer theranostics. J Nanobiotechnology 2021;19:192. [PMID: 34183023 DOI: 10.1186/s12951-021-00936-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
|
38 |
Yang L, Zhu X, Qu M, Xu T, Ye Y, Zeng Z, Zhang J, Wang L, Yu Z, Zhou H. In-Situ-Bloomed Micrometer-Scale Ultrathin Nanosheets in Tumor-Microenvironment for Intensive Photothermal-Enhanced Chemodynamic Therapy. ACS Appl Bio Mater 2021;4:4507-4521. [DOI: 10.1021/acsabm.1c00258] [Reference Citation Analysis]
|
39 |
Sun Y, Li Y, Shi S, Dong C. Exploiting a New Approach to Destroy the Barrier of Tumor Microenvironment: Nano-Architecture Delivery Systems. Molecules 2021;26:2703. [PMID: 34062992 DOI: 10.3390/molecules26092703] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
40 |
Yang P, Chen C, Wang D, Ma H, Du Y, Cai D, Zhang X, Wu Z. Kinetics, reaction pathways, and mechanism investigation for improved environmental remediation by 0D/3D CdTe/Bi2WO6 Z-scheme catalyst. Applied Catalysis B: Environmental 2021;285:119877. [DOI: 10.1016/j.apcatb.2021.119877] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
|
41 |
Xu X, Duan J, Liu Y, Kuang Y, Duan J, Liao T, Xu Z, Jiang B, Li C. Multi-stimuli responsive hollow MnO2-based drug delivery system for magnetic resonance imaging and combined chemo-chemodynamic cancer therapy. Acta Biomater 2021;126:445-62. [PMID: 33785453 DOI: 10.1016/j.actbio.2021.03.048] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
|
42 |
Fei W, Zhang Y, Ye Y, Li C, Yao Y, Zhang M, Li F, Zheng C. Bioactive metal-containing nanomaterials for ferroptotic cancer therapy. J Mater Chem B 2020;8:10461-73. [PMID: 33231601 DOI: 10.1039/d0tb02138e] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
|
43 |
Wang N, Liu C, Yao W, Zhou H, Yu S, Chen H, Qiao W. A Traceable, Sequential Multistage‐Targeting Nanoparticles Combining Chemo/Chemodynamic Therapy for Enhancing Antitumor Efficacy. Adv Funct Materials 2021;31:2101432. [DOI: 10.1002/adfm.202101432] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
44 |
Shi L, Wang Y, Zhang C, Zhao Y, Lu C, Yin B, Yang Y, Gong X, Teng L, Liu Y, Zhang X, Song G. An Acidity‐Unlocked Magnetic Nanoplatform Enables Self‐Boosting ROS Generation through Upregulation of Lactate for Imaging‐Guided Highly Specific Chemodynamic Therapy. Angew Chem 2021;133:9648-58. [DOI: 10.1002/ange.202014415] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
|
45 |
Shi L, Wang Y, Zhang C, Zhao Y, Lu C, Yin B, Yang Y, Gong X, Teng L, Liu Y, Zhang X, Song G. An Acidity‐Unlocked Magnetic Nanoplatform Enables Self‐Boosting ROS Generation through Upregulation of Lactate for Imaging‐Guided Highly Specific Chemodynamic Therapy. Angew Chem Int Ed 2021;60:9562-72. [DOI: 10.1002/anie.202014415] [Cited by in Crossref: 64] [Cited by in F6Publishing: 65] [Article Influence: 32.0] [Reference Citation Analysis]
|
46 |
Cheng J, Zhu Y, Xing X, Xiao J, Chen H, Zhang H, Wang D, Zhang Y, Zhang G, Wu Z, Liu Y. Manganese-deposited iron oxide promotes tumor-responsive ferroptosis that synergizes the apoptosis of cisplatin. Theranostics 2021;11:5418-29. [PMID: 33859755 DOI: 10.7150/thno.53346] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
|
47 |
Li JX, Zhang LM, Liu CC, Wu QN, Li SP, Lei XP, Huang YG, Feng GN, Yu XY, Sun XQ, Guo ZM, Fu JJ. Doxorubicin-loaded hydrogen peroxide self-providing copper nanodots for combination of chemotherapy and acid-induced chemodynamic therapy against breast cancer. J Colloid Interface Sci 2021;593:323-34. [PMID: 33744541 DOI: 10.1016/j.jcis.2021.02.085] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
48 |
Li S, Jiang P, Jiang F, Liu Y. Recent Advances in Nanomaterial‐Based Nanoplatforms for Chemodynamic Cancer Therapy. Adv Funct Mater 2021;31:2100243. [DOI: 10.1002/adfm.202100243] [Cited by in Crossref: 78] [Cited by in F6Publishing: 89] [Article Influence: 39.0] [Reference Citation Analysis]
|
49 |
Zhang G, Xie W, Xu Z, Si Y, Li Q, Qi X, Gan Y, Wu Z, Tian G. CuO dot-decorated Cu@Gd2O3 core-shell hierarchical structure for Cu(i) self-supplying chemodynamic therapy in combination with MRI-guided photothermal synergistic therapy. Mater Horiz 2021;8:1017-28. [PMID: 34821332 DOI: 10.1039/d0mh01685c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
50 |
Roma-Rodrigues C, Raposo LR, Valente R, Fernandes AR, Baptista PV. Combined cancer therapeutics-Tackling the complexity of the tumor microenvironment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1704. [PMID: 33565269 DOI: 10.1002/wnan.1704] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
51 |
Wu J, Wang Q, Dong X, Xu M, Yang J, Yi X, Chen B, Dong X, Wang Y, Lou X, Xia F, Wang S, Dai J. Biocompatible AIEgen/p-glycoprotein siRNA@reduction-sensitive paclitaxel polymeric prodrug nanoparticles for overcoming chemotherapy resistance in ovarian cancer. Theranostics 2021;11:3710-24. [PMID: 33664857 DOI: 10.7150/thno.53828] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
52 |
Tang Z, Zhao P, Wang H, Liu Y, Bu W. Biomedicine Meets Fenton Chemistry. Chem Rev 2021;121:1981-2019. [DOI: 10.1021/acs.chemrev.0c00977] [Cited by in Crossref: 150] [Cited by in F6Publishing: 172] [Article Influence: 75.0] [Reference Citation Analysis]
|
53 |
Tang M, Ren X, Fu C, Ding M, Meng X. Regulating glucose metabolism using nanomedicines for cancer therapy. J Mater Chem B 2021;9:5749-64. [PMID: 34196332 DOI: 10.1039/d1tb00218j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
54 |
Sk UH, Bhattacharya S. Oxidative Stress in Cancer. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects 2021. [DOI: 10.1007/978-981-15-4501-6_126-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
55 |
Wang N, Zeng Q, Zhang R, Xing D, Zhang T. Eradication of solid tumors by chemodynamic theranostics with H2O2-catalyzed hydroxyl radical burst. Theranostics 2021;11:2334-48. [PMID: 33500728 DOI: 10.7150/thno.49277] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
|
56 |
Kuo SH, Wu PT, Huang JY, Chiu CP, Yu J, Liao MY. Fabrication of Anisotropic Cu Ferrite-Polymer Core-Shell Nanoparticles for Photodynamic Ablation of Cervical Cancer Cells. Nanomaterials (Basel) 2020;10:E2429. [PMID: 33291730 DOI: 10.3390/nano10122429] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
|
57 |
Wang X, Zhong X, Liu Z, Cheng L. Recent progress of chemodynamic therapy-induced combination cancer therapy. Nano Today 2020;35:100946. [DOI: 10.1016/j.nantod.2020.100946] [Cited by in Crossref: 176] [Cited by in F6Publishing: 199] [Article Influence: 58.7] [Reference Citation Analysis]
|
58 |
Wang B, Dai Y, Kong Y, Du W, Ni H, Zhao H, Sun Z, Shen Q, Li M, Fan Q. Tumor Microenvironment-Responsive Fe(III)–Porphyrin Nanotheranostics for Tumor Imaging and Targeted Chemodynamic–Photodynamic Therapy. ACS Appl Mater Interfaces 2020;12:53634-45. [DOI: 10.1021/acsami.0c14046] [Cited by in Crossref: 33] [Cited by in F6Publishing: 39] [Article Influence: 11.0] [Reference Citation Analysis]
|
59 |
Chen J, Zhu Y, Wu C, Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 2020;49:9057-94. [PMID: 33112326 DOI: 10.1039/d0cs00607f] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 19.3] [Reference Citation Analysis]
|
60 |
Chen J, Wang X, Zhang Y, Zhang S, Liu H, Zhang J, Feng H, Li B, Wu X, Gao Y, Yang B. A redox-triggered C-centered free radicals nanogenerator for self-enhanced magnetic resonance imaging and chemodynamic therapy. Biomaterials 2021;266:120457. [PMID: 33096377 DOI: 10.1016/j.biomaterials.2020.120457] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 12.3] [Reference Citation Analysis]
|
61 |
Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2021;329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
|
62 |
Mei X, Hu T, Wang H, Liang R, Bu W, Wei M. Highly dispersed nano-enzyme triggered intracellular catalytic reaction toward cancer specific therapy. Biomaterials 2020;258:120257. [PMID: 32798739 DOI: 10.1016/j.biomaterials.2020.120257] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
|
63 |
Tang Y, Ji Y, Yi C, Cheng D, Wang B, Fu Y, Xu Y, Qian X, Choonara YE, Pillay V, Zhu W, Liu Y, Nie Z. Self-accelerating H2O2-responsive Plasmonic Nanovesicles for Synergistic Chemo/starving therapy of Tumors. Theranostics 2020;10:8691-704. [PMID: 32754272 DOI: 10.7150/thno.45392] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
|
64 |
Yang X, Zhang D, Li J, Ji W, Yang N, Gu S, Wu Q, Jiang Q, Shi P, Li L. A mitochondrion-targeting Mn(ii)-terpyridine complex for two-photon photodynamic therapy. Chem Commun (Camb) 2020;56:9032-5. [PMID: 32643722 DOI: 10.1039/d0cc02051f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
|
65 |
Chen Y, Zhang X, Wu L, Tian X, Shen S. Lipid Nanoparticles for the Controlled Generation of Free Radicals and Effective Treatment of Hypoxic Cancer. Chem Lett 2020;49:817-9. [DOI: 10.1246/cl.200228] [Reference Citation Analysis]
|
66 |
Chen X, Niu S, Bremner DH, Zhang X, Zhang H, Zhang Y, Li S, Zhu LM. Co-delivery of doxorubicin and oleanolic acid by triple-sensitive nanocomposite based on chitosan for effective promoting tumor apoptosis. Carbohydr Polym 2020;247:116672. [PMID: 32829800 DOI: 10.1016/j.carbpol.2020.116672] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
|
67 |
Cheng G, Wang H, Zhang C, Hao Y, Wang T, Zhang Y, Tian Y, Chang J. Multifunctional nano-photosensitizer: A carrier-free aggregation-induced emission nanoparticle with efficient photosensitization and pH-responsibility. Chemical Engineering Journal 2020;390:124447. [DOI: 10.1016/j.cej.2020.124447] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
|
68 |
Parodi A, Rudzinska M, Leporatti S, Anissimov Y, Zamyatnin AA Jr. Smart Nanotheranostics Responsive to Pathological Stimuli. Front Bioeng Biotechnol 2020;8:503. [PMID: 32523946 DOI: 10.3389/fbioe.2020.00503] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
|
69 |
Han Y, Gao S, Zhang Y, Ni Q, Li Z, Liang XJ, Zhang J. Metal-Based Nanocatalyst for Combined Cancer Therapeutics. Bioconjug Chem 2020;31:1247-58. [PMID: 32319762 DOI: 10.1021/acs.bioconjchem.0c00194] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
|
70 |
Zhang G, Zhang L, Si Y, Li Q, Xiao J, Wang B, Liang C, Wu Z, Tian G. Oxygen-enriched Fe3O4/Gd2O3 nanopeanuts for tumor-targeting MRI and ROS-triggered dual-modal cancer therapy through platinum (IV) prodrugs delivery. Chemical Engineering Journal 2020;388:124269. [DOI: 10.1016/j.cej.2020.124269] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
|
71 |
Wang C, Zhao P, Jiang D, Yang G, Xue Y, Tang Z, Zhang M, Wang H, Jiang X, Wu Y, Liu Y, Zhang W, Bu W. In Situ Catalytic Reaction for Solving the Aggregation of Hydrophobic Photosensitizers in Tumor. ACS Appl Mater Interfaces. 2020;12:5624-5632. [PMID: 31918542 DOI: 10.1021/acsami.9b21589] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
|
72 |
Gu D, An P, He X, Wu H, Gao Z, Li Y, Chen F, Cheng K, Zhang Y, You C, Sun B. A novel versatile yolk-shell nanosystem based on NIR-elevated drug release and GSH depletion-enhanced Fenton-like reaction for synergistic cancer therapy. Colloids Surf B Biointerfaces 2020;189:110810. [PMID: 32014651 DOI: 10.1016/j.colsurfb.2020.110810] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
|
73 |
Zhang Z, Ji Y. Nanostructured manganese dioxide for anticancer applications: preparation, diagnosis, and therapy. Nanoscale 2020;12:17982-8003. [DOI: 10.1039/d0nr04067c] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
|
74 |
He C, Zhang X, Xiang G. Nanoparticle facilitated delivery of peroxides for effective cancer treatments. Biomater Sci 2020;8:5574-82. [DOI: 10.1039/d0bm01265c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
|
75 |
Li M, Zhang H, Hou Y, Wang X, Xue C, Li W, Cai K, Zhao Y, Luo Z. State-of-the-art iron-based nanozymes for biocatalytic tumor therapy. Nanoscale Horiz 2020;5:202-17. [DOI: 10.1039/c9nh00577c] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 15.7] [Reference Citation Analysis]
|
76 |
Chen Q, Liu T, Chen S, Luo Y, Ma M, Xue F, Zhang L, Bao W, Chen H. Targeted Therapeutic-Immunomodulatory Nanoplatform Based on Noncrystalline Selenium. ACS Appl Mater Interfaces 2019;11:45404-15. [PMID: 31736295 DOI: 10.1021/acsami.9b15774] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
|